CENTRE NATIONAL D’ETUDES SPATIALES

The ORFEO Tool Box Software Guide
Sixth Edition
Updated for OTB-2.2

OTB Development Team

May 30, 2008

http://otb.cnes.fr
e-mail: otb@cnes.fr

http://otb.cnes.fr

The ORFEO Toolbox is not a black box.
Ch.D.

Foreword

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systaerakbgenents forming ORFEO,
the dual and bilateral system (France - Italy) for Earth @keteon, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and proneotes¢hand the exploitation of
the images derived from these sensors.

The creation of a preparatory prograia needed because of :

e the new capabilities and performances of the ORFEO systeptg#l and radar high
resolution, access capability, data quality, possibtlityacquire simultaneously in optic
and radar),

e the implied need of new methodological developments : nevegssing methods, or
adaptation of existing methods,

¢ the need to realise those new developments in very closeecatign with the final users
for better integration of new products in their systems.

This program was initiated by CNES mid-2003 and will lastill2@09. It consists in two parts,
between which it is necessary to keep a strong interaction :

e A Thematic part,

e A Methodological part.

The Thematic part covers a large range of applications| @nd defence), and aims at specify-
ing and validating value added products and services redly end users. This part includes
consideration about products integration in the operatisystems or processing chains. It also
includes a careful thought on intermediary structures tdéloped to help non-autonomous

Lhttp://smsc.cnes.fr/PLEIADES/4prog_accomp.htm

users. Lastly, this part aims at raising future users avesm®rthrough practical demonstrations
and validations.

The Methodological part objective is the definition and tleselopment of tools for the op-

erational exploitation of the future submetric optic andaraimages (tridimensional aspects,
changes detection, texture analysis, pattern matchintic ocpdar complementarities). It is

mainly based on R&D studies and doctorate and post-doetoeatarches.

In this context, CNE5 decided to develop th©RFEO ToolBoXOTB), a set of algorithms
encapsulated in a software library. The goals of the OTB tsafatalise a methologicaavoir
faire in order to adopt an incremental development approach gimairefficiently exploit the
results obtained in the frame of methodological R&D studies

All the developments are based on FLOSS (Free/Libre Openrc8owsoftware)
or existing CNES developments. OTB is distributed under ®eCILL licence,
http://iwww.cecill.info/licences/Licence _CeCILL _V2-en.html

OTB is implemented in C++ and is mainly based on PTasight Toolkit).

2http:/iwww.cnes.fr
Shttp://www.itk.org

http://www.cecill.info/licences/Licence_CeCILL_V2-en.html

Contributors

The ORFEO Toolbox is a project conducted by CNES and devdlopeooperation with CS
(Communication & Systmes) http://www.c-s.fr

This Software Guide is based on the ITK Software Guide: thle l[pwocess for the documenta-
tion, many examples and even thégdX sources were taken from ITK. We are very grateful
to the ITK developpers and contributors and especially tie Lbafez.

The OTB specifics were implemented and documented by the GM@IDpment Team:

¢ Jordi Inglada did most of the editing work for this guide aadjuilty for the choice of
data and examples. He also implemented the SVM classificafiproach and the change
detection framework.

e Thomas Feuvrier is the OTB system guru: he implemented thé procedures for the
code and the documentation; he implemented the 10 fundiimssand the streaming 10
capabilities; he also developped the visualization tools.

e Julien Michel implemented the morphological pyramid fumenalities, the spatial rea-
soning tools, Kohonen's SOM, disparity map estimation, al as some applications
and filters.

e Romain Garrigues is responsible for some applications awgd most of the ortho-
rectification routines (ported from code developped by Miana Ramanantsimiavona);
he also worked on the multi-platform installation procestur

e Emmanuel Christophe developped a road extraction algorihd is responsible for the
tutorials.

e Cyrille Valladeau coded some vegetation indices and pditedBayesian fusion algo-
rithm kindly provided by Julien Radoux and Dominique Fasher(UCL).

http://www.c-s.fr

Vi

Grégoire Mercier contributed the Kullback-Leibler chang¢edeors, several SVM ker-
nels and the SEM algorithm.

e Vincent Poulain contributed a DXF reader.

Patrick Imbo developped some filters and feature extraetigorithms.

Caroline Ruffel coded the edge and line detectors among Gihgonnalities.

Contributions from users are expected and encourageddaraimming versions of OTB.

CONTENTS

| Introduction 1
1 Welcome 3
1.1 Organization 3
12 HowtoLearnOTB 3
1.3 Software Organization e 4
1.3.1 Obtainingthe Software 4
1.4 Downloading OTB 4
1.4.1 JointheMailingList
1.4.2 Directory Structure 5
143 Documentation
144 Data e
1.5 The OTB Community and Support ittt i 7
1.6 ABriefHistoryof OTB 8
1.6.1 ITK'shistory 9
2 Installation 11
2.1 External Libraries 11
2.2 Configuring OTB o e e e 12
221 PreparingCMake e 12
222 ConfiguringOTB 13

Buillding ITK 14

viii Contents
2.3 Getting Started WithOTB 14
231 HelloWorld! 14
3 System Overview 19
3.1 SystemOrganization e e 19
3.2 Essential System Concepts e e e 20
3.2.1 Generic Programming e 21
3.2.2 Include Files and Class Definitions 21
3.23 ObjectFactories e 22
3.2.4 Smart Pointers and Memory Management 22
3.25 ErrorHandling and Exceptions 24
3.26 EventHandling 24
3.2.7 Multi-Threading e 52
3.3 NUMETICS o 25
3.4 DataRepresentation e 27
3.5 DataProcessingPipeline e 28
3.6 SpatialObjects e e e 29
Il Tutorials 31
4 Building Simple Applications with OTB 33
4.1 Helloworld e 33
4.2 Pipelinebasics: readandwrite e 35
4.3 Filtering pipeline 37
4.4 Handlingtypes: scalingoutput e . 38
4.5 Working with multispectral or colorimages 40
4.6 Parsingcommand linearguments e 43
A7 VMIBWETN . . o e 48
4.8 Going from raw satellite images to useful products 50
[l User’s guide 55

5 Data Representation 57

Contents iX
51 Image o 57
5.1.1 Creatinganimage. e 57

5.1.2 ReadinganimagefromakFile 59

5.1.3 AccessingPixelData 60

5.1.4 DefiningOriginand Spacing 61

5.1.5 AccessinglmageMetadata e 65

51.6 RGBIMages 7

5.1.7 MectorIlmages e 70

5.1.8 Importing Image DatafromaBuffer, 71

5.1.9 ImagelLists e 4

5.2 PointSet. 76
5.2.1 CreatingaPointSet 76

5.2.2 Getting AccesstoPoints 8

5.2.3 Getting AccesstoDatainPoints 0.

524 MectorsasPixel Type e 83

5.3 Mesh . . . 85
5.3.1 CreatingaMesh. 85

532 InsertingCells. 87

5.3.3 ManagingDatainCells 0

5.4 Path 93
5.4.1 Creating a PolyLineParametricPath. 93

6 Reading and Writing Images 95
6.1 BasicExample 95
6.2 Pluggable Factories. 99
6.3 10Streaming e 100
6.3.1 ImplicitStreaming Q01
6.3.2 ExplicitStreaming 011

6.4 ReadingandWritingRGBImages 103
6.5 Reading, Castingand WritingIlmages e 104
6.6 ExtractingRegions e 106
6.7 Reading and Writing Vector Images e 108

Contents

6.7.1 Reading and Writing ComplexImages L 108
6.8 Reading and Writing Multiband Images 110
6.8.1 ExtractingROIs 111
6.9 Readinglmage Series e 113
6.10 Reading and Writing VectorData 117
6.10.1 ReadingDXFFiles 117
6.10.2 Reading and Writing Vector DataFiles. 119
6.11 ReadingDEMFiles e 123
Basic Filtering 127
7.1 Thresholding e 127
7.1.1 Binary Thresholding 127
7.1.2 General Thresholding 130
7.1.3 ThresholdtoPointSet 133
7.2 Gradients 135
7.2.1 GradientMagnitude 135
7.2.2 Gradient Magnitude With Smoothing 137
7.2.3 Derivative Without Smoothing 140
7.3 Second Order Derivatives e e 141
7.3.1 LaplacianFilters 411
Laplacian Filter Recursive Gaussian 141
7.4 EdgeDetection e e 146
7.4.1 Canny Edge Detection 146
742 Ratioof MeansDetector, 147
7.5 Neighborhood Filters e 150
751 MeanFilter 115
752 MedianFilter 315
7.5.3 Mathematical Morphology 154
Binary Filters 155
Grayscale Filters 157
7.6 Smoothing Filters e 159

7.6.1 BIUING e 6aL

Contents Xi
Discrete Gaussian. e 160

7.6.2 Edge Preserving Smoothing 162
Introduction to Anisotropic Diffusion 26
Gradient Anisotropic Diffusion oL 416

7.6.3 Edge Preserving Speckle Reduction Filters . 166

7.6.4 Edge preserving Markov Random Field 167

7.7 DistanceMap e 171

8 Image Registration 175

8.1 Registration Framework e 175

8.2 "Hello World” Registration 176

8.3 Features of the Registration Framework 185

8.3.1 Direction of the TransformMapping 186

8.3.2 Registration is done in physicalspace 187

8.4 Multi-Modality Registration 187

8.4.1 Viola-Wells Mutual Information 188

8.5 CenteredTransforms e 193
8.5.1 Rigid Registrationin2D 319

8.5.2 Centered Affine Transform 198

8.6 Transforms 205

8.6.1 Geometrical Representation 205

8.6.2 Transform General Properties e, 208

8.6.3 Identity Transform 209

8.6.4 Translation Transform e 209

8.6.,5 ScaleTransform. 210

8.6.6 Scale Logarithmic Transform 212

8.6.7 Euler2DTransform 212

8.6.8 CenteredRigid2DTransform 213

8.6.9 Similarity2DTransform 214

8.6.10 QuaternionRigidTransform e 215

8.6.11 VersorTransform e e 216

8.6.12 \VersorRigid3DTransform 217

Xii Contents
8.6.13 Euler3DTransform e 218
8.6.14 Similarity3DTransform 219
8.6.15 Rigid3DPerspectiveTransform oo ... 219
8.6.16 AffineTransform 220
8.6.17 BSplineDeformableTransform, 222
8.6.18 KernelTransforms e 223

8.7 Metrics 225
8.7.1 MeanSquaresMetric 226
ExploringaMetric 226
8.7.2 Normalized CorrelationMetric 227
8.7.3 Mean Reciprocal Square Differences 227
8.7.4 Mutual InformationMetric 228
Parzen WIindowing e 228
Viola and Wells Implementation 229
Mattes et al. Implementation L 230
8.7.5 Kullback-Leibler distance metric 230
8.7.6 Normalized Mutual Information Metric 231
8.7.7 Mean Squares Histogram e 231
8.7.8 Correlation Coefficient Histogram 232
8.7.9 Cardinality MatchMetric, 322
8.7.10 Kappa StatisticsMetric 232
8.7.11 Gradient Difference Metric o 233
8.8 Optimizers e 233
9 Disparity Map Estimation 237
9.1 Disparity Maps 237
9.1.1 Geometricdeformationmodeling. 239
9.1.2 Similarity measures 241
9.1.3 The correlation coefficient e 242
9.2 Disparity Map Estimation Frameworko 243
9.3 Simple Disparity Map Estimation 243
10 Ortho-registration 253

Contents Xiii

10.1 SensorModels 254
10.1.1 TypesofSensorModels 254
10.1.2 UsingSensorModels 255
10.1.3 Limitsofthe Approach 263
10.2 Map Projections e 263
10.3 Ortho-rectificationwithOTB e 264
11 Radiometry 267
11.1 VegetationIndex e 267
11.1.1 Introduction 267
11.1.2 NDVI . . . 62
11.1.3 ARVI . . e @
11.2 Atmospheric Corrections o i i i e e e e 272
12 Image Fusion 281
12.1 Simple Pan Sharpening. e e 281
12.2 BayesianData Fusion e 284
13 Feature Extraction 289
13.1 IntroduCtion L e 289
13.2 InterestPoints L e 289
13.2.1 Harrisdetector 289
13.2.2 SIFTdetector e 291
13.3 AlIgNMENtS e 293
13.4 LINES 296

13.4.1 LineDetection 962
13.4.2 SegmentExtraction 302
13.5 GeometricMOMENES e 304
13.5.1 ComplexMoments 304

Complex Momentsforimages 530
Complex MomentsforPaths 306
1352 HuMoments 073

HuMomentsforimages 307

Xiv Contents
13.5.3 FlusserMoments 309
Flusser Momentsforimages 093

13.6 Roadextraction e e e 311
13.6.1 Road extractionfilter 311

13.6.2 Stepbysteproadextraction. e 315

14 Image Segmentation 323
141 RegioNn GrowiNg o o v i et e e e e e e 323
14.1.1 Connected Threshold 324

14.1.2 OtsuSegmentation e 327

14.1.3 Neighborhood Connected 330

14.1.4 Confidence Connected e 335

14.2 Segmentation BasedonWatersheds338
1421 OVEIVIEW o o 338

14.2.2 Usingthe ITK Watershed Filter. 341

14.3 Level SetSegmentation e 344
14.3.1 Fast Marching Segmentation uuu 346

15 Multi-scale Analysis 355
15.1 Introduction 355
15.2 Morphological Pyramid 355
15.2.1 Morphological Pyramid Exploitation 363

16 Change Detection 371
16.1 IntroducCtion e e 371
16.1.1 Surface-based approaches 372

16.2 Change Detection Framework e 373
16.3 Simple Detectors e 376
16.3.1 MeanDifference 376

16.3.2 RatioOfMeans 380

16.4 Statistical Detectors e 382
16.4.1 Distance between local distributions 382

16.4.2 Local Correlation 385

Contents XV
16.5 Multi-Scale Detectors e e 388
16.5.1 Kullback-Leibler Distance between distributions . 388
17 Classification 391
17.1 IntroducCtion e e 391
17.1.1 k-d Tree Based k-Means Clustering« cuu.. 392
17.1.2 K-Means Classification 0. 398
Simple version e 398
Generalapproach L 024
17.1.3 Bayesian Plug-InClassifier 404
17.1.4 Expectation Maximization Mixture Model Estimation 410
17.1.5 Classification using Markov Random Fields413
ITKframework 414
OTBframework 419
17.2 Statistical Segmentations e 426
17.2.1 Stochastic Expectation Maximization 426
17.3 SupportVector Machines e e 429
17.3.1 Mathematical formulation 429
17.3.2 Learning With PointSets, 431
17.3.3 PointSet Classification 434
17.3.4 LearningWithlmages 439
17.3.5 Image Classification 441
17.3.6 GenericKernelSVM 448
Learning with User DefinedKernels 494
Classification with user defined kernel 451
17.3.7 Multi-band, streamed classification 451
17.4 Kohonen's SelfOrganizingMap 453
17.41 Thealgorithm 453
Learning 453
17.4.2 Buildingacolortable 455
17.4.3 SOMCClassification 459
17.4.4 Multi-band, streamed classification. 463

Xvi Contents
18 Image Visualization 465
IV Developper’s guide 469
19 Iterators 471
19.1 IntroducCtion e e 471
19.2 ProgrammingInterface 472
19.2.1 Creating lterators e 472
19.2.2 Movinglterators 472
19.2.3 AccessingData 474
19.2.4 lteration LOOPS 475
19.3 Imagelterators e e 476
19.3.1 ImageRegionlterator 476
19.3.2 ImageRegionlteratorWithindex 478
19.3.3 ImageLinearlteratorWithindex 480
19.4 Neighborhood lterators e 482
19.4.1 Neighborhoodlterator 488
Basic neighborhood techniques: edge detection 488
Convolution filtering: Sobel operator 914

Optimizing iterationspeed e 493
Separable convolution: Gaussianfiltering 495

Random accessiteration 496
19.4.2 ShapedNeighborhoodlterator 498
Shaped neighborhoods: morphological operations499
20 Image Adaptors 505
20.1 Image Casting e 506
20.2 AdaptingRGBImages e e 508
20.3 Adapting VectorImages e e 510
20.4 Adaptors for Simple Computation e 512
20.5 Adaptorsand Writers.. e e e 514

21 Streaming and Threading 515

Contents XVii

21.1 IntroducCtion 515
21.2 Streaming and threadingin OTB i i 515
21.3 Divisionstrategi€s e e 516
22 How To Write A Filter 517
22.1 Terminology 517
22.2 Overviewof Filter Creation e 518
22.3 StreamingLargeData 519
22.3.1 Overview of Pipeline Execution 520
22.3.2 Details of Pipeline Execution 522
UpdateOutputinformation() 252
PropagateRequestedRegion() 523
UpdateOutputData() e 524
22.4 Threaded Filter Execution e e 524
225 FilterConventions 525
225.1 Optional 526
2252 UsefulMacros 526
22.6 How To Write A Composite Filter 527
22.6.1 Implementing a Composite Filter 527
22.6.2 ASimpleExample 285
V Appendix 533
23 Frequently Asked Questions 535
23.1 Introduction 535
23.1.1 WhatisOTB? e 535
23.1.2 WhatisORFEO? e 536
Where can | get more information about ORFEO? 536
23.1.3 Whatis the ORFEO Accompaniment Program? 536
Where can | get more information about the ORFEO Accompanimegr&m? . 537
23.1.4 Whoisresponsible for the OTB development? 537
23.2 LiCeNCE e 537

XViii Contents

23.2.2 If I write an application using OTB am | forced to distribute that apgibn? . . 537

23.2.3 If I wanted to distribute an application using OTB what license wonkkH to use?538

23.2.4 | am a commercial user. Is there any restriction on the useB?OT 538
23.3 Getting OTB e 538
23.3.1 Whocandownloadthe OTB?. 538
23.3.2 Wherecanldownloadthe OTB? 538
23.4 Installing OTB e e e e e 538
23.4.1 Which platforms are supported 538
23.4.2 Which libraries/packages are needed before installing OTB? 539
23.4.3 MaiNSePS e 539
Unix/Linux Platforms 539
Microsoft Visual StudioC++ 7.1 45
Microsoft Visual StudioC++8.0, 45
MinGW on Windows platform 543
CygWin 543
23.4.4 Specific platformissues 544
SUNOS/HP UX . . . 544
Linux Debian/Ubuntu 544
CYygWin e 544
MSVC+H+8.0 e 544
235 UsingOTB 544
23.5.1 Wheretostart? 544
23.5.2 Whatis the image size limitationof OTB? 455
23.6 Gettinghelp e 545
23.6.1 Isthereanymailinglist? 545
23.6.2 Which is the main source of documentation? 545
23.7 Contributingto OTB 546

23.7.1 |wantto contribute to OTB, wheretobegin? 546
23.7.2 What are the benefits of contributingtoOTB?546
23.7.3 What functionality can | contribute? L. 546
23.8 OTB'sRoadmap o e e e e 546
23.8.1 Which will be the nextversionof OTB? 546

Contents

Xix

Whatisamajorversion?

Whatisaminorversion?

23.8.2 When will the next version of OTB be available?

23.8.3 What features will the OTB include and when?

Index

.......... 546
......... 547

2.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

LIST OF FIGURES

Cmake userinterface 17
OTB Image Geometrical Concepts i i it 62
PointSet with Vectors as PixelType e 83
Collaboration diagram of the ImagelOclasses 97
Use cases of ImagelO factories e 98
Class diagram of ImagelO factories, 98
Initial SPOT5image 114
ROIofaSPOT5IimMage o oo e e e e e e e e 114
DXFreader e 120
ARVIExample e 125
BinaryThresholdimageFilter transfer function 128
BinaryThresholdimageFilteroutput 130
ThresholdimageFilter using the threshold-belowmode. 131
ThresholdimageFilter using the threshold-above mode131
ThresholdimageFilter using the threshold-outsidemode131
GradientMagnitudelmageFilteroutput 137
GradientMagnitudeRecursiveGaussianimageFilteroutput 139
Effect of the Derivative filter. e 141

Output of the LaplacianRecursiveGaussianlmageFilter.145

XXii List of Figures
7.10 Output of the LaplacianRecursiveGaussianimageFilter. 147
7.11 CannyEdgeDetectorimageFilteroutput 148
7.12 Touzi Edge Detector Application e 150
7.13 Effect of the MedianimageFilter 152
7.14 Effectof the Medianfilter. o 154
7.15 Effect of erosion and dilation ina binaryimage. oL 157
7.16 Effect of erosion and dilation in a grayscale image. 159
7.17 DiscreteGaussianimageFilter Gaussian diagram. 160
7.18 DiscreteGaussianimageFilteroutput oo 162
7.19 GradientAnisotropicDiffusionimageFilter output 165
7.20 Lee Filter Application 167
7.21 MRFrestauration e e e 170
7.22 DanielssonDistanceMaplmageFilteroutput oo L. 172
8.1 Image Registration Concept e 175
8.2 Registration Framework Components 176
8.3 Fixed and Moving images in registration framework181
8.4 HelloWorld registration outputimages e . 182
8.5 Pipeline structure of the registrationexample 183
8.6 Registration Coordinate Systems e 185
8.7 Multi-Modality Registration lnputs L 192
8.8 Multi-Modality Registrationoutputs 192
8.9 RIigid2D Registration inputimages e e 197
8.10 Rigid2D Registration outputimages e 197
8.11 Rigid2D Registrationinputimages e 199
8.12 Rigid2D Registration outputimageso e 199
8.13 AffineTransformregistration oo 204
8.14 AffineTransform outputimages e 204
8.15 Geometrical representation objectsin ITK 205
8.16 Parzen Windowing in Mutual Information 229
8.17 Class diagram of the Optimizer hierarchy 234
9.1 Estimation of the correlationsurface. 241

List of Figures XXiii

9.2 Deformation field and resampling from disparity map estimation 251
10.1 Image Ortho-registration Procedure ww 253
11.1 ARVIExample e 269
11.2 ARVIExample e 272
12.1 Simple pan-sharpening e e 282
12.2 Pansharpening e 283
12.3 Bayesian Data Fusion Example inputs 286
12.4 Bayesian Data Fusionresults e e e 287
13.1 Harris Filter Application 290
13.2 SIFT Application e 293
13.3 SIFT Application e 293
13.4 LeeFilter Application 295
13.5 Line Ratio Detector Application 298
13.6 Line Correlation Detector Application aa. .. 300
13.7 Line Correlation Detector Application aa. .. 303
13.8 Line Correlation Detector Application e 305
13.9 Road extraction filter application L 316
13.10Spectral Angle L 316
13.11Road extraction filter application 321
13.12Road extraction filter application 321

14.1 ConnectedThreshold segmentationresults327
14.2 OtsuThresholdimageFilteroutput. oo 329
14.3 OtsuThresholdlmageFilteroutput oo 331
14.4 NeighborhoodConnectedThreshold segmentationresults 334

14.5 ConfidenceConnected segmentationresults338

14.6 Watershed CatchmentBasins 339
14.7 Watersheds Hierarchy of Regions aua .. 340
14.8 Watersheds filter composition e 340

14.9 Watershed segmentationoutput e 343

XXiv

List of Figures

14.10Zero Set Concept
14.11Grid position of the embedded level-set surface
14.12FastMarchingimageFilter collaboration diagram
14.13FastMarchinglmagefFilter intermediate output

14.14FastMarchinglmageFilter segmentations

15.1 Morphological pyramid analysis

15.2
15.3
154
155
15.6
15.7
15.8

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

171
17.2
17.3
17.4
175
17.6
17.7
17.8
17.9

Morphological pyramid analysis

Morphological pyramid analysis

Morphological pyramid analysis

Morphological pyramid analysis

Morphological pyramid analysis

Morphological pyramid analysis and synthesis

Morphological pyramid analysis

Spot Images for Change Detection

Difference Change Detection Results

Radarsat Images for Change Detection

Ratio Change Detection Results

Kullback-Leibler Change Detection Results

ERS Images for Change Detection

Correlation Change Detection Results

Kullback-Leibler profile Change Detection Results

Simple conceptual classifier

Statistical classification framework

Two normal distributions plot

Output of the KMeans classifier

Bayesian plug-in classifier for two Gaussianclasses

Output of the ScalarimageMarkovRandomField

OTB Markov Framework

MRF restauration

MRF restauration

List of Figures XXV
17.10MRF restauration e e 425
17.11SEM Classificationresults e 429
17.12SVM Image Model Estimation e 439
17.13SVM Image Model Estimation e . 443
17.14SVM Image Classification e e 448
17.15Kohonen’s Self OrganizingMap e 454
17.16SOM Image Classification 458
17.17SOM Image Classification 463
18.1 Imagevisualization. e 466
19.1 ITKimageiteration e 473
19.2 Copying an image subregion using ImageRegionlterator . 479
19.3 Using the ImageRegionlteratorWithindex 480
19.4 Neighborhooditerator. e e 483
19.5 Some possible neighborhood iterator shapes484
19.6 Sobeledge detectionresults. 491
19.7 Gaussian blurring by convolution filtering Lo 496
19.8 Findinglocalminima e 498
19.9 Binary image morphology e 503
20.1 ImageAdaptorconcept e e 506
20.2 Image Adaptor for performing computations L. 514
22.1 Relationship between DataObjects and ProcessObjects 518
222 TheDataPipeline 520
22.3 Sequence of the Data Pipeline updating mechanism521
22.4 Composite FilterConcept e e 527
22.5 Composite Filter Example 528

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

9.1
9.2

141

LIST OF TABLES

Geometrical Elementary Objects e 206
Identity Transform Characteristics i o 209
Translation Transform Characteristics 210
Scale Transform Characteristics 211
Scale Logarithmic Transform Characteristics« 212
Euler2D Transform Characteristics i 213
CenteredRigid2D Transform Characteristics 214
Similarity2D Transform Characteristics 215
QuaternionRigid Transform Characteristics oo .. 216
Versor Transform Characteristics oo 217
Versor Rigid3D Transform Characteristics 218
Euler3D Transform Characteristics i oo 219
Similarity3D Transform Characteristics 220
Rigid3DPerspective Transform Characteristics 221
Affine Transform Characteristics u ... 221
BSpline Deformable Transform Characteristics 223
Characterization of the geometric deformationsources239
Approaches to image registration e . 240

ConnectedThreshold example parameters326

XXViii List of Tables

14.2 NeighborhoodConnectedThreshold example parameters334
14.3 ConnectedThreshold example parameters338

14.4 FastMarching segmentation example parameters. 352

Part |

Introduction

CHAPTER

ONE

Welcome

Welcome to th@ORFEO ToolBox (OTB) Software Guide

This document presents the essential concepts used in ©W8l. guide you through the road
of learning and using OTB. The Doxygen documentation foQi& application programming
interface is available on line attp://orfeo-toolbox.sourceforge.net/Doxygen/html

1.1 Organization

This software guide is divided into three parts, each of Whfurther divided into several

chapters. Part | is a general introduction to OTB, with—in tiext chapter—a description
of how to install the ORFEO Toolbox on your computer. Partsloahtroduces basic system
concepts such as an overview of the system architectureh@amdo build applications in the

C++ programming language. Part Il describes the system thenuser point of view. Dozens
of examples are used to illustrate important system festurart Il is for the OTB developer.

It explains how to create your own classes and extend thersyst

1.2 Howto Learn OTB

There are two broad categories of users of OTB. First ares daselopers, those who create
classes in C++. The second, users, employ existing C++edassbuild applications. Class
developers must be proficient in C++, and if they are extepdinmodifying OTB, they must
also be familiar with OTB’s internal structures and desigraterial covered in Part Ill).

The key to learning how to use OTB is to become familiar withpalette of objects and the
ways of combining them. We recommend that you learn the sybtestudying the examples
and then, if you are a class developer, study the source &de.by reading Chapter 3, which
provides an overview of some of the key concepts in the systachthen review the examples in
Part II. You may also wish to compile and run the dozens of eitagdistributed with the source

http://orfeo-toolbox.sourceforge.net/Doxygen/html

4 Chapter 1. Welcome

code found in the director@TB/Examples . (Please see the fil@TB/Examples/README.txt

for a description of the examples contained in the variobsisactories.) There are also several
hundreds of tests found in the source distributior®iB/Testing/Code , most of which are
minimally documented testing code. However, they may béulise see how classes are used
together in OTB, especially since they are designed to eseas much of the functionality of
each class as possible.

1.3 Software Organization

The following sections describe the directory contentmarize the software functionality in
each directory, and locate the documentation and data.

1.3.1 Obtaining the Software

Periodic releases of the software are available on the OTB &ife. These official releases are
available a few times a year and announced on the ORFEO Wels jpag mailing lists.

This software guide assumes that you are working with theiaffOTB version 1.0 release
(available on the OTB Web site).

1.4 Downloading OTB

OTB can be downloaded without cost from the following wek:sit
http://oth.cnes.fr/

In order to track the kind of applications for which OTB is bgiused, you will be asked to
complete a form prior to downloading the software. The infation you provide in this form
will help developers to get a better idea of the interestsskilts of the toolkit users.

Once you fill out this form you will have access to the downlpade. This page can be book
marked to facilitate subsequent visits to the downloadvgitieout having to complete any form
again.

Then choose the tarball that better fits your system. The@woptrezip and.tgz files. The
first type is better suited for MS-Windows while the secon@ @ the preferred format for
UNIX systems.

Once you unzip or untar the file, a directory cal@tBwill be created in your disk and you will
be ready for starting the configuration process describ&®ation 2.2.1 on page 12.

http://otb.cnes.fr/

1.4. Downloading OTB 5

1.4.1 Join the Mailing List

It is strongly recommended that you join the users mailisg liThis is one of the primary
resources for guidance and help regarding the use of thieittogbu can subscribe to the users
list online at

http://groups.google.com/group/otb-users

The otb-users mailing list is also the best mechanism foresging your opinions about the
toolbox and to let developers know about features that yaluseful, desirable or even unnec-
essary. OTB developers are committed to creating a setéisirsg open-source OTB commu-
nity. Feedback from users is fundamental to achieving tbé.g

1.4.2 Directory Structure

To begin your OTB odyssey, you will first need to know someghétbout OTB’s software
organization and directory structure. It is helpful to knemough to navigate through the code
base to find examples, code, and documentation.

OTB is organized into several different modules. Therelaree: theDTB OTB-Documents and
OTB-Applications ~ modules. The source code, examples and applications ard fiotheOTB
module; documentation, tutorials, and material relatetthéodesign and marketing of OTB are
found inOTB-Documents ; and fairly complex applications using OTB (and other systesuch
as VTK and FLTK) are available fro@TB-Applications . Usually you will work with the
OTBmodule unless you are a developer, are teaching a coursee waking at the details of
various design documents. TR&B-Applications module should only be downloaded and
compiled once th®TBmodule is functioning properly.

The OTBmodule contains the following subdirectories:

e OTB/Code—the heart of the software; the location of the majority of sberce code.

e OTB/Examples —a suite of simple, well-documented examples used by thidegand to
illustrate important OTB concepts.

e OTB/Testing —a large number of small programs used to test OTB. These dgangnd
to be minimally documented but may be useful to demonst@tiews system concepts.

e OTB/Utilities —supporting software for the OTB source code. For examplealies
such adTK.

The source code directory structure—foundQOmB/Code—is important to understand since
other directory structures (such as fiesting directory) shadow the structure of tB&B/Code
directory.

http://groups.google.com/group/otb-users

6 Chapter 1. Welcome

e OTB/Code/Common—core classes, macro definitions, typedefs, and other sata@n-
structs central to OTB.

e OTB/Code/BasicFilters —basic image processing filters.
e OTB/Code/l0 —classes that support the reading and writing of data.

e OTB/Code/Projections —classes allowing to deal with sensor models and cartogeaphi
projections.

e OTB/Code/Radiometry —classes allowing to compute vegetation indices and radiome
ric corrections.

e OTB/Code/Fusion —image fusion algorithms, as for instance, pansharpening.

e OTB/Code/FeatureExtraction —the location of many feature extraction algorithms.

e OTB/Code/ChangeDetection —a set of remote sensing image change detection algo-
rithms.

e OTB/Code/MultiScale —a set of functionalities for multiscale image analysis ayr s
thesis.

e OTB/Code/Learning —several functionnalities for supervised learning and sifes-
tion.

e OTB/Code/SpatialReasoning —several functionnalities high level image analysis using
spatial reasoning techniques.

e OTB/Code/Visu —utilities for simple image visualization.

e OTB/Code/Gui —very basic widgets for building graphical user interfacesch as
progress bars for filters, etc.

The OTB-Documents module contains the following subdirectories:

e OTB-Documents/CourseWare —material related to teaching OTB.
e OTB-Documents/Latex —IATEX styles to produce this work as well as other documents.

e OTB-Documents/SoftwareGuide =~ —IATEX files used to create this guide. (Note that the
code found iMDTB/Examples is used in conjunction with thes#TEX files.)

The OTB-Applications module contains large, relatively complex examples of O$Bge.

1.5. The OTB Community and Support 7

1.4.3 Documentation
Besides this text, there are other documentation resothraégou should be aware of.

Doxygen Documentation. The Doxygen documentation is an essential resource whekirvgor
with OTB. These extensive Web pages describe in detail eslass and method in the
system. The documentation also contains inheritance diaboeation diagrams, listing
of event invocations, and data members. The documentatibeavily hyper-linked to
other classes and to the source code. The Doxygen docuimeritasvailable on-line at
http://orfeo-toolbox.sourceforge.net/Doxygen/html

Header Files. Each OTB class is implemented with a .h and .cxx/.txx filex(file for tem-
plated classes). All methods found in the .h header files aceidented and provide
a quick way to find documentation for a particular methoddéked, Doxygen uses the
header documentation to produces its output.)

1.4.4 Data

The OTB Toolkit was designed to support the ORFEO AcompanirReogram and its associ-
ated data. This data is availalbiigp://smsc.cnes.fr/PLEIADES/index.htm

1.5 The OTB Community and Support

OTB was created from its inception as a collaborative, comityweffort. Research, teaching,
and commercial uses of the toolkit are expected. If you wikidto participate in the commu-
nity, there are a number of possibilities.

e Users may actively report bugs, defects in the system Alllpauisubmit feature requests.
Currently the best way to do this is through the OTB usersingalist.

e Developers may contribute classes or improve existingselsIf you are a developer,
you may request permission to join the OTB developers ngalist. Please do so by
sending email to otb “at” cnes.fr. To become a developer yerdrto demonstrate both
a level of competence as well as trustworthiness. You mak widegin by submitting
fixes to the OTB users mailing list.

e Research partnerships with members of the ORFEO AcompahiPtegram are encour-
aged. CNES will encourage the use of OTB in proposed work eselarch projects.

e Educators may wish to use OTB in courses. Materials are lgmgloped for this pur-
pose, e.g., a one-day, conference course and semestagrbhgate courses. Watch the
OTB web pages or check in tf@TB-Documents/CourseWare directory for more infor-
mation.

http://orfeo-toolbox.sourceforge.net/Doxygen/html
http://smsc.cnes.fr/PLEIADES/index.htm

8 Chapter 1. Welcome

1.6 A Brief History of OTB

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systerakbdenents forming ORFEO,
the dual and bilateral system (France - Italy) for Earth @Qlzeon, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and proneotséhand the exploitation of
the images derived from these sensors.

The creation of a preparatory prograia needed because of :

e the new capabilities and performances of the ORFEO systeptg#l and radar high
resolution, access capability, data quality, possibtiityacquire simultaneously in optic
and radar),

e the implied need of new methodological developments : nevecgssing methods, or
adaptation of existing methods,

¢ the need to realise those new developments in very closescaiign with the final users
for better integration of new products in their systems.

This program was initiated by CNES mid-2003 and will lastill2@09. It consists in two parts,
between which it is necessary to keep a strong interaction :

e A Thematic part

e A Methodological part.

The Thematic part covers a large range of applications!(aivil defence ones), and aims
at specifying and validating value added products and sesviequired by end users. This
part includes consideration about products integratidhéoperational systems or processing
lines. It also includes a careful thought on intermediarycttires to be developed to help non-
autonomous users. Lastly, this part aims at raising futsersuiawareness, through practical
demonstrations and validations.

The Methodological part objective is the definition and tleselopment of tools for the op-

erational exploitation of the future submetric optic andaraimages (tridimensional aspects,
change detection, texture analysis, pattern matchingec optiar complementarities). It is

mainly based on R&D studies and doctorate and post-doetoeaearch.

In this context, CNE3 decided to develop thORFEO ToolBoxOTB), a set of algorithms
encapsulated in a software library. The goals of the OTB tsaftalise a methologicaavoir
faire in order to adopt an incremental development approach aingfficiently exploit the
results obtained in the frame of methodological R&D studies

All the developments are based on FLOSS (Free/Libre Opemc&dboftware) or existing
CNES developments.

Lhttp://smsc.cnes.fr/PLEIADES/4prog_accomp.htm
2http:/iwww.cnes.fr

1.6. A Brief History of OTB 9

OTB is implemented in C++ and is mainly based on Pasight Toolkit):

e |TK is used as the core element of OTB
e OTB classes inherit from ITK classes

e The software development procedure of OTB is strongly mespfrom ITK's (Extreme
Programming, test-based coding, Generic Programming, etc

e The documentation production procedure is the same as for IT

e Several chapters of the Software Guide are litterally abfiem ITK's Software Guide
(with permission).

e Many examples are taken from ITK.

1.6.1 ITK'’s history

In 1999 the US National Library of Medicine of the Nationakfitutes of Health awarded
six three-year contracts to develop an open-source ratimirand segmentation toolkit, that
eventually came to be known as the Insight Toolkit (ITK) andvied the basis of the Insight
Software Consortium. ITK’s NIH/NLM Project Manager was Dferry Yoo, who coordi-
nated the six prime contractors composing the Insight atinee. These consortium members
included three commercial parthers—GE Corporate R&D, Kigydnc., and MathSoft (the
company name is now Insightful)—and three academic partndrsversity of North Carolina
(UNC), University of Tennessee (UT) (Ross Whitaker subsetipenoved to University of
Utah), and University of Pennsylvania (UPenn). The Prilecipvestigators for these partners
were, respectively, Bill Lorensen at GE CRD, Will SchroedeKitware, Vikram Chalana at
Insightful, Stephen Aylward with Luis Bfiez at UNC (Luis is now at Kitware), Ross Whitaker
with Josh Cates at UT (both now at Utah), and Dimitri MetaxtadRenn (now at Rutgers). In
addition, several subcontractors rounded out the comsoiticluding Peter Raitu at Brigham
& Women'’s Hospital, Celina Imielinska and Pat Molholt at Gmlbia University, Jim Gee at
UPenn’s Grasp Lab, and George Stetten at the UniversitytshiRirgh.

In 2002 the first official public release of ITK was made aualda

Shttp://www.itk.org

CHAPTER

TWO

Installation

This section describes the process for installing OTB on ggstem. Keep in mind that OTB is
a toolbox, and as such, once it is installed in your compineret will be no application to run.
Rather, you will use OTB to build your own applications. WhaiBXoes provide—besides the
toolbox proper—is a large set of test files and examples tHeintvbduce you to OTB concepts
and will show you how to use OTB in your own projects.

OTB has been developed and tested across different conanigaif operating systems, com-
pilers, and hardware platforms including MS-Windows, iran Intel-compatible hardware,
Solaris and Mac OSX. It is known to work with the following cpiters:

e Cygwin, MinGW, Visual Studio 7 and 8 on MS-Windows

e GCC on Unix/Linux systems

Given the advanced usage of C++ features in the toolbox, somgilers may have difficulties
processing the code. If you are currently using an outdadetbder this may be an excellent
excuse for upgrading this old piece of software!

2.1 External Libraries

The OTB depends on 3 libraries:

e ITK: you have the choice between using OTB'’s internal varsid ITK or building
your own ITK outside the OTB source tree. The recommendedtehs the first one.
See next section for details. If you choose to use an extemraion of ITK, go to
http:/lwww.itk.org and follow the guidelines to download and install ITK.

e GDAL: The support of remote sensing imagery formats is eststiirough the use of the
GDAL library. Please seéttp://www.remotesensing.org/gdal/ for informations
on how to download and install this library on your system.

http://www.itk.org
http://www.remotesensing.org/gdal/

12 Chapter 2. Installation

o Fltk: this library is used for the visualization functionitias. See
http:/fwww.fltk.org/ for details about dowloading and installing Fltk. OTB
has been tested with version 1.1.7.

See section 23.4 for quick installation guidelines.

2.2 Configuring OTB

The challenge of supporting OTB across platforms has beeadthrough the use of CMake,
a cross-platform, open-source build system. CMake is usedritrol the software compilation
process using simple platform and compiler independerfiguration files. CMake generates
native makefiles and workspaces that can be used in the aamepiironment of your choice.
CMake is quite sophisticated—it supports complex enviramsieequiring system configura-
tion, compiler feature testing, and code generation.

CMake generates Makefiles under UNIX and Cygwin systems amergtes Visual Studio
workspaces under Windows (and appropriate build files foeotompilers like Borland). The
information used by CMake is provided IBMakelLists.txt files that are present in every
directory of the OTB source tree. These files contain infdiomathat the user provides to
CMake at configuration time. Typical information includesthgs to utilities in the system and
the selection of software options specified by the user.

2.2.1 Preparing CMake
CMake can be downloaded at no cost from
http://www.cmake.org

OTB requires at least CMake version 2.0. You can downloadriimersions for most of the
popular platforms including Windows, Solaris, IRIX, HP, 8Mand Linux. Alternatively you
can download the source code and build CMake on your systellowrthe instructions in the
CMake Web page for downloading and installing the software.

Running CMake initially requires that you provide two piscd information: where the source
code directory is located (OTESBOURCE_DIR), and where the object code is to be produced
(OTB_BINARY _DIR). These are referred to as theurce directoryand thebinary directory

We recommend setting the binary directory to be differeantthe source directory (aut-of-
sourcebuild), but OTB will still build if they are set to the same @atory (anin-sourcebuild).

On Unix, the binary directory is created by the user and CMsakevoked with the path to the
source directory. For example:

mkdir OTB-binary
cd OTB-binary

http://www.fltk.org/
http://www.cmake.org

2.2. Configuring OTB 13

ccmake ../OTB

On Windows, the CMake GUI is used to specify the source and birectories (Figure 2.1).

CMake runs in an interactive mode in that you iterativelgsebptions and configure according
to these options. The iteration proceeds until no more optie@main to be selected. At this
point, a generation step produces the appropriate buiklffileyour configuration.

This interactive configuration process can be better utalsisif you imagine that you are
walking through a decision tree. Every option that you delletoduces the possibility that
new, dependent options may become relevant. These newnsie presented by CMake at
the top of the options list in its interface. Only when no ngstians appear after a configuration
iteration can you be sure that the necessary decisions lidweea made. At this point build
files are generated for the current configuration.

2.2.2 Configuring OTB

Figure 2.1 shows the CMake interface for UNIX and MS-Windowsorder to speed up the

build process you may want to disable the compilation of élséing and examples. This is done
with the variable8UILD _TESTING=OFFandBUILD _EXAMPLES=OFFThe examples distributed

with the toolbox are a helpful resource for learning how te @B components but are not
essential for the use of the toolbox itself. The testingisadhcludes a large number of small
programs that exercise the capabilities of OTB classes. tBtiee large number of tests, en-
abling the testing option will considerably increase thédotime. It is not desirable to enable

this option for a first build of the toolbox.

An additional resource is available in tB@B-Applications ~ module, which contains applica-
tions incorporating GUIs and different levels of visuatisa. However, building this module
should be postponed until you are familiar with the basigdtrre of the toolbox and the build-
ing process.

Begin running CMake by using ccmake on Unix, and CMakeSetupVindows. Remember
to run ccmake from the binary directory on Unix. On Windowseafy the source and binary
directories in the GUI, then begin to set the build variabteshe GUI as necessary. Most
variables should have default values that are sensibleh #ae you change a set of variables
in CMake, it is necessary to proceed to another configuratiep. In the Windows version this
is done by clicking on the “Configure” button. In the UNIX virs this is done in an interface
using the curses library, where you can configure by hittirg‘t” key.

When no new options appear in CMake, you can proceed to gerdediefiles or Visual Studio
projects (or appropriate build file(s) depending on your piden). This is done in Windows by
clicking on the “Ok” button. In the UNIX version this is dong hitting the “g” key. After the
generation process CMake will quit silently. To initiate thuild process on UNIX, simply type
make in the binary directory. Under Windows, load the workspaaenadOTB.dsw (if using
MSDEV) or OTB.sIn (if using the .NET compiler) from the binary directory youesified in
the CMake GUI.

14 Chapter 2. Installation

The build process will typically take anywhere from 15 to 3iates depending on the perfor-
mance of your system. If you decide to enable testing as p#reaormal build process, about
600 small test programs will be compiled. This will verifyatithe basic components of OTB
have been correctly built on your system.

Building ITK

The OTB installation procedure allows you to choose betwiedifding the OTB with an
external version of ITK already present in your system. Theiee is made by using the
OTB_USE_EXTERNALITK CMake variable.

2.3 Getting Started With OTB

The simplest way to create a new project with OTB is to createva directory somewhere in
your disk and create two files in it. The first one i€8akeLists.txt file that will be used
by CMake to generate a Makefile (if you are using UNIX) or a ¥isBtudio workspace (if
you are using MS-Windows). The second file is an actual C+gnaro that will exercise some
of the large number of classes available in OTB. The detditbase files are described in the
following section.

Once both files are in your directory you can run CMake in otdezonfigure your project.
Under UNIX, you can cd to your newly created directory ancetygrmake . ”. Note the “.”
in the command line for indicating that tf@MakeLists.txt file is in the current directory.
The curses interface will require you to provide the directwhere OTB was built. This is
the same path that you indicated for tB€B_BINARY_DIR variable at the time of configuring
OTB. Under Windows you can run CMakeSetup and provide youlynereated directory as
being both the source directory and the binary directoryéar new project (i.e., an in-source
build). Then CMake will require you to provide the path to theary directory where OTB was
built. The OTB binary directory will contain a file nam€@IBConfig.cmake generated during
the configuration process at the time OTB was built. FromftlisCMake will recover all the
information required to configure your new OTB project.

2.3.1 Hello World !

Here is the content of the two files to write in your new projfdtiese two files can be found in
the OTB/Examples/Installation directory. TheCMakeLists.txt file contains the following
lines:

PROJECT(HelloWorld)

FIND_PACKAGE(OTB)
IF(OTB_FOUND)

2.3. Getting Started With OTB 15

INCLUDE(${OTB_USE_FILE})
ELSE(OTB_FOUND)
MESSAGE(FATAL_ERROR
“"Cannot build OTB project without OTB. Please set OTB_DIR.")
ENDIF(OTB_FOUND)

ADD_EXECUTABLE(HelloWorld HelloWorld.cxx)

TARGET_LINK_LIBRARIES(HelloWorld OTBCommon OTBIO ITKCo mmon ITKIO)

The first line defines the name of your project as it appearsisnaV Studio (it will have no
effect under UNIX). The second line loads a CMake file with edafined strategy for finding
OTB L. If the strategy for finding OTB fails, CMake will prompt yoorfthe directory where
OTB is installed in your system. In that case you will writéstinformation in theOTB_DIR
variable. The line INCLUDE(${USE _OTB_FILE}) loads theUseOTB.cmake file to set all the
configuration information from OTB.

The next block of lines is needed in order for CMake to know tltheyou are using the OTB’s
internal version of ITK or an external one. In the second c@déake will try to find ITK in
your system. As for OTB, if it fails in finding ITK, it will ask gu to manually set the ITK
location.

The line ADD_EXECUTABLEefines as its first argument the name of the executable thlat wi
be produced as result of this project. The remaining argtsneiDD_EXECUTABLEare the
names of the source files to be compiled and linked. Finaily, TARGETLINK _LIBRARIES

line specifies which OTB libraries will be linked againstsipiroject.

The source code for this example can be found in the file
Examples/Installation/HelloWorld.cxx

The following code is an implementation of a small OTB pragralt tests including header
files and linking with OTB libraries.

#include "otblmage.h"
#include <iostream>

int main()

{
typedef otb::Image< unsigned short, 2 > ImageType;
ImageType::Pointer image = ImageType::New();

std::cout << "OTB Hello World !" << std::endl;

return O;

}

1Similar files are provided in CMake for other commonly used liless all of them name#ind*.cmake

16 Chapter 2. Installation

This code instantiates an image whose pixels are reprebetittetypeunsigned short . The
image is then constructed and assigned titkaSmartPointer . Although later in the text
we will discussSmartPointer s in detail, for now think of it as a handle on an instance of an
object (see section 3.2.4 for more information). Thie:image class will be described in
Section 5.1.

At this point you have successfully installed and compiléBOand created your first simple
program. If you have difficulties, please join the otb-usessling list (Section 1.4.1 on page
5) and post questions there.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

2.3. Getting Started With OTB 17

Session Edition Affichage Signets Configuration Aide

Page 1 of 1 (2]
BUILD_EXAMPLES
BUILD_SHARED_LIBS
BUILD_TESTING
CAI_INCLUDES
CAI_LIBRARY
CMAKE_BACKWARDS_COMPATIBILITY
CMAKE_BUILD_TYPE
CMAKE_TNSTALL_PREFIX
FLTK_DIR
FLTK_FLUID_EXECUTABLE
GDAL_INCLUDES
GDAL_LIBRARY
ITK_DIR
OTB_DATA_DIR
TIFF_LIBRARY
VIK_DIR

CMAKE_BUILD_TYP: 00 he of build, o
Press [enter] to edit option
Press [c] to configure
Press [h] for help Press [q] to gquit without generating
Press [t] to toggle advanced mode (Currently Off)

Z| & Terminal
CMake 2.2 - patch 2 L i

CMake Version 2.2 - patch 2

iwhere is the source code: IY:\DFHFED'TDDLBDX\otb\DTB Browse...]
™ Show édvanced Yalues
“wihere to build the binanes:!D \TestsCmakePrajet _:] BIDWSE---I

— Cache Yalle:

22
| C:/Prograr Files/OTE

VTK_DIR-NOTFOUND

Right elick ona cache walue for additional options (delete, ignore; and help]
Presz Configure to update and display new values in ed
Fiess 0K to generate selected build files and exit.

Configure l (i) Cancel [relete Cache Help

‘Single autput directory for building all libraries.

Figure 2.1:CMake interface. Top) ccmake, the UNIX version based on curses . Bottom) CMakeSetup,
the MS-Windows version based on MFC.

CHAPTER

THREE

System Overview

The purpose of this chapter is to provide you with an ovenaéthe ORFEO Toolboxsystem.
We recommend that you read this chapter to gain an appm@tidi the breadth and area of
application of OTB. In this chapter, we will make referendther to OTB featuresor ITK
featureswithout distinction. Bear in mind that OTB uses ITK as itse@ement, so all the
fundamental elements of OTB come from ITK. OTB extends tmefionalities of ITK for the
remote sensing image processing comunity. We benefit frenOgpen Source development
approach chosen for ITK, which allows us to provide an imgikesset of functionalities with
much lesser effort than it would have been the case in a ckmade universe!

3.1 System Organization

The ORFEO Toolbox consists of several subsystems. A brigfrgetion of these subsystems
follows. Later sections in this chapter—and in some casegianal chapters—cover these
concepts in more detail. (Note: in the previous chapter ttheiomodules—-OTB-Documents
andOTB-Applications ~ were briefly described.)

Essential System ConceptsLike any software system, OTB is built around some core aesig
concepts. OTB uses those of ITK. Some of the more importamtegats include generic
programming, smart pointers for memory management, oligetbries for adaptable
object instantiation, event management using the comrobedfver design paradigm,
and multithreading support.

Numerics OTB, as ITK uses VXL's VNL numerics libraries. These are ettsyise C++ wrap-
pers around the Netlib Fortran numerical analysis rout{hts//www.netlib.org).

Data Representation and AccessTwo principal classes are used to represent data: the
oth:image and itk:Mesh classes. In addition, various types of iterators and con-
tainers are used in ITK to hold and traverse the data. Othpoiitant but less popular
classes are also used to represent data such as histograms.

http://www.netlib.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html

20 Chapter 3. System Overview

ITK's Data Processing Pipeline. The data representation classes (knowdata objectyare
operated on byilters that in turn may be organized into data flgipelines These
pipelines maintain state and therefore execute only wheessary. They also support
multi-threading, and are streaming capable (i.e., canat@®@n pieces of data to minimize
the memory footprint).

IO Framework. Associated with the data processing pipeline svarces filters that initiate
the pipeline, andnappersfilters that terminate the pipeline. The standard exampies
sources and mappers asadersandwriters respectively. Readers input data (typically
from a file), and writers output data from the pipelindewersare another example of
mappers.

Spatial Objects. Geometric shapes are represented in OTB using the ITK $phj&ct hierar-
chy. These classes are intended to support modeling ofraibstructures in ITK. OTB
uses them in order to model cartographic elements. Usingnenom basic interface, the
spatial objects are capable of representing regions okspaxvariety of different ways.
For example: mesh structures, image masks, and impliciteans may be used as the
underlying representation scheme. Spatial objects aréumahaata structure for com-
municating the results of segmentation methods and fardoiring geometrical priors in
both segmentation and registration methods.

ITK's Registration Framework. A flexible framework for registration supports four diffate
types of registration: image registration, multiresautregistration, PDE-based regis-
tration, and FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problemgarticular
non-rigid registration. The FEM package includes mesh diefin(nodes and elements),
loads, and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creating Siltersolve
partial differential equations on images using an itegfinite difference update scheme.
The level set framework consists of finite difference savecluding a sparse level set
solver, a generic level set segmentation filter, and sewpredific subclasses including
threshold, Canny, and Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfaces, “wrappers”) to
interpreted languages such as Tcl and Python. The GOAL tool is used to produce an
XML description of arbitrarily complex C++ code; CSWIG is thased to transform the
XML description into wrappers using the SWIG package. OTBsdwoat use this system
at present.

3.2 Essential System Concepts

This section describes some of the core concepts and imptatie features found in ITK and
therefore also in OTB.

http://www.swig.org/

3.2. Essential System Concepts 21

3.2.1 Generic Programming

Generic programming is a method of organizing librariessisiing of generic—or reusable—
software components [65]. The idea is to make software shedpable of “plugging together”

in an efficient, adaptable manner. The essential ideas @riggorogramming areontainersto
hold datajteratorsto access the data, agdneric algorithmshat use containers and iterators to
create efficient, fundamental algorithms such as sortirene@c programming is implemented
in C++ with thetemplateprogramming mechanism and the use of the STL Standard Templa
Library [5].

C++ templating is a programming technique allowing useraitite software in terms of one
or more unknown types. To create executable code, the user of the software musifysjpd
typesT (known astemplate instantiationand successfully process the code with the compiler.
TheT may be a native type such it orint , or T may be a user-defined type (e dass).

At compile-time, the compiler makes sure that the templaypes are compatible with the
instantiated code and that the types are supported by tlessey methods and operators.

ITK uses the techniques of generic programming in its imgetation. The advantage of this
approach is that an almost unlimited variety of data typessapported simply by defining
the appropriate template types. For example, in OTB it isides to create images consisting
of almost any type of pixel. In addition, the type resolutisnperformed at compile-time,
so the compiler can optimize the code to deliver maximalgarnce. The disadvantage of
generic programming is that many compilers still do not supthese advanced concepts and
cannot compile OTB. And even if they do, they may produce detely undecipherable error
messages due to even the simplest syntax errors. If you afamdiar with templated code
and generic programming, we recommend the two books citedeab

3.2.2 Include Files and Class Definitions

In ITK and OTB classes are defined by a maximum of two files: aleeh file and an imple-
mentation file—exx if a non-templated class, andt& if a templated class. The header files
contain class declarations and formatted comments thasakby the Doxygen documentation
system to automatically produce HTML manual pages.

In addition to class headers, there are a few other impadneauder files.

i t kMacr o. h is found in theUtilities/ITK/Code/Common directory and defines standard
system-wide macros (such &st/Get , constants, and other parameters).

i tkNumericTraits. h is found in theUtilities/ITK/Code/Common directory and de-
fines numeric characteristics for native types such as isgsrman and minimum possible
values.

i t kW n32Header . h is found in theUtilities/ITK/Code/Common and is used to define
operating system parameters to control the compilationge®.

22 Chapter 3. System Overview

3.2.3 Object Factories

Most classes in OTB are instantiated througlobject factorymechanism. That is, rather than
using the standard C++ class constructor and destrucitgrices of an OTB class are created
with the static clasdlew() method. In fact, the constructor and destructor @ogected:

so it is generally not possible to construct an OTB instancéhe heap. (Note: this behavior
pertains to classes that are derived frakaLightObject . In some cases the need for speed
or reduced memory footprint dictates that a class not beveléfrom LightObject and in this
case instances may be created on the heap. An example of slads &sitk::EventObject J)

The object factory enables users to control run-time irigtion of classes by registering one or
more factories withitk::ObjectFactoryBase . These registered factories support the method
Createlnstance(classhame) which takes as input the name of a class to create. The factory
can choose to create the class based on a number of factardiimcthe computer system
configuration and environment variables. For example, iaréiqular application an OTB user
may wish to deploy their own class implemented using speeidimage processing hardware
(i.e., torealize a performance gain). By using the objesitiay mechanism, itis possible at run-
time to replace the creation of a particular OTB filter witlels@ custom class. (Of course, the
class must provide the exact same API as the one it is reglaciio do this, the user compiles
her class (using the same compiler, build options, etc.)issetts the object code into a shared
library or DLL. The library is then placed in a directory refed to by theOTB_AUTOLOADPATH
environment variable. On instantiation, the object facteill locate the library, determine that

it can create a class of a particular name with the factorg, @se the factory to create the
instance. (Note: if th&reatelnstance() method cannot find a factory that can create the
named class, then the instantiation of the class falls bathet usual constructor.)

In practice object factories are used mainly (and genetadlysparently) by the OTB in-
put/output (I0) classes. For most users the greatest inipact the use of thélew() method

to create a class. Generally tNew() method is declared and implemented via the macro
itkNewMacro() ~ found inUtilities/ITK/Common/itkMacro.h

3.2.4 Smart Pointers and Memory Management

By their nature object-oriented systems represent andcatgen data through a variety of ob-
ject types, or classes. When a particular class is instedtitat produce an instance of that
class, memory allocation occurs so that the instance caa d&ta attribute values and method
pointers (i.e., the vtable). This object may then be refezdrby other classes or data structures
during normal operation of the program. Typically duringgmram execution all references to
the instance may disappear at which point the instance neudeleted to recover memory re-
sources. Knowing when to delete an instance, however, fisuif Deleting the instance too
soon results in program crashes; deleting it too late andangfeaks (or excessive memory
consumption) will occur. This process of allocating an@asing memory is known as memory
management.

In ITK, memory management is implemented through referepcating. This compares to an-

http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1EventObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 23

other popular approach—garbage collection—used by mangragsincluding Java. In refer-
ence counting, a count of the number of references to eatanitesis kept. When the reference
goes to zero, the object destroys itself. In garbage cadiech background process sweeps the
system identifying instances no longer referenced in tistesy and deletes them. The problem
with garbage collection is that the actual point in time atcibmemory is deleted is variable.
This is unacceptable when an object size may be gigantittifia large 3D volume gigabytes
in size). Reference counting deletes memory immediatatgdall references to an object
disappear).

Reference counting is implemented througRegister() /Delete() member function inter-
face. All instances of an OTB object hav®eygister() method invoked on them by any other
object that references an them. TRepister() method increments the instances’ reference
count. When the reference to the instance disappedslee() method is invoked on the
instance that decrements the reference count—this is dgoivi@ anUnRegister() method.
When the reference count returns to zero, the instance igoglest

This protocol is greatly simplified by using a helper claséecha itk::SmartPointer . The
smart pointer acts like a regular pointer (e.g. supportsaipes-> and*) but automagically
performs &Register() when referring to an instance, and@mRegister() when it no longer
points to the instance. Unlike most other instances in OTiBai$Pointers can be allocated
on the program stack, and are automatically deleted whesdbyge that the SmartPointer was
created is closed. As a result, you shordeely if ever call Register() or Delete(n OTB. For
example:

MyRegistrationFunction()
{ <-e- Start of scope

Il here an interpolator is created and associated to the
/I SmartPointer "interp".
InterpolatorType::Pointer interp = InterpolatorType::N ew();

} <o End of scope

In this example, reference counted objects are created (aetNew() method) with a reference
count of one. Assignment to the SmartPoinnarp does not change the reference count. At
the end of scopenterp is destroyed, the reference count of the actual interpolaitfect
(referred to byinterp) is decremented, and if it reaches zero, then the intemolatalso
destroyed.

Note that in ITK SmartPointers are always used to refer ttaimses of classes derived from
itk::LightObject . Method invocations and function calls often return “readiinters to in-
stances, but they are immediately assigned to a SmartPoRésv pointers are used for non-
LightObject classes when the need for speed and/or memangmgs a smaller, faster class.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html

24 Chapter 3. System Overview

3.2.5 Error Handling and Exceptions

In general, OTB uses exception handling to manage erronsgiprogram execution. Exception
handling is a standard part of the C++ language and gendelbs the form as illustrated
below:

try
{
Il..try executing some code here...
}
catch (itk::ExceptionObject exp)
{

/I...if an exception is thrown catch it here

}

where a particular class may throw an exceptions as denadedtbelow (this code snippet is
taken from itk::ByteSwapper

switch (sizeof(T))
{
/Inon-error cases go here followed by error case
default:
ByteSwapperError e(_ FILE__, _ LINE_);
e.SetLocation("SwapBE");

e.SetDescription("Cannot swap number of bytes requested");
throw e;
}
Note that itk::ByteSwapperError is a subclass ofitk::ExceptionObject . (In fact in
OTB all exceptions should be derived fratin:ExceptionObject .) Inthis example a special

constructor and C++ preprocessor variahle§ILE ___ and__LINE __ are used to instantiate
the exception object and provide additional informatiorthte user. You can choose to catch
a particular exception and hence a specific OTB error, or yout@pany OTB exception by
catching ExceptionObject.

3.2.6 Event Handling

Event handling in OTB is implemented using the Subject/@lmedesign pattern [33] (some-
times referred to as the Command/Observer design patterthis approach, objects indicate
that they are watching for a particular event—invoked by digalar instance—by registering
with the instance that they are watching. For example, $ilkerOTB periodically invoke the
itk::ProgressEvent . Objects that have registered their interest in this evenmatified when
the event occurs. The notification occurs via an invocatioa command (i.e., function call-
back, method invocation, etc.) that is specified during ggstration process. (Note that events
in OTB are subclasses of EventObject; looktkiventObject.h to determine which events
are available.)

http://www.melaneum.com/OTB/doxygen/classitk_1_1ByteSwapper.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ByteSwapperError.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExceptionObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ProgressEvent.html

3.3. Numerics 25

To recap via example: various objects in OTB will invoke sfieevents as they execute (from
ProcessObject):

this->InvokeEvent(ProgressEvent());

To watch for such an event, registration is required thab@ates a command (e.g., callback
function) with the eventObject::AddObserver() method:

unsigned long progressTag =
filter->AddObserver(ProgressEvent(), itk::Command*);

When the event occurs, all registered observers are notifeednvocation of the associ-
atedCommand::Execute() method. Note that several subclasses of Command are deailab
supporting const and non-const member functions as well-aty/I€ functions. (Look in
Common/Command.hto find pre-defined subclasses of Command. If nothing swtsbiound,
derivation is another possibility.)

3.2.7 Multi-Threading

Multithreading is handled in OTB through ITK’s high-levedsign abstraction. This approach
provides portable multithreading and hides the complexdtgiffering thread implementations
on the many systems supported by OTB. For example, the délieddultiThreader pro-
vides support for multithreaded execution usgpgpc() on an SGI, opthread _create on
any platform supporting POSIX threads.

Multithreading is typically employed by an algorithm dugiits execution phase. MultiThreader
can be used to execute a single method on multiple threads,specify a method per thread.
For example, in the clas#k::ImageSource (a superclass for most image processing filters)
theGenerateData() method uses the following methods:

multiThreader->SetNumberOfThreads(int);
multiThreader->SetSingleMethod(ThreadFunctionType, v oid* data);
multiThreader->SingleMethodExecute();

In this example each thread invokes the same method. Théthmedtded filter takes care to
divide the image into different regions that do not overlapvrite operations.

The general philosophy in ITK regarding thread safety i$ #tzessing different instances of
a class (and its methods) is a thread-safe operation. Ingokiethods on the same instance in
different threads is to be avoided.

3.3 Numerics

OTB; as ITK, uses the VNL numerics library to provide res@sréor numerical programming
combining the ease of use of packages like Mathematica atldiaith the speed of C and the

http://www.melaneum.com/OTB/doxygen/classitk_1_1MultiThreader.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageSource.html

26 Chapter 3. System Overview

elegance of C++. It provides a C++ interface to the high-tgBbrtran routines made available
in the public domain by numerical analysis researchers. dXténds the functionality of VNL
by including interface classes between VNL and ITK proper.

The VNL numerics library includes classes for

Matrices and vectors. Standard matrix and vector support and operations on tipss.t

Specialized matrix and vector classesSeveral special matrix and vector class with special
numerical properties are available. Clast _diagonal _matrix provides a fast and
convenient diagonal matrix, while fixed size matrices arttans allow "fast-as-C” com-
putations (seenl _matrix _fixed<T,nm> and example subclassed _double _3x3
andvnl _double _3).

Matrix decompositions. Classes vnl _svd<T>, vnl _symmetric _eigensystem<T> , and
vnl _generalized _eigensystem

Real polynomials. Classvnl _real _polynomial stores the coefficients of a real polyno-
mial, and provides methods of evaluation of the polynomiabiay X, while class
vnl _rpoly _roots provides a root finder.

Optimization. Classes vnl _levenberg _marquardt , vnl _amoeba,
vnl _conjugate _gradient , vnl _Ibfgs allow optimization of user-supplied func-
tions either with or without user-supplied derivatives.

Standardized functions and constants.Classvnl _math defines constants (pi, e, eps...) and
simple functions (sqr, abs, rnd...). Clasgmeric _limits is from the ISO stan-
dard document, and provides a way to access basic limits gpa t For example
numeric _limits<short>::max() returns the maximum value of a short.

Most VNL routines are implemented as wrappers around thl-giglity Fortran routines
that have been developed by the numerical analysis comynawdtr the last forty years and
placed in the public domain. The central repository for ¢hpeograms is the "netlib” server
http:/iwww.netlib.org/ . The National Institute of Standards and Technology (NI&D}
vides an excellent search interface to this repositorysiGitide to Available Mathematical
Software (GAMSat http://gams.nist.gov , both as a decision tree and a text search.

ITK also provides additional numerics functionality. A tiof optimizers, that use
VNL under the hood and integrate with the registration frenmx are available. A
large collection of statistics functions—not availablenfra/NL—are also provided in the
Insight/Numerics/Statistics directory. In addition, a complete finite element (FEM)
package is available, primarily to support the deformabétgstration in ITK.

http://www.netlib.org/
http://gams.nist.gov

3.4. Data Representation 27

3.4 Data Representation

There are two principal types of data represented in OTBgesaand meshes. This func-
tionality is implemented in the classes Image and Mesh, bbtivhich are subclasses of
itk::DataObject . In OTB, data objects are classes that are meant to be passewiahe
system and may participate in data flow pipelines (see Se8ti on page 28 for more infor-
mation).

oth::Image represents an-dimensional, regular sampling of data. The sampling tivads
parallel to each of the coordinate axes, and the origin os#mapling, inter-pixel spacing, and
the number of samples in each direction (i.e., image dinoensian be specified. The sample, or
pixel, type in OTB is arbitrary—a template paramelBixel specifies the type upon template
instantiation. (The dimensionality of the image must alsospecified when the image class
is instantiated.) The key is that the pixel type must suppertain operations (for example,
addition or difference) if the code is to compile in all cages example, to be processed by a
particular filter that uses these operations). In practieedTB user will use a C++ simple type
(e.g.,int ,float) or a pre-defined pixel type and will rarely create a new typgixel class.

One of the important ITK concepts regarding images is thetargular, continuous pieces of
the image are known aegions Regions are used to specify which part of an image to process
for example in multithreading, or which part to hold in memdn ITK there are three common
types of regions:

1. LargestPossibleRegion —the image in its entirety.
2. BufferedRegion —the portion of the image retained in memory.

3. RequestedRegion —the portion of the region requested by a filter or other claksrw
operating on the image.

The otb::image class extends the functionalities of tht:lmage in order to take into
account particular remote sensing features as geographijactions, etc.

The Mesh class represents ugimensional, unstructured grid. The topology of the mesh i
represented by a set oélisdefined by a type and connectivity list; the connectivity ilisturn
refers to points. The geometry of the mesh is defined byntbamensional points in combi-
nation with associated cell interpolation functioMdesh is designed as an adaptive represen-
tational structure that changes depending on the opesafierformed on it. At a minimum,
points and cells are required in order to represent a mesht tsupossible to add additional
topological information. For example, links from the paitd the cells that use each point can
be added:; this provides implicit neighborhood informatissuming the implied topology is the
desired one. Itis also possible to specify boundary celidi@tly, to indicate different connec-
tivity from the implied neighborhood relationships, or torg information on the boundaries of
cells.

The mesh is defined in terms of three template parameters: piYebtype associated with
the points, cells, and cell boundaries; 2) the dimensiomefoints (which in turn limits the

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

28 Chapter 3. System Overview

maximum dimension of the cells); and 3) a “mesh traits” teatgpbarameter that specifies the
types of the containers and identifiers used to access timéspoklls, and/or boundaries. By
using the mesh traits carefully, it is possible to createlragdetter suited for editing, or those
better suited for “read-only” operations, allowing a traafebetween representation flexibility,
memory, and speed.

Mesh is a subclass afk::PointSet . The PointSet class can be used to represent point clouds
or randomly distributed landmarks, etc. The PointSet diassno associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used tseap@ataprocess objectare
classes that operate on data objects and may produce newljatds. Process objects are
classed asources filter objects or mappers Sources (such as readers) produce data, filter
objects take in data and process it to produce new data, apdersaaccept data for output
either to a file or some other system. Sometimes the fiten is used broadly to refer to all
three types.

The data processing pipeline ties together data objeals (mages and meshes) and process
objects. The pipeline supports an automatic updating mesimathat causes a filter to execute
if and only if its input or its internal state changes. Furtliee data pipeline supporttreaming

the ability to automatically break data into smaller pieqaecess the pieces one by one, and
reassemble the processed data into a final result.

Typically data objects and process objects are connectgthter using th&etlnput() and
GetOutput() methods as follows:

typedef oth::Image<float,2> Floatimage2DType;

itk::RandomimageSource<Floatimage2DType>::Pointer ra ndom;
random = itk::RandomimageSource<Floatimage2DType>::Ne w();
random->SetMin(0.0);
random->SetMax(1.0);

itk::ShrinkimagerFilter<Floatimage2DType,Floatimage2 DType>::Pointer shrink;
shrink = itk::ShrinkimageFilter<Floatimage2DType,Floa timage2DType>::New();
shrink->SetInput(random->GetOutput());

shrink->SetShrinkFactors(2);

oth::ImageFileWriter::Pointer<Floatimage2DType> writ er,

writer = otb::ImageFileWriter::Pointer<Floatimage2DTy pe>::New();
writer->Setinput (shrink->GetOutput());

writer->SetFileName(“test.raw”);

writer->Update();

In this example the source object itk::RandomimageSource is connected to

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RandomImageSource.html

3.6. Spatial Objects 29

the itk:ShrinkimageFilter , and the shrink filter is connected to the mapper
oth::ImageFileWriter . When theUpdate() method is invoked on the writer, the
data processing pipeline causes each of these filters im, andeninating in writing the final
data to a file on disk.

3.6 Spatial Objects

The ITK spatial object framework supports the philosophat the task of image segmentation
and registration is actually the task of object processifbe image is but one medium for
representing objects of interest, and much processing atadashalysis can and should occur at
the object level and not based on the medium used to repriéseabject.

ITK spatial objects provide a common interface for accessie physical location and geo-
metric properties of and the relationship between objects scene that is independent of the
form used to represent those objects. That is, the inteepatsentation maintained by a spatial
object may be a list of points internal to an object, the sigfaesh of the object, a continuous
or parametric representation of the object’s internal {soim surfaces, and so forth.

The capabilities provided by the spatial objects frameveoiports their use in object segmen-
tation, registration, surface/volume rendering, and iotligplay and analysis functions. The
spatial object framework extends the concept of a “scenghdrnat is common to computer
rendering packages so as to support these new functions. thiditspatial objects framework
you can:

1. Specify a spatial object’'s parent and children objectsthis way, a city may contain
roads and those roads can be organized in a tree structure.

2. Query if a physical point is inside an object or (optioppfiny of its children.

3. Request the value and derivatives, at a physical poirin @fssociated intensity function,
as specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a patgett's coordinate system into
a child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optighia children.

6. Query the resolution at which the object was originallynpoited. For example, you
can query the resolution (i.e., pixel spacing) of the imageduto generate a particular
instance of aitk::LineSpatialObject

Currently implemented types of spatial objects includeolBIEllipse, Group, Image, Line,
Surface, and Tube. Thék::Scene object is used to hold a list of spatial objects that may
in turn have children. Each spatial object can be assignedba groperty. Each spatial object
type has its own capabilities. For exampit;: TubeSpatialObject s indicate to what point
on their parent tube they connect.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShrinkImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LineSpatialObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Scene.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TubeSpatialObject.html

30 Chapter 3. System Overview

There are a limited number of spatial objects and their nastho ITK, but their number is
growing and their potential is huge. Using the nominal spaibject capabilities, methods
such as mutual information registration, can be appliedojeats regardless of their internal
representation. By having a common API, the same method easdd to register a paramet-
ric representation of a building with an image or to registev different segmentations of a
particular object in object-based change detection.

Part Il

Tutorials

CHAPTER

FOUR

Building Simple Applications with OTB

Well, that's it, you've just downloaded and installed OT@dd by the promise that you will be
able to do everything with it. That's true, you will be abledo everything but - there is always
abut- some effort is required.

OTB uses the very powerful systems of generic programingyrmkasses are already available,
some powerful tools are defined to help you with recurrertstalsut it is not an easy world to
enter.

These tutorials are designed to help you enter this worldgaash the logic behind OTB. Each
of these tutorials should not take more than 10 minutesritypicluded) and each is designed
to highlight a specific point. You may not be concerned by #tedt tutorials but it is strongly
advised to go through the first few which cover the basicsliasé almost everywhere.

4.1 Hello world

Let’s start by the typicaHello world program. We are going to compile this C++ program
linking to your new OTB.

First, create a new folder to put your new programs (all theges from this tutorial) in and
go into this folder.

Since all programs using OTB are handled using the CMakeesystve need to create a
CMakelLists.txt that will be used by CMake to compile our program. An examgl¢his
file can be found in th®TB/Examples/Tutorials directory. TheCMakeLists.txt ~ will be
very similar between your projects.

Open theCMakeLists.txt ~ file and write in the few lines:

PROJECT(Tutorials)

FIND_PACKAGE(OTB)
IF(OTB_FOUND)

34 Chapter 4. Building Simple Applications with OTB

INCLUDE(${OTB_USE_FILE})
ELSE(OTB_FOUND)
MESSAGE(FATAL_ERROR
“"Cannot build OTB project without OTB. Please set OTB_DIR.")
ENDIF(OTB_FOUND)

ADD_EXECUTABLE(HelloWorldOTB HelloWorldOTB.cxx)
TARGET_LINK_LIBRARIES(HelloWorldOTB OTBCommon OTBIO)

The first line defines the name of your project as it appearsisnaV Studio (it will have no
effect under UNIX or Linux). The second line loads a CMakeWilth a predefined strategy for
finding OTB™. If the strategy for finding OTB fails, CMake will prompt yoorfthe directory
where OTB is installed in your system. In that case you wilitevthis information in the
OTB_DIR variable. The line INCLUDE(${USE _OTB_FILE}) loads theUseOTB.cmake file to
set all the configuration information from OTB.

The line ADD_EXECUTABLHefines as its first argument the name of the executable tiiat wi
be produced as result of this project. The remaining argtsnaimDD EXECUTABLEare the
names of the source files to be compiled and linked. Findiky TARGETLINK _LIBRARIES

line specifies which OTB libraries will be linked againstsipiroject.

The source code for this example can be found in the file
Examples/Tutorials/HelloWorldOTB.cxx

The following code is an implementation of a small OTB pragralt tests including header
files and linking with OTB libraries.

#include "otblmage.h"
#include <iostream>

int main(int argc, char * argv[])
typedef otb::image< unsigned short, 2 > ImageType;
ImageType::Pointer image = ImageType::New();
std::cout << "OTB Hello World !" << std::endl;

return 0;

}

This code instantiates an image whose pixels are reprebefittetypeunsigned short . The
image is then created and assigned fitkaSmartPointer . Later in the text we will discuss
SmartPointer s in detail, for now think of it as a handle on an instance oflgiect (see section
3.2.4 for more information).

1Similar files are provided in CMake for other commonly used liles all of them name#ind*.cmake

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

4.2. Pipeline basics: read and write 35

Once the file is written, rurccmake on the current directory (that iscmake ./ under
Linux/Unix). If OTB is on a non standard place, you will hawetell CMake where it is.
Once your done with CMake (you shouldn’t have to do it anyana make.

You finally have your program. When you run it, you will have B&B Hello World !printed.

Ok, well done! You've just compiled and executed your firstBO)grogram. Actually, using
OTB for that is not very useful, and we doubt that you downtmh®TB only to do that. It's
time to move on to a more advanced level.

4.2 Pipeline basics: read and write

OTB is designed to read images, process them and write theimkor view the result. In this
tutorial, we are going to see how to read and write imagestambsics of the pipeline system.

First, let's add the following lines at the end of tG®akeLists.txt file:

ADD_EXECUTABLE(Pipeline Pipeline.cxx)
TARGET_LINK_LIBRARIES(Pipeline OTBCommon OTBIO)

Now, create @ipeline.cxx file.

The source code for this example can be found in the file
Examples/Tutorials/Pipeline.cxx

Start by including some necessary headers and with the mairadeclaration:

#include "otblmage.h"
#include "otblmageFileReader.h"
#include "otbStreaminglmageFileWriter.h"

int main(int argc, char * argv[])

{

Declare the image as agth::lmage , the pixel type is declared as an unsigned char (one byte)
and the image is specified as having two dimensions.

typedef otb::image<unsigned char, 2> ImageType;

To read the image, we need aih::ImageFileReader which is templated with the image
type.

typedef otb::imageFileReader<imageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

36 Chapter 4. Building Simple Applications with OTB

Then, we need amth::StreamingimageFileWriter also templated with the image type.

typedef otb::StreaminglmageFileWriter<imageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

The filenames are passed as arguments to the program. We kéeple for now and we don't
check their validity.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Now that we have all the elements, we connect the pipelingipy the output of the reader to
the input of the writer.

writer->SetInput(reader->GetOutput());

And finally, we trigger the pipeline execution calling the d#pe() method on the last element
of the pipeline. The last element will make sure to updatera@Vious elements in the pipeline.

writer->Update();

return 0;

}

Once this file is written you just have to rurake. Theccmake call is not required anymore.

Get one image from th@TB/Examples/Data directory in the OTB sources. For example get
QB_Suburb.png .

Now, run your new program a&peline QB _Suburb.png output.png . You obtain the file
output.png which is the same image &8 _Suburb.png . When you triggered thepdate()
method, OTB opened the original image and wrote it back uadether name.

Well. . . that's nice but a bit complicated for a copy program!

Wait a minute! We didn't specify the file format anywhere! *etry Pipeline
QB_Suburb.png output.jpg . And voila! The output image is a jpeg file.

That's starting to be a bit more interesting: this is not @gtrogram to copy image files, but
also to convert between image formats.

You have just experienced the pipeline structure which @escthe filters only when needed
and the automatic image format detection.

Now it's time to do some processing in between.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

4.3. Filtering pipeline 37

4.3 Filtering pipeline

We are now going to insert a simple filter to do some procedsétgeen the reader and the
writer.

Let’s first add the 2 following lines to theMakeLists.txt ~ file:

ADD_EXECUTABLE(FilteringPipeline FilteringPipeline.c XX)
TARGET_LINK_LIBRARIES(FilteringPipeline OTBCommon OTB 10)

The source code for this example can be found in the file
Examples/Tutorials/FilteringPipeline.cxx

We are going to use thék::GradientMagnitudelmageFilter to compute the gradient of
the image. The begining of the file is similar to the Pipelinz.

We include the required headers, without forgetting to adet theader for the
itk::GradientMagnitudelmagerFilter

#include "otblmage.h"

#include "otblmageFileReader.h"

#include "otbStreamingimageFileWriter.h"
#include "itkGradientMagnitudelmageFilter.h"

int main(int argc, char * argv[])

{
We declare the image type, the reader and the writer as before

typedef otb::lmage<unsigned char, 2> ImageType;

typedef otb::imageFileReader<imageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

typedef otb::StreaminglmageFileWriter<imageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2));

Now we have to declare the filter. It is templated with the injpoage type and the output
image type like many filters in OTB. Here we are using the saype for the input and the
output images:

typedef itk::GradientMagnitudelmageFilter
<ImageType,ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

38 Chapter 4. Building Simple Applications with OTB

Let’s plug the pipeline:

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

And finally, we trigger the pipeline execution calling tpdate() method on the writer

writer->Update();

return 0;

}

Compile withmake and execute aSilteringPipeline QB _Suburb.png output.png
You have the filtered version of your image in theput.png file.

Now, you can practice a bit and try to replace the filter by ohthe 150+ filters which inherit
from the otb::lmageTolmageFilter class. You will definitely find some useful filters here!

4.4 Handling types: scaling output

If you tried some other filter in the previous example, you rhaye noticed that in some cases,
it does not make sense to save the output directly as an mté$és is the case if you tried
the itk::CannyEdgeDetectionimageFilter . If you tried to use it directly in the previous
example, you will have some warning about converting togmesil char from double.

The output of the Canny edge detection is a floating point rern simple solution would be
to used double as the pixel type. Unfortunately, most imagats use integer typed and you
should convert the result to an integer image if you still ttarvisualize your images with your
usual viewer (we will see in a tutorial later how you can avbiat using the built-in viewer).

To realize this conversion, we will use thi::RescalelntensitylmageFilter
Add the two lines to th€MakeLists.txt file:

ADD_EXECUTABLE(ScalingPipeline ScalingPipeline.cxx)
TARGET_LINK_LIBRARIES(ScalingPipeline OTBCommon OTBIO)

The source code for this example can be found in the file
Examples/Tutorials/ScalingPipeline.cxx

This example illustrates the use of tli&::RescalelntensitylmageFilter to convert the
result for proper display.

We include the required header including the header foritkieCannyEdgelmageFilter
and theitk::RescalelntensitylmageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

4.4. Handling types: scaling output 39

#include "otblmage.h"

#include "otbimageFileReader.h"

#include "otbStreaminglmageFileWriter.h"
#include "itkCannyEdgeDetectionimageFilter.n"
#include "itkRescalelntensitylmageFilter.h"

int main(int argc, char * argv[])

{

We need to declare two different image types, one for thenatgrocessing and one to output
the results:

typedef double PixelType;
typedef otb::image<PixelType, 2> ImageType;

typedef unsigned char OutputPixelType;
typedef otb::Image<OutputPixelType, 2> OutputimageType

We declare the reader with the image template using the fyigeldouble. It is worth noticing
that this instanciation does not imply anything about theetgf the input image. The original
image can be anything, the reader will just convert the teésulouble.

The writer is templated with the unsigned char image to be tbkave the result on one byte
images (like png for example).

typedef otb::imageFileReader<imageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

typedef oth::StreaminglmageFileWriter<OutputimageTyp e> WriterType;
WriterType::Pointer writer=WriterType::New();

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Now we are declaring the edge detection filter which is gomwrk with double input and
output.

typedef itk::CannyEdgeDetectionimageFilter
<ImageType,ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

Here comes the interesting part: we declare itkeRescalelntensitylmageFilter . The
input image type is the output type of the edge detectior.filte output type is the same as
the input type of the writer.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

40 Chapter 4. Building Simple Applications with OTB

Desired minimum and maximum values for the output are specitty the methods
SetOutputMinimum() andSetOutputMaximum()

This filter will actually rescale all the pixels of the imagetlalso cast the type of these pixels.

typedef itk::RescalelntensitylmageFilter
<ImageType,OutputimageType> RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

Let’s plug the pipeline:

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetIinput(rescaler->GetOutput());

And finally, we trigger the pipeline execution calling thed#pe() method on the writer

writer->Update();

return 0;

}

As you should be getting used to it by now, compile wittake and execute as
ScalingPipeline QB _Suburb.png output.png

You have the filtered version of your image in theput.png file.

4.5 Working with multispectral or color images

So far, as you may have noticed, we have been working with lgke} images, i.e. with only
one spectral band. If you tried to process a color image withesof the previous examples you
have probably obtained a deceiving grey result.

Often, satellite images combine several spectral bandpathe identification of materials: this
is called multispectral imagery. In this tutorial, we arérgpto explore some of the mechanisms
used by OTB to process multispectral images.

Add the following lines in th&€MakeLists.txt file:

ADD_EXECUTABLE(Multispectral Multispectral.cxx)
TARGET_LINK_LIBRARIES(Multispectral OTBCommon OTBIO)

4.5. Working with multispectral or color images 41

The source code for this example can be found in the file
Examples/Tutorials/Multispectral.cxx

First, we are going to useth::Vectorimage instead of the now traditionnabth::Image
So we include the required header:

#include "otbVectorimage.h"

We also include some other header which will be useful ldtiete that we are still using the
oth::Image in this example for some of the output.

#include "otblmage.h"

#include "otblmageFileReader.h"

#include "otbStreaminglmageFileWriter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "itkShiftScalelmageFilter.n"

#include "otbPerBandVectorlmageFilter.h"

int main(int argc, char * argv[])

{

We want to read a multispectral image so we declare the inygpgeand the reader. As we have
done in the previous example we get the filename from the cordiize.

typedef unsigned short int PixelType;
typedef otb::Vectorimage<PixelType, 2> VectorimageType ;

typedef oth::imageFileReader<VectorimageType> ReaderT ype;
ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);

Sometime, you need to process only one spectral band of thgeimTo get only one of the
spectral band we use the /doxygenotbMultiToMonoChanntediEsROI. The declaration is as
usual:

typedef oth::MultiToMonoChannelExtractROI<PixelType, PixelType> ExtractChannelType;
ExtractChannelType::Pointer extractChannel = ExtractCh annelType::New();

We need to pass the parameters to the filter for the extraclibis filter also allow to extract
only a spatial subset of the image. However, we will extraetwhole channel in this case.

To do that, we need to pass the desired region usingétigtractionRegion() (method
such asSetStartX , SetSizeX are also available). We get the region from the reader with th

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

42 Chapter 4. Building Simple Applications with OTB

GetLargestPossibleRegion() method. Before doing that we need to read the metadata from
the file: this is done by calling thiépdateOutputinformation() on the reader’s output. The
difference with theUpdate() is that the pixel array is not allocated (yet !) and reduce the
memory usage.

reader->UpdateOutputinformation();
extractChannel->SetExtractionRegion(reader->GetOutp ut()->GetLargestPossibleRegion());

We chose the channel number to extract (starting from 1) anglug the pipeline.

extractChannel->SetChannel(3);
extractChannel->Setlnput(reader->GetOutput());

To output this image, we need a writer. As the output of the
oth::MultiToMonoChannelExtractROI is a otb:lmage , we need to template the
writer with this type.

typedef oth::image<PixelType, 2> ImageType;
typedef otb::StreaminglmageFileWriter<imageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

writer->SetFileName(argv[2]);
writer->SetInput(extractChannel->GetOutput());

writer->Update();

After this, we have a one band image that we can process wih @B filters.

In some situation, you may want to apply the same processhamadls of the image. You don't
have to extract each band and process them separately. i$ilsexeeral situations:

e the filter (or the combination of filters) you want to use arendmperations that are well
defined foritk::VariableLengthVector (which is the pixel type), then you don’t have
to do anything special.

e if this is not working, you can look for the equivalent filtgrecially designed for vector

images.
e some of the fiter you need to use applies operations unde-
fined for itk::VariableLengthVector , then you <can use the
oth::PerBandVectorimageFilter specially designed for this purpose.
Let's see how this filter is working. We chose to apply ttie:ShiftScalelmageFilter to

each of the spectral band. We start by declaring the filter ooranal otb::Image . Note that
we don't need to specify any input for this filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShiftScaleImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

4.6. Parsing command line arguments 43

typedef itk::ShiftScalelmageFilter<imageType, ImageTy pe> ShiftScaleType;
ShiftScaleType::Pointer shiftScale = ShiftScaleType::N ew();
shiftScale->SetScale(0.5);

shiftScale->SetShift(10);

We declare theoth::PerBandVectorimageFilter which has three template: the input image
type, the output image type and the filter type to apply to dxoid.

The filter is selected using tHgetFilter() method and the input by the usugdtinput()
method.

typedef otb::PerBandVectorimageFilter

<VectorimageType, VectorimageType, ShiftScaleType> Vec torFilterType;
VectorFilterType::Pointer vectorFilter = VectorFilterT ype::New();
vectorFilter->SetFilter(shiftScale);

vectorFilter->Setinput(reader->GetOutput());
Now, we just have to save the image using a writer templated aw otb::Vectorimage

typedef oth::StreaminglmageFileWriter<VectorimageTyp e> VectorWriterType;
VectorWriterType::Pointer writerVector = VectorWriterT ype::New();

writerVector->SetFileName(argv[3]);
writerVector->Setlnput(vectorFilter->GetOutput());

writerVector->Update();

return O;

}

Compile withmake and execute agMultispectral gb _RoadExtract.tif gb _blue.tif
gb _shiftscale.tif

4.6 Parsing command line arguments

Well, if you play with some other filters in the previous exdeyyou probably noticed that in
many cases, you need to set some parameters to the filteadly|d®u want to set some of
these parameters from the command line.

In OTB, there is a mechanism to help you parse the commangéireameters. Let try it!
Add the following lines in theCMakeLists.txt ~ file:

ADD_EXECUTABLE(SmarterFilteringPipeline SmarterFilte ringPipeline.cxx)
TARGET_LINK_LIBRARIES(SmarterFilteringPipeline OTBCo mmon OTBIO)

http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

44 Chapter 4. Building Simple Applications with OTB

The source code for this example can be found in the file
Examples/Tutorials/SmarterFilteringPipeline.cxx

We are going to use thetb::HarrisimageFilter to find the points of interest in one image.

The derivative computation is performed by a convolutiothvihe derivative of a Gaussian
kernel of variancep (derivation scale) and the smoothing of the image is peréorimy con-
volving with a Gaussian kernel of varianog (integration scale). This allows the computation
of the following matrix:

LZ(x,0p) LxLj(x,0p)

_ <2
H(XaUIaUD)—GDg(OI)* LXL)%(X7O'D) L)2,(X7O'D)

The output of the detector is dg) — atrace(p).

We want to set 3 parameters of this filter through the commiaeddp (SigmaD),o; (Sigmal)
anda (Alpha).

We are also going to do the things properly and catch the éxcep

Let first add the two following headers:

#include "itkExceptionObject.h"

#include "otbCommandLineArgumentParser.h"

The first one is to handle the exceptions, the second one paisglarse the command line.
We include the other required headers, without forgettingatld the header for the

oth::HarrisimageFilter . Then we start the usual main function.

#include "otblmage.h"

#include "otblmageFileReader.h"
#include "otbStreaminglmageFileWriter.h"
#include "itkRescalelntensitylmageFilter.h"
#include "otbHarrisimageFilter.h"

int main(int arge, char * argv[])

{

To handle the exceptions properly, we need to put all theunsbns inside &y .

try
{

Now, we can declare theoth::CommandLineArgumentParser which is going to parse the
command line, select the proper variables, handle the mgssimpulsory arguments and print
an error message if necessary.

Let's declare the parser:

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CommandLineArgumentParser.html

4.6. Parsing command line arguments 45

typedef otb::CommandLineArgumentParser ParserType;
ParserType::Pointer parser = ParserType::New();

It's now time to tell the parser what are the options we wamtedtal options are available for
input and output images with thaldinputimage() andAddOutputimage() methods.

For the other options, we need to use #uelOption() method. This method allows us to
specify

¢ the name of the option

e a message to explain the meaning of this option

a shortcut for this option

the number of expected parameters for this option

e whether or not this option is compulsory

parser->AddInputimage();
parser->AddOutputimage();
parser->AddOption("--SigmaD",

"Set the sigmaD parameter. Default is 1.0.","-d",1,false) ;
parser->AddOption("--Sigmal",

"Set the sigmal parameter. Default is 1.0.""-i",1,false)
parser->AddOption("--Alpha",

"Set the alpha parameter. Default is 1.0.","-a",1,false);

Now that the parser has all this information, it can actukdbk at the command line to parse
it. We have to do this within &ty - catch loop to handle exceptions nicely.

typedef oth::CommandLineArgumentParseResult ParserRes ultType;
ParserResultType::Pointer parseResult = ParserResultTy pe::New();
try
{
parser->ParseCommandLine(argc,argv,parseResult);
}
catch(itk::ExceptionObject & err)
{
std::string descriptionException = err.GetDescription();
if(descriptionException.find("ParseCommandLine(): He Ip Parser")

1= std::string::npos)
{
return EXIT_SUCCESS;

}

46 Chapter 4. Building Simple Applications with OTB

if(descriptionException.find("ParseCommandLine(): Ve rsion Parser")
I= std::string::npos)

{

}
retumn EXIT_FAILURE;

}

return EXIT_SUCCESS;

Now, we can declare the image type, the reader and the wsiteefare:

typedef double PixelType;
typedef oth::image<PixelType, 2> ImageType;

typedef unsigned char OutputPixelType;
typedef oth::image<OutputPixelType, 2> OutputimageType ;

typedef otb::imageFileReader<imageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

typedef otb::StreaminglmageFileWriter<OutputimageTyp e> WriterType;
WriterType::Pointer writer=WriterType::New();

We are getting the filenames for the input and the output imdgectly from the parser:

reader->SetFileName(parseResult->GetInputimage().c_ str());
writer->SetFileName(parseResult->GetOutputimage().c _str());

Now we have to declare the filter. It is templated with the injpoage type and the output
image type like many filters in OTB. Here we are using the same for the input and the
output images:

typedef otb::HarrisimageFilter
<ImageType,ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

We set the filter parameters from the parser. The meld@utionPresent() let us know if
an optional option was provided in the command line.

if(parseResult->IsOptionPresent("--SigmaD"))
filter->SetSigmaD(parseResult->GetParameterDouble(" --SigmaD"));

if(parseResult->IsOptionPresent("--Sigmal"))
filter->SetSigmal(parseResult->GetParameterDouble(" --Sigmal"));

if(parseResult->IsOptionPresent("--Alpha"))
filter->SetAlpha(parseResult->GetParameterDouble("- -Alpha™));

4.6. Parsing command line arguments a7

We add the rescaler filter as before

typedef itk::RescalelntensitylmageFilter
<ImageType,OutputimageType> RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

Let’s plug the pipeline:

filter->Setinput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

We trigger the pipeline execution calling thipdate() method on the writer
writer->Update();
}
Finally, we have to handle exceptions we may have raised®efo

catch(itk::ExceptionObject & err)
{
std::cout << "Following otbException catch :" << std::endl
std::cout << err << std:endl;
return EXIT_FAILURE;
}

catch(std::bad_alloc & err)

{

std::cout << "Exception bad_alloc : "<<(char*)err.what() << std:endl;
return EXIT_FAILURE;

}
catch(...)

{

std::cout << "Unknown Exception found !" << std::endl;
return EXIT_FAILURE;

1
return EXIT_SUCCESS;

}

Compile withmake as usual. The execution is a bit different now as we have avrraitic
parsing of the command line. First, try to executeSasmrterFilteringPipeline without
any argument.

The usage message (automatically generated) appears:

48 Chapter 4. Building Simple Applications with OTB

--Inputimage’ option is obligatory !!!

Usage : ./SmarterFilteringPipeline

[--help|-h] : Help

[--version|-v] . Version

--Inputimage|-in . input image file name (1 parameter)

--Outputimage|-out : output image file name (1 parameter)

[--SigmaD|-d] . Set the sigmaD parameter of the Harris point s of
interest algorithm. Default is 1.0. (1 parameter)

[--Sigmal|-i] . Set the Sigmal parameter of the Harris point s of
interest algorithm. Default is 1.0. (1 parameter)

[--Alphal-a] : Set the alpha parameter of the Harris points o f

interest algorithm. Default is 1.0. (1 parameter)

That looks a bit more professional: another user should ketalplay with your program. As
this is automatic, that’s a good way not to forget to docunyent programs.

So now you have a better idea of the command line options thatpassible. Try
SmarterFilteringPipeline -in QB _Suburb.png -out output.png for a basic version
with the default values.

If you want a result that looks a bit better, you have to adjtis¢ parameter
with SmarterFilteringPipeline -in QB _Suburb.png -out output.png -d 1.5 -i 2
-a 0.1 for example.

4.7 Viewer

So far, we had to save the image and use an external viewer &wver we wanted to see the
result of our processing. That is not very convenient, esfigdor someexoticformats (16
bits, floating point .. .). Thankfully, OTB comes with it's owisualization tool.

This tool is accessible by the clasgb::ImageViewer . We will now design a simple, mini-
malistic example to illustrate the use for this viewer.

First you need to add the following lines in tB&lakeLists.txt file:

ADD_EXECUTABLE(SimpleViewer SimpleViewer.cxx)
TARGET_LINK_LIBRARIES(SimpleViewer OTBCommon OTBIO OTB Gui OTBVisu)

Notice that you have to link to 2 other OTB libraries: OTBGuodaOTBVisu.

The source code for this example can be found in the file
Examples/Tutorials/SimpleViewer.cxx

Now, we are going to illustrate the use of thh::ImageViewer to display an image or the
result of an algorithm without saving the image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

4.7. Viewer 49

We include the required header including the header for the
itk::GradientMagnitudelmageFilter and the oth::ImageViewer

#include "otblmage.h"

#include "otblmageFileReader.h"

#include "itkGradientMagnitudelmageFilter.h"
#include "otbimageViewer.h"

int main(int argc, char * argv[])

{

We need to declare two different image types, one for thenatgrocessing and one to output
the results:

typedef double PixelType;
typedef otb::image<PixelType, 2> ImageType;

typedef otb::imageFileReader<imageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

reader->SetFileName(argv[1]);

Now we are declaring the edge detection filter which is gomwork with double input and
output.

typedef itk::GradientMagnitudelmageFilter
<ImageType,ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();

Unlike most OTB filters, theotb::imageViewer is templated over the input pixel type instead
of the image type. This will allow to use it with scalar and tedémages.

typedef oth::ImageViewer<PixelType> ViewerType;
ViewerType::Pointer viewer = ViewerType::New();

Let’s plug the pipeline: for the viewer the methodsitimage()

filter->SetIinput(reader->GetOutput());
viewer->Setimage(filter->GetOutput());

We trigger the pipeline execution and the image display #iéShow() method of the viewer.

viewer->Show();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

50 Chapter 4. Building Simple Applications with OTB

A call to Fl::run() is mandatory to ask the program to listen to mouse and keyewedts
until the viewer is closed.

Fl::run();

return 0;

}

After compiling you can execute the program wsimpleViewer QB _Suburb.png . The result

of the edge detection is displayed. Notice that you can bl $imple program with a big
image (let's say 30008 30000 pixels). For all multithreaded filters (filters whichplement

a ThreadedGenerateData() method), the image is splitted into piece and only the piete o
display is processed.

4.8 Going from raw satellite images to useful products

Quite often, when you buy satellite images, you end up witreis# images. In the case of
optical satellite, you often have a panchromatic specttatitwith the highest spatial resolution
and a multispectral product of the same area with a lowedutgn. The resolution ratio is
likely to be around 4.

To get the best of the image processing algorithms, you weembine these data to produce
a new image with the highest spatial resolution and seveetsal band. This step is called
fusion and you can find more details about it in 12. Howevexr ftision suppose that your two
images represents exactly the same area. There are diffeeitions to process your data to
reach this situation. Here we are going to use the metadatialale with the images to produce
an orthorectification as detailled in 10.

First you need to add the following lines in tB&akeLists.txt ~ file:

ADD_EXECUTABLE(OrthoFusion OrthoFusion.cxx)
TARGET_LINK_LIBRARIES(OrthoFusion OTBProjections OTBC ommon OTBIO)

The source code for this example can be found in the file
Examples/Tutorials/OrthoFusion.cxx

Start by including some necessary headers and with the msiraldeclaration. Apart from the
classical header related to image input and output. We rieetdaders related to the fusion
and the orthorectification. One header is also required mbieeto process vector images (the
XS one) with the orthorectification.

#include "otblmage.h"

4.8. Going from raw satellite images to useful products

51

#include
#include
#include

#include
#include
#include

#include
#include

“othVectorlmage.h"
"otbimageFileReader.h"
"otbStreaminglmageFileWriter.h"

“othOrthoRectificationFilter.h"
"otbMapProjections.h”
"otbPerBandVectorimageFilter.h"

"otbSimpleRcsPanSharpeningFusionimageFilter
"othStandardFilterWatcher.h"

int main(int arge, char* argv(])

{

We initialize ossim which is required for the orthorectitica and we check that all parameters
are provided. Basically, we need:

¢ the name of the input PAN image;

e the name of the input XS image;

¢ the desired name for the output;

e as the coordinates are given in UTM, we need the UTM zone ntgmbe

e of course, we need the UTM coordinates of the final image;

e the size in pixels of the final image;

e and the sampling of the final image.

We check that all those parameters are provided.

if(argc!=12)

{

std::cout << argv[0] <<" <input_pan_filename> <input_xs_
std::cout << "<output_filename> <utm zone> <hemisphere N/
std::cout << "<y_ground_upper_left_corner> <x_Size> <y_
std::cout << "<x_groundSamplingDistance> “;

std::cout << "<y_groundSamplingDistance (should be negat

<< std:endl;

return EXIT_FAILURE;

}

We declare the different images, readers and writer:

filename> ";
S> <x_ground_upper_left_corner> "
Size> ";

ive since origin is upper left)>"

52 Chapter 4. Building Simple Applications with OTB

typedef oth::Image<unsigned int, 2> ImageType;

typedef otb::Vectorimage<unsigned int, 2> VectorimageTy pe;
typedef otb::lmage<double, 2> DoublelmageType;

typedef otb::Vectorimage<double, 2> DoubleVectorlmageT ype;
typedef otb::imageFileReader<imageType> ReaderType;

typedef oth::imageFileReader<VectorimageType> VectorR eaderType;
typedef otb::StreaminglmageFileWriter<VectorimageTyp e> WriterType;
ReaderType::Pointer readerPAN=ReaderType::New();
VectorReaderType::Pointer readerXS=VectorReaderType: :New();
WriterType::Pointer writer=WriterType::New();

readerPAN->SetFileName(argv[1]);
readerXS->SetFileName(argv(2]);
writer->SetFileName(argv([3]);

We declare the projection (here we chose the UTM projectitimer choices are possible) and
retrieve the paremeters from the command line:

e the UTM zone

e the hemisphere

typedef oth::UtminverseProjection utmMapProjectionTyp e;
utmMapProjectionType::Pointer utmMapProjection =
utmMapProjectionType::New();
utmMapProjection->SetZone(atoi(argv[4]));
utmMapProjection->SetHemisphere(*(argv[5]));

We will need to pass several parameters to the orthorettificaoncerning the desired output
region:

ImageType::IndexType start;
start[0]=0;
start[1]=0;

ImageType::SizeType size;
size[0]=atoi(argv[8]);
size[1]=atoi(argv[9]);

ImageType::SpacingType spacing;
spacing[0]=atof(argv[10]);

4.8. Going from raw satellite images to useful products 53

spacing[1]=atof(argv[11]);

ImageType::PointType origin;
origin[0]=strtod(argv[6], NULL);
origin[1]=strtod(argv[7], NULL);

We declare the orthorectification filter. And provide thdeatiént parameters:

typedef oth::OrthoRectificationFilter<imageType, Doub lelImageType,
utmMapProjectionType> OrthoRectifFilterType ;

OrthoRectifFilterType::Pointer orthoRectifPAN =
OrthoRectifFilterType::New();
orthoRectifPAN->SetMapProjection(utmMapProjection);

orthoRectifPAN->SetInput(readerPAN->GetOutput());

orthoRectifPAN->SetOutputStartindex(start);
orthoRectifPAN->SetSize(size);
orthoRectifPAN->SetOutputSpacing(spacing);
orthoRectifPAN->SetOutputOrigin(origin);

Now we are able to have the orthorectified area from the PANy@naWNVe just have to fol-
low a similar process for the XS image. However, thty::OrthoRectificationFilter

is designed to work with one band images. To be able to prabesXS image (which is a
oth::Vectorimage), we need to use theth::PerBandVectorimageFilter which is going

to apply the filter set via the meth@&tFilter() to all spectral bands.

typedef oth::PerBandVectorimageFilter<VectorimageTyp e,
DoubleVectorimageType, OrthoRectifFilterType> VectorO rthoRectifFilterType;

OrthoRectifFilterType::Pointer orthoRectifXS =
OrthoRectifFilterType::New();

VectorOrthoRectifFilterType::Pointer orthoRectifXSVe ctor =
VectorOrthoRectifFilterType::New();

orthoRectifXSVector->SetFilter(orthoRectifXS);

This is the only difference, the rest of the parameters aveiged as before:

orthoRectifXS->SetMapProjection(utmMapProjection);
orthoRectifXSVector->Setlnput(readerXS->GetOutput());

orthoRectifXS->SetOutputStartindex(start);
orthoRectifXS->SetSize(size);

http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html

54 Chapter 4. Building Simple Applications with OTB

orthoRectifXS->SetOutputSpacing(spacing);
orthoRectifXS->SetOutputOrigin(origin);

It's time to declare the fusion filter and set its inputs:

typedef otb::SimpleRcsPanSharpeningFusionimageFilter

<DoublelmageType,DoubleVectorimageType,VectorimageT ype> FusionFilterType;
FusionFilterType::Pointer fusion = FusionFilterType::N ew();
fusion->SetPanlnput(orthoRectifPAN->GetOutput());
fusion->SetXsInput(orthoRectifXSVector->GetOutput());

And we can plug it to the writer. To be able to process the imdpe tiles, we use the
SetTilingStreamDivisions() method of the writer. We trigger the pipeline execution with
theUpdate() method.

writer->SetInput(fusion->GetOutput());

writer->SetTilingStreamDivisions();

oth::StandardFilterWatcher watcher(writer, "OrthoFusi on";
writer->Update();

return EXIT_SUCCESS;

Part Il

User’s guide

CHAPTER

FIVE

Data Representation

This chapter introduces the basic classes responsiblepfoesenting data in OTB. The most
common classes are thath::image , the itk:Mesh and theitk::PointSet

5.1 Image

The otb:Image class follows the spirit of Generic Programming, where $ypee separated
from the algorithmic behavior of the class. OTB supportsgaswith any pixel type and any
spatial dimension.

5.1.1 Creating an Image
The source code for this example can be found in the file
Examples/DataRepresentation/Image/lmagel.cxx

This example illustrates how to manually constructalm:image class. The following is the
minimal code needed to instantiate, declare and createntégs class.

First, the header file of the Image class must be included.
#include "otbimage.h"

Then we must decide with what type to represent the pixelsvamat the dimension of the
image will be. With these two parameters we can instantfe@erhage class. Here we create a
2D image, which is what we often use in remote sensing agflits, anyway, withunsigned

short pixel data.

typedef otb::Image< unsigned short, 2 > ImageType;

The image can then be created by invoking Kee/() operator from the corresponding image
type and assigning the result toit&:SmartPointer

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

58 Chapter 5. Data Representation

ImageType::Pointer image = ImageType::New();

In OTB, images exist in combination with one or moegions A region is a subset of the image
and indicates a portion of the image that may be processethbydasses in the system. One of
the most common regions is thargestPossibleRegiomwhich defines the image in its entirety.
Other important regions found in OTB are tBefferedRegiopwhich is the portion of the image
actually maintained in memory, and tRequestedRegipmwhich is the region requested by a
filter or other class when operating on the image.

In OTB, manually creating an image requires that the imagestantiated as previously shown,
and that regions describing the image are then associatedtwi

A region is defined by two classes: thtk::Index and itk::Size classes. The origin of
the region within the image with which it is associated ismdi by Index. The extent, or size,
of the region is defined by Size. Index is represented by amedsional array where each
component is an integer indicating—in topological imagerdowmtes—the initial pixel of the
image. When an image is created manually, the user is respeifisi defining the image size
and the index at which the image grid starts. These two pdeasmake it possible to process
selected regions.

The starting point of the image is defined by an Index clagsstaan n-dimensional array where
each component is an integer indicating the grid coordmaté¢he initial pixel of the image.

ImageType::IndexType start;

start[0]
start[1]

0; |/ first index on X
0; [/ first index on Y

The region size is represented by an array of the same diorensihe image (using the Size
class). The components of the array are unsigned integdicating the extent in pixels of the
image along every dimension.

ImageType::SizeType size;

size[0]
size[1]

200; /I size along X
200; /I size along Y

Having defined the starting index and the image size, thes@anameters are used to create an
ImageRegion object which basically encapsulates bothegmsc The region is initialized with
the starting index and size of the image.

ImageType::RegionType region;

region.SetSize(size);
region.Setindex(start);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

5.1. Image 59

Finally, the region is passed to threage object in order to define its extent and origin. The
SetRegions method sets the LargestPossibleRegion, BufferedRegiamh RequestedRegion
simultaneously. Note that none of the operations perfortmdiis point have allocated memory
for the image pixel data. It is necessary to invokeAlecate() method to do this. Allocate
does not require any arguments since all the informationleddor memory allocation has
already been provided by the region.

image->SetRegions(region);
image->Allocate();

In practice it is rare to allocate and initialize an imageedily. Images are typically read from
a source, such a file or data acquisition hardware. The follpwxample illustrates how an
image can be read from a file.

5.1.2 Reading an Image from a File

The source code for this example can be found in the file
Examples/DataRepresentation/Image/lmage2.cxx

The first thing required to read an image from a file is to inelutde header file of the
oth::ImageFileReader class.

#include "otblmageFileReader.h"

Then, the image type should be defined by specifying the tgpe to represent pixels and the
dimensions of the image.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef oth::image< PixelType, Dimension > ImageType;

Using the image type, it is now possible to instantiate thagenreader class. The image type
is used as a template parameter to define how the data willgvzesented once it is loaded
into memory. This type does not have to correspond exactiheotype stored in the file.
However, a conversion based on C-style type casting is @sethe type chosen to represent
the data on disk must be sufficient to characterize it acelyratReaders do not apply any
transformation to the pixel data other than casting fronpikel type of the file to the pixel type
of the ImageFileReader. The following illustrates a typioatantiation of the ImageFileReader

type.

typedef oth::ImageFileReader< ImageType > ReaderType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

60 Chapter 5. Data Representation

The reader type can now be used to create one reader objetkt:SartPointer (defined
by the::Pointer notation) is used to receive the reference to the newly edeagader. The
New() method is invoked to create an instance of the image reader.

ReaderType::Pointer reader = ReaderType::New();

The minimum information required by the reader is the fileaashthe image to be loaded in
memory. This is provided through tisetFileName() method. The file format here is inferred
from the filename extension. The user may also explicitlycEpahe data format explicitly
using theitk::ImagelO (See Chapter 6.1 95 for more information):

const char * filename = argv[1];
reader->SetFileName(filename);

Reader objects are referred to as pipeline source objdéwg;respond to pipeline update re-
guests and initiate the data flow in the pipeline. The pigelipdate mechanism ensures that
the reader only executes when a data request is made to ther @@ad the reader has not read
any data. In the current example we explicitly invoke tipdate() method because the output
of the reader is not connected to other filters. In normaliagpbn the reader’s output is con-
nected to the input of an image filter and the update invocaiiothe filter triggers an update
of the reader. The following line illustrates how an expligbdate is invoked on the reader.

reader->Update();

Access to the newly read image can be gained by callinGét@utput() method on the reader.
This method can also be called before the update requesttisosine reader. The reference to
the image will be valid even though the image will be emptyiluhe reader actually executes.

ImageType::Pointer image = reader->GetOutput();

Any attempt to access image data before the reader execilitggeld an image with no pixel
data. It is likely that a program crash will result since theage will not have been properly
initialized.

5.1.3 Accessing Pixel Data

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image3.cxx

This example illustrates the use of tBetPixel() and GetPixel() methods. These two
methods provide direct access to the pixel data containgdeinimage. Note that these two
methods are relatively slow and should not be used in sitmativhere high-performance access
is required. Image iterators are the appropriate mechawigfficiently access image pixel data.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

5.1. Image 61

The individual position of a pixel inside the image is idéetl by a unique index. An index
is an array of integers that defines the position of the pil@igeach coordinate dimension
of the image. The IndexType is automatically defined by thagenand can be accessed using
the scope operator likék:Index . The length of the array will match the dimensions of the
associated image.

The following code illustrates the declaration of an indarable and the assignment of values
to each of its components. Please note lidex does not use SmartPointers to access it. This
is becauséndex is a light-weight object that is not intended to be share@vbeh objects. It

is more efficient to produce multiple copies of these smgkctis than to share them using the
SmartPointer mechanism.

The following lines declare an instance of the index type iaitthlize its content in order to
associate it with a pixel position in the image.

ImageType::IndexType pixellindex;

pixelindex[0] = 27; /I x position
pixellndex[1] = 29; /I y position

Having defined a pixel position with an index, it is then pbksito access the content of the
pixel in the image. Th&etPixel() method allows us to get the value of the pixels.

ImageType::PixelType pixelValue = image->GetPixel(pixe lIndex);

TheSetPixel() method allows us to set the value of the pixel.
image->SetPixel(pixellndex, pixelValue+l);

Please note thatetPixel() returns the pixel value using copy and not reference seosanti
Hence, the method cannot be used to modify image data values.

Remember that botBetPixel() andGetPixel() are inefficient and should only be used for
debugging or for supporting interactions like queryinggbixalues by clicking with the mouse.

5.1.4 Defining Origin and Spacing

The source code for this example can be found in the file
Examples/DataRepresentation/Image/lmage4.cxx

Even though OTB can be used to perform general image processks, the primary purpose
of the toolkit is the processing of remote sensing image.dat¢éhat respect, additional infor-
mation about the images is considered mandatory. In p&atithe information associated with

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

62 Chapter 5. Data Representation

Size=7x6

Spacing=(20.0, 30.0 .
3001 pacing () Spacing[0]
Physical extent=(140.0, 180.0) . \

_—

s 20.0 ! ! Linear Interpolation Region
250 I I p g
i f = ,,,,O O {ﬂDelaunay Region
O1O0|0]0|0|0|G1- k=)
2001 $ 300 S d _
O|O|O|0|O|O|OT-F (% Kﬂcgtf)ln(;p\éerg%i
ronoi Regi
‘+o+o |0
10l o|o|olojo|o|o
O|0]0]0|0|0]0
[~ . .
1001 ololololololo r. O O Pixel Coordinates
ERREEEEE '®|0|0|0|0|0[0
50 + \

|
| Image Origin
1 Origin=(60.0,70.0)

|

0 50 100 150 200

Figure 5.1:Geometrical concepts associated with the OTB image.

the physical spacing between pixels and the position ofrittzgye in space with respect to some
world coordinate system are extremely important.

Image origin and spacing are fundamental to many applicati®Registration, for example, is
performed in physical coordinates. Improperly defined sgaand origins will result in incon-
sistent results in such processes. Remote sensing imatesonspatial information should not
be used for image analysis, feature extraction, GIS ingat, le other words, remote sensing
images lacking spatial information are not only uselessalsda hazardous.

Figure 5.1 illustrates the main geometrical concepts aastsatwith the oth::lmage . In this
figure, circles are used to represent the center of pixele vatue of the pixel is assumed to
exist as a Dirac Delta Function located at the pixel centielRpacing is measured between
the pixel centers and can be different along each dimen3iomimage origin is associated with
the coordinates of the first pixel in the imagepixelis considered to be the rectangular region
surrounding the pixel center holding the data value. Thiskmviewed as the Voronoi region
of the image grid, as illustrated in the right side of the fegutinear interpolation of image
values is performed inside the Delaunay region whose cemrerpixel centers.

Image spacing is represented iRigedArray whose size matches the dimension of the image.
In order to manually set the spacing of the image, an arraphefcbrresponding type must
be created. The elements of the array should then be inéthlvith the spacing between the
centers of adjacent pixels. The following code illustrates methods available in the Image
class for dealing with spacing and origin.

ImageType::SpacingType spacing;

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

5.1. Image 63

/I Note: measurement units (e.g., meters, feet, etc.) are de fined by the application.
spacing[0] = 0.70; // spacing along X
spacing[1] = 0.70; // spacing along Y

The array can be assigned to the image using#t®pacing() method.
image->SetSpacing(spacing);

The spacing information can be retrieved from an image bygugieGetSpacing() method.
This method returns a reference t6igedArray . The returned object can then be used to read
the contents of the array. Note the use oftbiest keyword to indicate that the array will not
be modified.

const ImageType::SpacingType& sp = image->GetSpacing();

std::cout << "Spacing = ";
std::cout << sp[0] << ", " << sp[1] << std:end);

The image origin is managed in a similar way to the spacingPoist of the appropriate
dimension must first be allocated. The coordinates of thgirodan then be assigned to every
component. These coordinates correspond to the posititimedirst pixel of the image with
respect to an arbitrary reference system in physical speisghe user’s responsibility to make
sure that multiple images used in the same application ang asconsistent reference system.
This is extremely important in image registration applicas.

The following code illustrates the creation and assignméatvariable suitable for initializing
the image origin.

ImageType::PointType origin;
origin[0] = 0.0; /I coordinates of the

origin[l] = 0.0; // first pixel in 2-D

image->SetOrigin(origin);

The origin can also be retrieved from an image by usinga&i®rigin() method. This will
return a reference toRoint . The reference can be used to read the contents of the amméy. N
again the use of theonst keyword to indicate that the array contents will not be medifi

const ImageType::PointType& orgn = image->GetOrigin();

std::cout << "Origin = "
std::cout << orgn[0] << ", " << orgn[1] << std:endl;

64 Chapter 5. Data Representation

Once the spacing and origin of the image have been initi@litee image will correctly map

pixel indices to and from physical space coordinates. Theviing code illustrates how a point
in physical space can be mapped into an image index for thepparof reading the content of
the closest pixel.

First, a itk::Point type must be declared. The point type is templated over e tped to
represent coordinates and over the dimension of the spatdgs Iparticular case, the dimension
of the point must match the dimension of the image.

typedef itk::Point< double, ImageType::ImageDimension > PointType;

The Point class, like aritk::Index , is a relatively small and simple object. For this reason,
it is not reference-counted like the large data objects iBQJonsequently, it is also not ma-
nipulated with itk::SmartPointer s. Point objects are simply declared as instances of any
other C++ class. Once the point is declared, its componemde accessed using traditional
array notation. In particular, thg operator is available. For efficiency reasons, no bounds
checking is performed on the index used to access a partjpoilat component. It is the user’s
responsibility to make sure that the index is in the raf@®imension- 1}.

PointType point;

point[0] = 1.45; I x coordinate
point[1] = 7.21; /'y coordinate

The image will map the point to an index using the values ottireent spacing and origin. An
index object must be provided to receive the results of thppimg. The index object can be
instantiated by using thadexType defined in the Image type.

ImageType::IndexType pixellindex;

The TransformPhysicalPointTolndex() method of the image class will compute the pixel
index closest to the point provided. The method checks figrittdex to be contained inside

the current buffered pixel data. The method returns a badlegicating whether the resulting

index falls inside the buffered region or not. The outputedhould not be used when the
returned value of the methodfedse

The following lines illustrate the point to index mappingdatiie subsequent use of the pixel
index for accessing pixel data from the image.

bool isinside = image->TransformPhysicalPointTolndex(p oint, pixelindex);

if (islnside)
{

ImageType::PixelType pixelValue = image->GetPixel(pixe lIndex);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.1. Image 65

pixelValue += 5;

image->SetPixel(pixellndex, pixelValue);

}

Remember thaBetPixel() andSetPixel() are very inefficient methods for accessing pixel
data. Image iterators should be used when massive accesgeltdata is required.

5.1.5 Accessing Image Metadata

The source code for this example can be found in the file
Examples/IO/MetadataExample.cxx

This example illustrates the access to metadata imagemnatorn with OTB. By metadata, we
mean data which is typically stored with remote sensing esafike geographical coordinates
of pixels, pixel spacing or resolution, etc. Of course, thailability of these data depends on
the image format used and on the fact that the image produgst fiti the available metadata
fields. The image formats which typically support metadatd@ example CEOS and GeoTiff.

The metadata support is embedded in OTB’s IO functionesliéind is accessible through the
oth::iImage and oth::Vectorimage classes. You should avoid using tlitk:Image class
if you want to have metadata support.

This simple example will consist on reading an image fromedihd writing the metadata to
an output ASCII file. As usual we start by defining the typesdeefor the image to be read.

typedef unsigned char InputPixelType;

const unsigned int Dimension = 2;
typedef otb::image< InputPixelType, Dimension > Inputima geType;
typedef otb::imageFileReader< InputimageType > ReaderTy pe;

We can now instantiate the reader and get a pointer to the image.

ReaderType::Pointer reader = ReaderType::New();
InputimageType::Pointer image = InputimageType::New();

reader->SetFileName(inputFilename);
reader->Update();

image = reader->GetOutput();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

66

Chapter 5. Data Representation

Once the image has been read, we can access the metadataaiidor \We will copy this
information to an ASCII file, so we create an output file strdanthis purpose.

std::ofstream file;

file.open(outputAsciiFilename);

We can now call the different available methods for accgstie metadata. Useful methods

are :

e GetSpacing : the sampling step;

e GetOrigin

: the coordinates of the origin of the image;

e GetProjectionRef : the image projection reference;

e GetGCPProjection

e GetGCPCount: the number of GCPs available;

file << "Spacing " << image->GetSpacing() << std::endl;

file << "Origin "

file << "Projection REF " << image->GetProjectionRef() << s

file << "GCP Projection " << image->GetGCPProjection() << s

<< image->GetOrigin() << std::end|;

unsigned int GCPCount = image->GetGCPCount();
file << "GCP Count " << image->GetGCPCount() << std::endl;

: the projection for the eventual ground control points;

td::endl;

td::endl;

One can also get the GCPs by number, as well as their cocedimatmage and geographical

space.

for(unsigned int GCPnum = 0 ; GCPnum < GCPCount ; GCPnum++)

{

file
file
file
file
file
file
file
file

}

<<
<<
<<
<<
<<
<<
<<

"GCP["
"GCP["
"GCP["
"GCP["
"GCP["
"GCP["
"GCP["
Memmennnenennnes " << std:endl;

<<
<<
<<
<<
<<
<<
<<

GCPnum << "] Id " << image->GetGCPId(GCPnum
GCPnum << "] Info " << image->GetGCPInfo(GC
GCPnum << "] Row " << image->GetGCPRow(GCPn
GCPnum << "] Col " << image->GetGCPCol(GCPn
GCPnum << "] X " << image->GetGCPX(GCPnum) <
GCPnum << "l Y " << image->GetGCPY(GCPnum) <
GCPnum << "] Z " << image->GetGCPZ(GCPnum) <

) << std:endl;
Pnum) << std::endl;
um) << std::endl;
um) << std::endl;

< std:endl;

< std::endl;

< std:endl;

5.1. Image 67

If a geographical transformation is available, it can beveced as follows.

InputimageType::VectorType tab = image->GetGeoTransfor m();

file << "Geo Transform " << std::endl;
for(unsigned int i = 0 ; i < tab.size() ; i++)

{

file << " " <<ic<" -> "<<tabl[i]<< std::endl;

}

tab.clear();

tab = image->GetUpperLeftCorner();
file << "Corners " << std::endl;
for(unsigned int i = 0 ; i < tab.size() ; i++)

{

file << " UL[" <<i<<"] -> "<<tab[i]<< std::endl;

}

tab.clear();

tab = image->GetUpperRightCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{

file << " UR[" <<i<"] -> "<<tab[i]<< std::endl;

}

tab.clear();

tab = image->GetLowerLeftCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{

file << " LL[" <<ic<"] -> "<<tab[i]<< std:endl

}

tab.clear();

tab = image->GetLowerRightCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " LR[" <<i<<"] -> "<<tab[i]<< std::endl;
}

tab.clear();

file.close();

5.1.6 RGB Images

The term RGB (Red, Green, Blue) stands for a color representasommonly used in digital
imaging. RGB is a representation of the human physiologiaphbility to analyze visual light

68 Chapter 5. Data Representation

using three spectral-selective sensors [62, 99]. The huetara possess different types of light
sensitive cells. Three of them, known esnes are sensitive to color [36] and their regions
of sensitivity loosely match regions of the spectrum thdt be perceived as red, green and
blue respectively. Theodson the other hand provide no color discrimination and favighh
resolution and high sensitivity A fifth type of receptors, thganglion cells also known as
circadiart receptors are sensitive to the lighting conditions thafedéntiate day from night.
These receptors evolved as a mechanism for synchronizéenghysiology with the time of the
day. Cellular controls for circadian rythms are presentvarg cell of an organism and are
known to be exquisitively precise [58].

The RGB space has been constructed as a representationysfialppical response to light by
the three types ofonesin the human eye. RGB is not a Vector space. For example, iregat
numbers are not appropriate in a color space because thielyentihe equivalent of “negative
stimulation” on the human eye. In the context of colorimgtgative color values are used as
an artificial construct for color comparison in the sens¢ tha

ColorA=ColorB—ColorC (5.1)

just as a way of saying that we can prod@wmorB by combiningColorA andColorC. How-
ever, we must be aware that (at least in emitted light) it ispassible tosubstract light So
when we mention Equation 5.1 we actually mean

ColorB= ColorA+ColorC (5.2)

On the other hand, when dealing with printed color and witintpas opposed to emitted light
like in computer screens, the physical behavior of colaved! for subtraction. This is because
strictly speaking the objects that we see as red are thosalibarb all light frequencies except
those in the red section of the spectrum [99].

The concept of addition and subtraction of colors has to befally interpreted. In fact, RGB
has a different definition regarding whether we are talkingLa the channels associated to the
three color sensors of the human eye, or to the three phasfihord in most computer monitors
or to the color inks that are used for printing reproductiGolor spaces are usually non linear
and do not even from a Group. For example, not all visible rsob@an be represented in RGB
space [99].

ITK introduces theitk:RGBPixel type as a support for representing the values of an RGB
color space. As such, the RGBPixel class embodies a diffemmcept from the one of an
itk::Vector in space. For this reason, the RGBPixel lack many of the ¢perdghat may

be naively expected from it. In particular, there are no @efioperations for subtraction or
addition.

When you anticipate to perform the operation of “Mean” on a R@k you are assuming that
in the color space provides the action of finding a color imtliédle of two colors, can be found

1The human eye is capable of perceiving a single isolated photo
°The termCircadianrefers to the cycle of day and night, that is, events thatepeated with 24 hours intervals.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

5.1. Image 69

by using a linear operation between their numerical reptasien. This is unfortunately not the
case in color spaces due to the fact that they are based onanphysiological response [62].

If you decide to interpret RGB images as simply three inddpanhchannels then you should
rather use theitk::Vector type as pixel type. In this way, you will have access to theo§et
operations that are defined in Vector spaces. The curreréimgntation of the RGBPixel in
ITK presumes that RGB color images are intended to be useppilications where a formal
interpretation of color is desired, therefore only the agiens that are valid in a color space are
available in the RGBPixel class.

The following example illustrates how RGB images can beagsgnted in OTB.

The source code for this example can be found in the file
Examples/DataRepresentation/Image/RGBImage.cxx

Thanks to the flexibility offered by the Generic Programmatgle on which OTB is based, it
is possible to instantiate images of arbitrary pixel typbae Tollowing example illustrates how
a color image with RGB pixels can be defined.

A class intended to support the RGB pixel type is availabléTid. You could also define
your own pixel class and use it to instantiate a custom im&ge.t In order to use the
itk::RGBPixel class, it is necessary to include its header file.

#include "itkRGBPixel.h"

The RGB pixel class is templated over a type used to represaft one of the red, green and
blue pixel components. A typical instantiation of the teatptl class is as follows.

typedef itk::RGBPixel< unsigned char > PixelType;
The type is then used as the pixel template parameter of thgam
typedef otb::lmage< PixelType, 2 > ImageType;

The image type can be used to instantiate other filter, famgie, anoth::ImageFileReader
object that will read the image from a file.

typedef otb::ImageFileReader< ImageType > ReaderType;

Access to the color components of the pixels can now be pagdusing the methods provided
by the RGBPixel class.

PixelType onePixel = image->GetPixel(pixelindex);

PixelType::ValueType red = onePixel.GetRed();
PixelType::ValueType green = onePixel.GetGreen();
PixelType::ValueType blue = onePixel.GetBlue();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

70 Chapter 5. Data Representation

The subindex notation can also be used sincetii®GBPixel inherits thd] operator from
the itk::FixedArray class.
red = onePixel[0]; // extract Red component

green = onePixel[1]; // extract Green component
blue = onePixel[2]; /I extract Blue component

std::cout << "Pixel values:" << std::endl;

std::cout << "Red = "
<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(red)
<< std:endl;

std::cout << "Green = "
<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(green)
<< std:endl;

std::cout << "Blue = "
<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(blue)
<< std:endl;

5.1.7 Vector Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Vectorimage.cxx

Many image processing tasks require images of non-scatal yipe. A typical example is a
multispectral image. The following code illustrates howirtstantiate and use an image whose
pixels are of vector type.

We could use thetk::Vector class to define the pixel type. The Vector class is intended to
represent a geometrical vector in space. It is not intendde tused as an array container like
the std::vector in STL. If you are interested in containers, thk::VectorContainer

class may provide the functionality you want.

However, theitk::Vector is a fixed size array and it assumes that the number of chaohels
the image is known at compile time. Therefore, we prefer tothe oth::Vectorimage class
which allows to choose the number of channels of the imagerdime. The pixels will be of
type itk::VariableLengthVector

The first step is to include the header file of the Vectorimdgssc

#include "otbVectorimage.h"

The Vectorlmage class is templated over the type used tesept the coordinate in space and
over the dimension of the space. In this example, we wantgesent Fdiades images which

have 4 bands.

typedef unsigned char PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html

5.1. Image 71

typedef otb::Vectorimage< PixelType, 2 > ImageType;

Since the pixel dimensionality is choosen at runtime, orsgb@ass this parameter to the image
before memory allocation.

image->SetNumberOfComponentsPerPixel(4);
image->Allocate();

The VariableLengthVector class overloads the opeffatoil his makes it possible to access the
Vector's components using index notation. The user mustangét to allocate the memory for
each individual pixel by using thieeserve method.

ImageType::PixelType pixelValue;
pixelValue.Reserve(4);

pixelValue[0] = 1; // Blue component
pixelValue[l] = 6; // Red component
pixelValue[2] = 100; // Green component
pixelValue[3] = 100; // NIR component

We can now store this vector in one of the image pixels by dejiain index and invoking the
SetPixel() method.

image->SetPixel(pixelindex, pixelValue);

The GetPixel method can also be used to read Vectors pixetstiie image
ImageType::PixelType value = image->GetPixel(pixellnde X);

Lets repeat that botBetPixel() andGetPixel() are inefficient and should only be used for
debugging purposes or for implementing interactions witlraphical user interface such as
querying pixel value by clicking with the mouse.

5.1.8 Importing Image Data from a Buffer

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image5.cxx

This example illustrates how to import data into tlh::image class. This is particularly
useful for interfacing with other software systems. Mangtems use a contiguous block of
memory as a buffer for image pixel data. The current examgdeiraes this is the case and
feeds the buffer into artb::ImportimageFilter , thereby producing an Image as output.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImportImageFilter.html

72 Chapter 5. Data Representation

For fun we create a synthetic image with a centered spherkioaly allocated buffer and pass
this block of memory to the ImportimageFilter. This examigleet up so that on execution, the
user must provide the name of an output file as a command+iguereent.

First, the header file of the ImportimageFilter class mudhbkided.

#include "otblmage.h"
#include "otblmportimagefFilter.h"

Next, we select the data type to use to represent the imagspWe assume that the external
block of memory uses the same data type to represent thepixel

typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

The type of the ImportimageFilter is instantiated in thédwing line.
typedef otb::ImportimageFilter< ImageType > ImportFilte rType;

A filter object created using théew() method is then assigned t&aartPointer
ImportFilterType::Pointer importFilter = ImportFilterT ype::New();

This filter requires the user to specify the size of the imaged produced as output. The
SetRegion() method is used to this end. The image size should exactlymtlagchnumber of
pixels available in the locally allocated buffer.

ImportFilterType::SizeType size;

size[0]
size[1]

200; /I size along X
200; /I size along Y

ImportFilterType::IndexType start;
start.Fill(0);

ImportFilterType::RegionType region;
region.Setindex(start);
region.SetSize(size);

importFilter->SetRegion(region);

The origin of the output image is specified with #&Origin() method.

5.1. Image 73

double origin[Dimension ;
origin[0] = 0.0; II' X coordinate
origin[1] = 0.0; /I'Y coordinate

importFilter->SetOrigin(origin);
The spacing of the image is passed with $etSpacing() method.

double spacing[Dimension |;
spacing[0] = 1.0; /I along X direction
spacing[1] = 1.0; /I along Y direction

importFilter->SetSpacing(spacing);

Next we allocate the memory block containing the pixel dathe passed to the Importimage-
Filter. Note that we use exactly the same size that was speaeifih theSetRegion() method.

In a practical application, you may get this buffer from saotieer library using a different data
structure to represent the images.

/I MODIFIED
const unsigned int numberOfPixels = size[0] * size[1];
PixelType * localBuffer = new PixelType[numberOfPixels J;

Here we fill up the buffer with a binary sphere. We use sinipi@ loops here similar to
those found in the C or FORTRAN programming languages. Nwtedtb does not uder()
loops in its internal code to access pixels. All pixel acdes&s are instead performed using
oth::Imagelterator s that support the management of n-dimensional images.

const double radius2 = radius * radius;
PixelType * it = localBuffer;

for(unsigned int y=0; y < size[l]; y++)

{
const double dy = static_cast<double>(y) - static_cast<do uble>(size[1])/2.0;
for(unsigned int x=0; x < size[0]; x++)

{

const double dx = static_cast<double>(x) - static_cast<do uble>(size[0])/2.0;

const double d2 = dx*dx + dy*dy ;
fitt+ = (d2 < radius2) ? 255 : O;
}

}

The buffer is passed to the ImportimageFilter with SetimportPointer() . Note that the
last argument of this method specifies who will be respoadil deleting the memory block

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageIterator.html

74 Chapter 5. Data Representation

once it is no longer in use. Alse value indicates that the ImportimageFilter will not try to
delete the buffer when its destructor is calledtrée value, on the other hand, will allow the
filter to delete the memory block upon destruction of the imfitter.

For the ImportimageFilter to appropriately delete the mgnisdock, the memory must be al-
located with the C++ew() operator. Memory allocated with other memory allocatiorchee
nisms, such as @alloc orcalloc , will not be deleted properly by the ImportimageFilter. In
other words, it is the application programmer’s respotigitio ensure that ImportimageFilter
is only given permission to delete the Cew operator-allocated memory.

const bool importimageFilterWillOwnTheBuffer = true;
importFilter->SetimportPointer(localBuffer, numberOf Pixels,
importimageFilterwillOwnTheBuffer);

Finally, we can connect the output of this filter to a pipeliRer simplicity we just use a writer
here, but it could be any other filter.

writer->Setinput(dynamic_cast<ImageType*>(importFil ter->GetOutput()));

Note that we do not callielete on the buffer since we padaie as the last argument of
SetimportPointer() . Now the buffer is owned by the ImportimageFilter.

5.1.9 Image Lists

The source code for this example can be found in the file
Examples/DataRepresentation/Image/lmageListExample. CXX .

This example illustrates the use of tlh::ImageList::c lass. This class provides the func-
tionnalities needed in order to integrate image lists aa dhjects into the OTB pipeline. In-
deed, if astd:list< ImageType > was used, the update operations on the pipeline might
not have the desired effects.

In this example, we will only present the basic operationsctvican be applied on an
oth::ImageList::0 bject.

The first thing required to read an image from a file is to inelule header file of the
oth::ImageFileReader::c lass.

#include "otblmageList.h"

As usual, we start by defining the types for the pixel and intgges, as well as those for the
readers and writers.

const unsigned int Dimension = 2;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1c.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1o.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader_1_1c.html

5.1. Image 75

typedef unsigned char InputPixelType;

typedef otb::image< InputPixelType, Dimension > Inputima geType;
typedef otb::imageFileReader< InputimageType > ReaderTy pe;
typedef otb::imageFileWriter< InputimageType > WriterTy pe;
We can now define the type for the image list. Tétb::ImageList::c lass is templated over

the type of image contained in it. This means that all imageslist must have the same type.

typedef otb::imageList< InputimageType > ImageListType;

Let us assume now that we want to read an image from a file aralisio a list. The first thing
to do is to instantiate the reader and set the image file naneecfigttively read the image by
calling theUpdate()

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
reader->Update();

We create an image list by using tNew() method.

ImageListType::Pointer imageList = ImageListType::New();

In order to store the image in the list, tReshBack() method is used.

imageList->PushBack(reader->GetOutput());

We could repeat this operation for other readers or the ¢sipfifilters. We will now write an
image of the list to a file. We therefore instantiate a wriset, the image file name and set the
input image for it. This is done by calling tlack() method of the list, which allows us to get
the last element.

/I Getting the image from the list and writing it to file
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1c.html

76 Chapter 5. Data Representation

writer->SetInput(imageList->Back());
writer->Update();

Other useful methods are:

e SetNthElement() = andGetNthElement() allow to randomly access any element of the
list.

e Front() to access to the first element of the list.

e Erase() toremove an element.

Also, iterator classes are defined in order to have an effioran of moving through the list.
Finally, the otb::ImageListTolmageListFilter:i s provided in order to implement filter
which operate on image lists and produce image lists.

5.2 PointSet

5.2.1 Creating a PointSet

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet1.cxx

The itk::PointSet is a basic class intended to represent geometry in the forensat of
points in n-dimensional space. It is the base class foitthiesh providing the methods
necessary to manipulate sets of point. Points can havesvaksociated with them. The type of
such values is defined by a template parameter ofktfeointSet class (i.e.TPixelType

Two basic interaction styles of PointSets are availableTii. [These styles are referred to as
staticanddynamic The first style is used when the number of points in the sehisvk in
advance and is not expected to change as a consequence oatiulations performed on
the set. The dynamic style, on the other hand, is intendedpgpast insertion and removal of
points in an efficient manner. Distinguishing between the styles is meant to facilitate the
fine tuning of aPointSet ’s behavior while optimizing performance and memory managya.

In order to use the PointSet class, its header file shoulddhedad.
#include "itkPointSet.h"

Then we must decide what type of value to associate with tiggoThis is generally called
thePixelType in order to make the terminology consistent withitkelmage . The PointSet
is also templated over the dimension of the space in whiclptiets are represented. The
following declaration illustrates a typical instantiatiof the PointSet class.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageListToImageListFilter_1_1i.html

5.2. PointSet 77

typedef itk::PointSet< unsigned short, 2 > PointSetType;

A PointSet object is created by invoking tHéew() method on its type. The resulting object
must be assigned toSmartPointer . The PointSet is then reference-counted and can be shared
by multiple objects. The memory allocated for the PointSidithve released when the number

of references to the object is reduced to zero. This simplgma¢hat the user does not need to
be concerned with invoking thgelete() method on this class. In fact, tidelete() method
shouldnever be called directly within any of the reference-counted ITé&sses.

PointSetType::Pointer pointsSet = PointSetType::New();

Following the principles of Generic Programming, fantSet class has a set of associated
defined types to ensure that interacting objects can bereeclgith compatible types. This
set of type definitions is commonly known as a setrafts. Among them we can find the
PointType type, for example. This is the type used by the point set toegmt points in space.
The following declaration takes the point type as definedh@PointSet traits and renames it
to be conveniently used in the global namespace.

typedef PointSetType::PointType PointType;

ThePointType can now be used to declare point objects to be inserted iPdihtSet . Points

are fairly small objects, so it is inconvenient to managertheéth reference counting and smart
pointers. They are simply instantiated as typical C++ @asdhe Point class inherits tfje
operator from thetk::Array class. This makes it possible to access its components using
index notation. For efficiency’s sake no bounds checkingeidgpmed during index access.

It is the user’s responsibility to ensure that the index used the range{0, Dimension- 1}.

Each of the components in the point is associated with spaaelimates. The following code
illustrates how to instantiate a point and initialize itsrqmonents.

PointType pO;
po[0] = -1.0; /I x coordinate
po[1] = -1.0; /I 'y coordinate

Points are inserted in the PointSet by using$b®oint() method. This method requires the
user to provide a unique identifier for the point. The ideetifs typically an unsigned integer
that will enumerate the points as they are being inserted.fdlfowing code shows how three
points are inserted into the PointSet.

pointsSet->SetPoint(0, p0
pointsSet->SetPoint(1, pl
pointsSet->SetPoint(2, p2

)
)
)

It is possible to query the PointSet in order to determine hwamy points have been inserted
into it. This is done with th&etNumberOfPoints() method as illustrated below.

78 Chapter 5. Data Representation

const unsigned int numberOfPoints = pointsSet->GetNumber OfPoints();
std::cout << numberOfPoints << std::endl;

Points can be read from the PointSet by using@i®oint() method and the integer identifier.
The point is stored in a pointer provided by the user. If trentdier provided does not match
an existing point, the method will retufalse and the contents of the point will be invalid.
The following code illustrates point access using defenprogramming.

PointType pp;
bool pointExists = pointsSet->GetPoint(1, & pp);

if(pointExists)
{

std::cout << "Point is = " << pp << std:endl;

}

GetPoint() and SetPoint() are not the most efficient methods to access points in the
PointSet. It is preferable to get direct access to the iateponint container defined by the
traits and use iterators to walk sequentially over the list of mfijats shown in the following
example).

5.2.2 Getting Access to Points
The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet2.cxx

The itk::PointSet class uses an internal container to manage the storage®éint ~ s. It

is more efficient, in general, to manage points by using teessmethods provided directly on
the points container. The following example illustrates/hio interact with the point container
and how to use point iterators.

The type is defined by theaits of the PointSet class. The following line conveniently skee
PointsContainer type from the PointSet traits and dectanethe global namespace.

typedef PointSetType::PointsContainer PointsContainer

The actual type of the PointsContainer depends on what sfyleointSet is being used.

The dynamic PointSet use thetk::MapContainer while the static PointSet uses the
itk::VectorContainer . The vector and map containers are basically ITK wrappeysrat
the STL classestd:map andstd::vector . By default, the PointSet uses a static style, hence

the default type of point container is an VectorContaineothiBthe map and vector container
are templated over the type of the elements they contairhisncase they are templated over
PointType. Containers are reference counted object. Theyhen created with thEew()
method and assigned to ik::SmartPointer after creation. The following line creates a
point container compatible with the type of the PointSeirfrohich the trait has been taken.

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.2. PointSet 79

PointsContainer::Pointer points = PointsContainer::New 0;
Points can now be defined using tP@ntType trait from the PointSet.

typedef PointSetType::PointType PointType;
PointType pO;

PointType pl;

po[0] = -1.0; pO[1] = 0.0; // Point 0 = {-1,0 }
pl[0] = 1.0; p1[1] = 0.0; // Point 1 = { 1,0}

The created points can be inserted in the PointsContaingg uhe generic method
InsertElement() which requires an identifier to be provided for each point.

unsigned int pointld = 0;
points->InsertElement(pointld++ , p0);
points->InsertElement(pointld++ , pl);

Finally the PointsContainer can be assigned to the PointBets will substitute any previ-
ously existing PointsContainer on the PointSet. The agség is done using thgetPoints()
method.

pointSet->SetPoints(points);

The PointsContainer object can be obtained from the PdintSeg theGetPoints() method.
This method returns a pointer to the actual container ownethé PointSet which is then
assigned to a SmartPointer.

PointsContainer::Pointer points2 = pointSet->GetPoints 0s

The most efficient way to sequentially visit the points is e uhe iterators provided by
PointsContainer. Théerator type belongs to the traits of the PointsContainer classes. |
behaves pretty much like the STL iteratdrsThe Points iterator is not a reference counted
class, soitis created directly from the traits without gs8martPointers.

typedef PointsContainer::Iterator Pointslterator;

The subsequent use of the iterator follows what you may éxjpem a STL iterator. The
iterator to the first point is obtained from the containertwviiieBegin() method and assigned
to another iterator.

3|f you dig deep enough into the code, you will discover thasthiterators are actually ITK wrappers around STL
iterators.

80 Chapter 5. Data Representation

Pointslterator pointlterator = points->Begin();

The ++ operator on the iterator can be used to advance from one fmoihé next. The actual
value of the Point to which the iterator is pointing can beagied with thevalue() method.
The loop for walking through all the points can be controlblgdcomparing the current iterator
with the iterator returned by thénd() method of the PointsContainer. The following lines
illustrate the typical loop for walking through the points.

Pointslterator end = points->End();
while(pointlterator != end)

{

PointType p = pointlterator.Value(); // access the point

std::cout << p << std:endl; Il print the point
++pointiterator; Il advance to next point
}

Note that as in STL, the iterator returned by #el() method is not a valid iterator. This is
called a past-end iterator in order to indicate that it isuakle resulting from advancing one
step after visiting the last element in the container.

The number of elements stored in a container can be quertbdhSize() method. In the
case of the PointSet, the following two lines of code areajant, both of them returning the
number of points in the PointSet.

std::cout << pointSet->GetNumberOfPoints() << std::endl
std::cout << pointSet->GetPoints()->Size() << std::endl ;

5.2.3 Getting Access to Data in Points

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet3.cxx

The itk::PointSet class was designed to interact with the Image class. Forrdlaison

it was found convenient to allow the points in the set to hatlgs that could be computed
from images. The value associated with the point is refeassixelType in order to make

it consistent with image terminology. Users can define the tgs they please thanks to the
flexibility offered by the Generic Programming approachdiisethe toolkit. ThePixelType is
the first template parameter of the PointSet.

The following code defines a particular type for a pixel typel énstantiates a PointSet class
with it.

typedef unsigned short PixelType;
typedef itk::PointSet< PixelType, 2 > PointSetType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

5.2. PointSet 81

Data can be inserted into the PointSet using#tBointData() ~ method. This method requires
the user to provide an identifier. The data in question wilabsociated to the point holding
the same identifier. It is the user’s responsibility to wetiie appropriate matching between
inserted data and inserted points. The following line tHates the use of thgetPointData()
method.

unsigned int datald = O0;
PixelType value =79;
pointSet->SetPointData(datald++, value);

Data associated with points can be read from the PointSeq tiséGetPointData() method.
This method requires the user to provide the identifier topbiat and a valid pointer to a
location where the pixel data can be safely written. In caseidentifier does not match any
existing identifier on the PointSet the method will retfalse and the pixel value returned will
be invalid. It is the user’s responsibility to check the rad boolean value before attempting
to use it.

const bool found = pointSet->GetPointData(datald, & value);
if(found)

{

std::cout << "Pixel value = " << value << std::endl;

}

The SetPointData() and GetPointData() methods are not the most efficient way to
get access to point data. It is far more efficient to use theatltes provided by the
PointDataContainer

Data associated with points is internally storedPaintDataContainer s. In the same way as
with points, the actual container type used depend on whitbestyle of the PointSet is static
or dynamic. Static point sets will use aitk::VectorContainer while dynamic point sets
will use an itk::MapContainer . The type of the data container is defined as one of the traits
in the PointSet. The following declaration illustrates hitve type can be taken from the traits
and used to conveniently declare a similar type on the glosiadespace.

typedef PointSetType::PointDataContainer PointDataCon tainer;
Using the type it is now possible to create an instance of #ta dontainer. This is a standard
reference counted object, henceforth it usesNb@() method for creation and assigns the
newly created object to a SmartPointer.

PointDataContainer::Pointer pointData = PointDataConta iner::New();

Pixel data can be inserted in the container with the methsmitElement() . This method
requires an identified to be provided for each point data.

http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html

82 Chapter 5. Data Representation

unsigned int pointld = 0;

34,
67;

PixelType value0
PixelType valuel

pointData->InsertElement(pointld++ , value0);
pointData->InsertElement(pointld++ , valuel);

Finally the PointDataContainer can be assigned to the Beint This will substitute any
previously existing PointDataContainer on the PointSehe &ssignment is done using the
SetPointData() method.

pointSet->SetPointData(pointData);

The PointDataContainer can be obtained from the Point3eg tiseGetPointData() method.
This method returns a pointer (assigned to a SmartPoimténetactual container owned by the
PointSet.

PointDataContainer::Pointer pointData2 = pointSet->Get PointData();

The most efficient way to sequentially visit the data asgediwith points is to use the iterators
provided byPointDataContainer . Thelterator ~ type belongs to the traits of the PointsCon-
tainer classes. The iterator is not a reference counted,dast is just created directly from the
traits without using SmartPointers.

typedef PointDataContainer::lterator PointDatalterato r,

The subsequent use of the iterator follows what you may eéxfpem a STL iterator. The
iterator to the first point is obtained from the containertvilieBegin() method and assigned
to another iterator.

PointDatalterator pointDatalterator = pointData2->Begi n();

The ++ operator on the iterator can be used to advance from one datatp the next. The
actual value of the PixelType to which the iterator is paigtcan be obtained with thé&lue()
method. The loop for walking through all the point data carcoetrolled by comparing the
current iterator with the iterator returned by tBed() method of the PointsContainer. The
following lines illustrate the typical loop for walking tbugh the point data.

PointDatalterator end = pointData2->End();
while(pointDatalterator = end)

{

PixelType p = pointDatalterator.Value(); // access the pix el data
std::cout << p << std:endl; Il print the pixel data
++pointDatalterator; /I advance to next pixel/point

}

5.2. PointSet 83

Note that as in STL, the iterator returned by #el() method is not a valid iterator. This is
called apast-endterator in order to indicate that it is the value resultingni advancing one
step after visiting the last element in the container.

5.2.4 Vectors as Pixel Type

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSetWithVector S.CXX .

This example illustrates how a point set can be parametetizmanage a particular pixel type.
It is quite common to associate vector values with pointgpfaiducing geometric representa-
tions or storing multi-band informations. The followingd®shows how vector values can be
used as pixel type on the PointSet class. TtkeVector class is used here as the pixel type.
This class is appropriate for representing the relativétiposhetween two points. It could then
be used to manage displacements in disparity map estinsafmmexample.

In order to use the vector class it is necessary to includesisler file along with the header of
the point set.

#include "itkVector.h"
#include "itkPointSet.h"

The Vector class is templated over the type used o//’\\
to represent the spatial coordinates and over the ,/ '\
space dimension. Since the PixelType is indepen- ‘
dent of the PointType, we are free to select any ./ \
dimension for the vectors to be used as pixel type. i
However, for the sake of producing an interesting \ T
example, we will use vectors that represent dis-
placements of the points in the PointSet. Those \. /
vectors are then selected to be of the same dimen- \.
sion as the PointSet. =

Figure 5.2:Vectors as PixelType.

const unsigned int Dimension = 2;
typedef itk::Vector< float, Dimension > PixelType;

Then we use the PixelType (which are actually Vectors) ttaimsate the PointSet type and
subsequently create a PointSet object.

typedef itk::PointSet< PixelType, Dimension > PointSetTy pe;
PointSetType::Pointer pointSet = PointSetType::New();

The following code is generating a circle and assigningareetlues to the points. The com-
ponents of the vectors in this example are computed to reptalse tangents to the circle as
shown in Figure 5.2.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

84 Chapter 5. Data Representation

PointSetType::PixelType tangent;
PointSetType::PointType point;

unsigned int pointld
const double radius

0;
300.0;

for(unsigned int i=0; i<360; i++)
{
const double angle = i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
tangent[0] = cos(angle);
tangent[1] = -sin(angle);
pointSet->SetPoint(pointld, point);
pointSet->SetPointData(pointld, tangent);
pointld++;

}

We can now visit all the points and use the vector on the piakles to apply a displacement
on the points. This is along the spirit of what a deformablelet@ould do at each one of its
iterations.

typedef PointSetType::PointDataContainer::Constltera tor PointDatalterator;
PointDatalterator pixellterator = pointSet->GetPointDa ta()->Begin();
PointDatalterator pixelEnd = pointSet->GetPointData()- >End();
typedef PointSetType::PointsContainer::lterator Point Iterator,;
Pointlterator pointlterator = pointSet->GetPoints()->B egin();
Pointlterator pointEnd = pointSet->GetPoints()->End();
while(pixellterator != pixelEnd && pointlterator != point End)

{

pointlterator.Value() = pointlterator.Value() + pixellt erator.Value();

++pixellterator;
++pointlterator;

}

Note that theConstlterator was used here instead of the norriedator ~ since the pixel
values are only intended to be read and not modified. ITK sdpgonst-correctness at the API
level.

The itk::Vector class has overloaded theoperator with theitk::Point . In other words,
vectors can be added to points in order to produce new pdihts.property is exploited in the
center of the loop in order to update the points positionk wisingle statement.

We can finally visit all the points and print out the new values

pointlterator = pointSet->GetPoints()->Begin();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html

5.3. Mesh 85

pointEnd = pointSet->GetPoints()->End();
while(pointlterator != pointEnd)

{

std::cout << pointlterator.Value() << std::endl;
++pointlterator;

}

Note that itk::Vector is not the appropriate class for representing normals tiaces and
gradients of functions. This is due to the way in which vestbehave under affine trans-
forms. ITK has a specific class for representing normals andtion gradients. This is the
itk::CovariantVector class.

5.3 Mesh

5.3.1 Creating a Mesh

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh1.cxx

The itk::Mesh class is intended to represent shapes in space. It derioas fne
itk::PointSet class and hence inherits all the functionality related tmfsoand access to
the pixel-data associated with the points. The mesh clagsdsn-dimensional which allows a
great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to whish(aksib known as elements) of
many different dimensions and shapes have been added.ilC#lesmesh are defined in terms
of the existing points using their point-identifiers.

In the same way as for the PointSet, two basic styles of Mesitgeavailable in ITK. They are
referred to astaticanddynamic The first one is used when the number of points in the set can
be known in advance and it is not expected to change as a agrssg of the manipulations
performed on the set. The dynamic style, on the other haridtéaded to support insertion
and removal of points in an efficient manner. The reason fddmgathe distinction between
the two styles is to facilitate fine tuning its behavior wittetaim of optimizing performance
and memory management. In the case of the Mesh, the dyn#atic&spect is extended to the
management of cells.

In order to use the Mesh class, its header file should be iadlud
#include "itkMesh.h"

Then, the type associated with the points must be selectédsed for instantiating the Mesh
type.

typedef float PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

86 Chapter 5. Data Representation

The Mesh type extensively uses the capabilities provide@Gegeric Programming. In par-
ticular the Mesh class is parameterized over the PixelTymkthe dimension of the space.
PixelType is the type of the value associated with everytgjast as is done with the PointSet.
The following line illustrates a typical instantiation dfet Mesh.

const unsigned int Dimension = 2;
typedef itk:Mesh< PixelType, Dimension > MeshType;

Meshes are expected to take large amounts of memory. Forghson they are reference
counted objects and are managed using SmartPointers. Towifg line illustrates how a
mesh is created by invoking thiéew() method of the MeshType and the resulting object is
assigned to atk::SmartPointer

MeshType::Pointer mesh = MeshType::New();

The management of points in the Mesh is exactly the same &= iRdintSet. The type point
associated with the mesh can be obtained througlPtitType trait. The following code
shows the creation of points compatible with the mesh tygimee above and the assignment
of values to its coordinates.

MeshType::PointType po;
MeshType::PointType p1;
MeshType::PointType p2;
MeshType::PointType p3;

pO[0]= -1.0; pO[1]= -1.0; /I first point (-1, -1)
pl[0]= 1.0; p1[l]= -1.0; /I second point (1, -1)
p2[0]= 1.0; p2[1]= 1.0; // third point (1, 1)
p3[0]= -1.0; p3[1]= 1.0; // fourth point (-1, 1)

The points can now be inserted in the Mesh using3#t€oint() method. Note that points
are copied into the mesh structure. This means that theilmstainces of the points can now be
modified without affecting the Mesh content.

mesh->SetPoint|
mesh->SetPoint
mesh->SetPoint
mesh->SetPoint|

,—\Az—\/—\
wWN RO
- T T T
7 I =)
————

The current number of points in the Mesh can be queried wighGitNumberOfPoints()
method.

std::cout << "Points = " << mesh->GetNumberOfPoints() << st d::endl;

http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.3. Mesh 87

The points can now be efficiently accessed using the Itetattire PointsContainer as it was
done in the previous section for the PointSet. First, thatpterator type is extracted through
the mesh traits.

typedef MeshType::PointsContainer::lterator Pointsite rator;
A point iterator is initialized to the first point with thigegin() method of the PointsContainer.
Pointslterator pointlterator = mesh->GetPoints()->Begi n();
The ++ operator on the iterator is now used to advance from one pwitlite next. The actual
value of the Point to which the iterator is pointing can beagied with theValue() method.
The loop for walking through all the points is controlled lyngparing the current iterator with
the iterator returned by tHend() method of the PointsContainer. The following lines illasér
the typical loop for walking through the points.

Pointslterator end = mesh->GetPoints()->End();
while(pointlterator != end)

{

MeshType::PointType p = pointlterator.Value(); // access the point
std::cout << p << std:endl; Il print the point

++pointlterator; /I advance to next point
}

5.3.2 Inserting Cells

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh2.cxx

A itk:Mesh can contain a variety of cell types. Typical cells are thik:LineCell ,
itk::TriangleCell , itk::QuadrilateralCell and itk::TetrahedronCell . The latter
will not be used very often in the remote sensing context. idatehl flexibility is provided for
managing cells at the price of a bit more of complexity thathancase of point management.

The following code creates a polygonal line in order to iftate the simplest case of cell man-
agement in a Mesh. The only cell type used here is the LineClk header file of this class
has to be included.

#include "itkLineCell.h"

In order to be consistent with the Mesh, cell types have todrdigured with a number of
custom types taken from the mesh traits. The set of traiévaelk to cells are packaged by the
Mesh class into th€ellType trait. This trait needs to be passed to the actual cell typtsea
moment of their instantiation. The following line shows htaextract the Cell traits from the
Mesh type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LineCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TriangleCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuadrilateralCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TetrahedronCell.html

88 Chapter 5. Data Representation

typedef MeshType::CellType CellType;
The LineCell type can now be instantiated using the traksridrom the Mesh.
typedef itk:LineCell< CellType > LineType;

The main difference in the way cells and points are managdiddoyesh is that points are stored
by copy on the PointsContainer while cells are stored in thksContainer using pointers. The
reason for using pointers is that cells use C++ polymorphierthe mesh. This means that the
mesh is only aware of having pointers to a generic cell whdhé base class of all the specific
cell types. This architecture makes it possible to combifierdnt cell types in the same mesh.
Points, on the other hand, are of a single type and have a smeaibry footprint, which makes
it efficient to copy them directly into the container.

Managing cells by pointers add another level of complexityhe Mesh since it is now necessary
to establish a protocol to make clear who is responsiblelfocaing and releasing the cells’
memory. This protocol is implemented in the form of a spediige of pointer called the
CellAutoPointer . This pointer, based on thik::AutoPointer , differs in many respects
from the SmartPointer. The CellAutoPointer has an intepad@thter to the actual object and a
boolean flag that indicates if the CellAutoPointer is resiole for releasing the cell memory
whenever the time comes for its own destruction. It is saéd #CellAutoPointer ownsthe
cell when it is responsible for its destruction. Many Celiéointer can point to the same cell
but at any given time, onlgne CellAutoPointer can own the cell.

The CellAutoPointer trait is defined in the MeshType and can be extracted asriitest in
the following line.

typedef CellType::CellAutoPointer CellAutoPointer;

Note that the CellAutoPointer is pointing to a generic ogii. It is not aware of the actual type
of the cell, which can be for example LineCell, TriangleGellTetrahedronCell. This fact will
influence the way in which we access cells later on.

At this point we can actually create a mesh and insert som@gon it.

MeshType::Pointer mesh = MeshType::New();

MeshType::PointType p0;
MeshType::PointType pl;
MeshType::PointType p2;

po[0] = -1.0; pO[1] = 0.0;
pl[0] = 1.0; pi[1] = 0.0;
p2[0] = 1.0; p2[1] = 1.0;

mesh->SetPoint(0, p0);

http://www.melaneum.com/OTB/doxygen/classitk_1_1AutoPointer.html

5.3. Mesh 89

mesh->SetPoint(1, pl);
mesh->SetPoint(2, p2);
The following code creates two CellAutoPointers and ifitess them with newly created cell
objects. The actual cell type created in this case is Line@é&te that cells are created with
the normahew C++ operator. The CellAutoPointer takes ownership of tloeiked pointer by
using the methodakeOwnership() . Even though this may seem verbose, it is necessary in
order to make it explicit from the code that the respongibdf memory release is assumed by
the AutoPointer.

CellAutoPointer line0;
CellAutoPointer linel;

line0.TakeOwnership(new LineType);
linel.TakeOwnership(new LineType);

The LineCells should now be associated with points in thehm&sis is done using the iden-
tifiers assigned to points when they were inserted in the meskry cell type has a specific
number of points that must be associated withFor example a LineCell requires two points, a
TriangleCell requires three and a TetrahedronCell regtiger. Cells use an internal numbering
system for points. It is simply an index in the rangeNumberO f Points- 1}. The association
of points and cells is done by ti&etPointld() method which requires the user to provide the
internal index of the point in the cell and the corresponddagntidentifier in the Mesh. The
internal cell index is the first parameter@dtPointld() while the mesh point-identifier is the
second.

line0->SetPointld(0, 0); // line between points 0 and 1
line0->SetPointld(1, 1);

linel->SetPointld(0, 1); // line between points 1 and 2
linel->SetPointld(1, 2);

Cells are inserted in the mesh using B&Cell) method. It requires an identifier and the
AutoPointer to the cell. The Mesh will take ownership of tledl ¢o which the AutoPointer is
pointing. This is done internally by thgetCell) method. In this way, the destruction of the
CellAutoPointer will not induce the destruction of the agated cell.

mesh->SetCell(0, line0);
mesh->SetCell(1, linel);

After serving as an argument of tigetCell) method, a CellAutoPointer no longer holds
ownership of the cell. It is important not to use this samdALlgbPointer again as argument to
SetCell() without first securing ownership of another cell.

4Some cell types like polygons have a variable number of pos#edated with them.

920 Chapter 5. Data Representation

The number of Cells currently inserted in the mesh can be iegiewith the
GetNumberOfCells() method.

std::cout << "Cells = " << mesh->GetNumberOfCells() << std: :endl;

In a way analogous to points, cells can be accessed usirgatstto the CellsContainer in the
mesh. The trait for the cell iterator can be extracted froerttesh and used to define a local

type.

typedef MeshType::CellsContainer::lterator ~ Celllterat or;

Then the iterators to the first and past-end cell in the mestbeabtained respectively with the
Begin() andEnd() methods of the CellsContainer. The CellsContainer of thetmereturned
by theGetCells() method.

Celllterator celllterator = mesh->GetCells()->Begin();
Celllterator end = mesh->GetCells()->End();

Finally a standard loop is used to iterate over all the céliste the use of th#alue() method
used to get the actual pointer to the cell from the Cellltaratiote also that the values returned
are pointers to the generic CellType. These pointers halge tlown-casted in order to be used
as actual LineCell types. Safe down-casting is performeti thie dynamic _cast operator
which will throw an exception if the conversion cannot beebaperformed.

while(celllterator != end)

{
MeshType::CellType * cellptr = celllterator.Value();

LineType * line = dynamic_cast<LineType *>(cellptr);
std::cout << line->GetNumberOfPoints() << std::endl;
++celllterator;

}

5.3.3 Managing Data in Cells

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh3.cxx

In the same way that custom data can be associated with jpothis mesh, it is also possible to
associate custom data with cells. The type of the data agsdowith the cells can be different
from the data type associated with points. By default, h@nehese two types are the same.
The following example illustrates how to access data aasettiwith cells. The approach is
analogous to the one used to access point data.

Consider the example of a mesh containing lines on whichegaduie associated with each line.
The mesh and cell header files should be included first.

5.3. Mesh 91

#include "itkMesh.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instadtiait it.

typedef float PixelType;
typedef itk:Mesh< PixelType, 2 > MeshType;
The itk::LineCell type can now be instantiated using the traits taken from thehvi
typedef MeshType::CellType CellType;
typedef itk::LineCell< CellType > LineType;

Let’'s now create a Mesh and insert some points into it. Naaé ttie dimension of the points
matches the dimension of the Mesh. Here we insert a sequépoints that look like a plot of
the log) function.

MeshType::Pointer mesh = MeshType::New();

typedef MeshType::PointType PointType;
PointType point;

const unsigned int numberOfPoints = 10;
for(unsigned int id=0; id<numberOfPoints; id++)

{

point[0] = static_cast<PointType::ValueType>(id); // x
point[1] = log(static_cast<double>(id)); Iy
mesh->SetPoint(id, point);

}

A set of line cells is created and associated with the exjgtivints by using point identifiers.
In this simple case, the point identifiers can be deduced @reliidentifiers since the line cells
are ordered in the same way.

CellType::CellAutoPointer line;
const unsigned int numberOfCells = numberOfPoints-1;
for(unsigned int cellld=0; cellld<numberOfCells; cellld ++)
{
line.TakeOwnership(new LineType);
line->SetPointld(0, cellld); // first point
line->SetPointld(1, cellld+1); // second point
mesh->SetCell(cellld, line); // insert the cell

}

http://www.melaneum.com/OTB/doxygen/classitk_1_1LineCell.html

92 Chapter 5. Data Representation

Data associated with cells is inserted in title:Mesh by using theSetCellData() method.
It requires the user to provide an identifier and the valueetinkerted. The identifier should
match one of the inserted cells. In this simple example, tluvauee of the cell identifier is used
as cell data. Note the usesifitic _cast toPixelType inthe assignment.

for(unsigned int cellld=0; cellld<numberOfCells; cellld ++)
mesh->SetCellData(cellld, static_cast<PixelType>(cel Iid * cellild));
}

Cell data can be read from the Mesh with teCellData() ~ method. It requires the user to
provide the identifier of the cell for which the data is to b#ieved. The user should provide
also a valid pointer to a location where the data can be copied

for(unsigned int cellld=0; cellld<numberOfCells; cellld ++)

{

PixelType value;
mesh->GetCellData(cellld, &value);
std::cout << "Cell " << cellld << " = " << value << std::endl;

}

Neither SetCellData() or GetCellData() are efficient ways to access cell data. More
efficient access to cell data can be achieved by using thetdtsr built into the
CellDataContainer

typedef MeshType::CellDataContainer::Constlterator Ce lIDatalterator;

Note that theConstlterator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for ggtittess to point data. The iterator to
the first cell data item can be obtained with Begin() method of the CellDataContainer. The
past-end iterator is returned by tBed() method. The cell data container itself can be obtained
from the mesh with the methdgktCellData()

CellDatalterator cellDatalterator = mesh->GetCellData()->Begin();
CellDatalterator end = mesh->GetCellData()->End();

Finally a standard loop is used to iterate over all the cefh dmtries. Note the use of the
Value() method used to get the actual value of the data eRixglType elements are copied
into the local variableellValue

while(cellDatalterator = end)

{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html

5.4. Path 93

PixelType cellValue = cellDatalterator.Value();
std::cout << cellValue << std::endl;
++cellDatalterator;

}

More details about the use dik::Mesh can be found in the ITK Software Guide.

5.4 Path

5.4.1 Creating a PolyLineParametricPath

The source code for this example can be found in the file
Examples/DataRepresentation/Path/PolyLineParametric Pathl.cxx

This example illustrates how to use thig::PolyLineParametricPath . This class will
typically be used for representing in a concise way the dutpan image segmentation al-
gorithm in 2D. See section 13.3 for an example in the contédlignment detection. The
PolyLineParametricPath however could also be used for representing any open or close
curve in N-Dimensions as a linear piece-wise approximation

First, the header file of theolyLineParametricPath class must be included.
#include "itkPolyLineParametricPath.h"

The path is instantiated over the dimension of the image.

const unsigned int Dimension = 2;
typedef otb::Image< unsigned char, Dimension > ImageType;

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;

ImageType::ConstPointer image = reader->GetOutput();

PathType::Pointer path = PathType::New();

path->Initialize();

typedef PathType::ContinuousindexType Continuousindex Type;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PolyLineParametricPath.html

94 Chapter 5. Data Representation

ContinuousindexType cindex;

typedef ImageType::PointType ImagePointType;

ImagePointType origin = image->GetOrigin();

ImageType::SpacingType spacing = image->GetSpacing();

ImageType::SizeType size = image->GetBufferedRegion(). GetSize();
ImagePointType point;

point[0] = origin[0] + spacing[0] * size[0];
point[1] = origin[1] + spacing[1] * size[1];

image->TransformPhysicalPointToContinuousindex(orig in, cindex);
path->AddVertex(cindex);
image->TransformPhysicalPointToContinuousindex(poin t, cindex);

path->AddVertex(cindex);

CHAPTER

SIX

Reading and Writing Images

This chapter describes the toolkit architecture suppgréading and writing of images to files.
OTB does not enforce any particular file format, insteadrdtles a structure inherited from
ITK, supporting a variety of formats that can be easily egdtghby the user as new formats
become available.

We begin the chapter with some simple examples of file 1/0.

6.1 Basic Example

The source code for this example can be found in the file
Examples/IO/imageReadWrite.cxx

The classes responsible for reading and writing imagesoaeddd at the beginning and end of
the data processing pipeline. These classes are knownasalates (readers) and data sinks
(writers). Generally speaking they are referred to as $iltatthough readers have no pipeline
input and writers have no pipeline output.

The reading of images is managed by the clathsImageFileReader while writing is per-
formed by the classoth::ImageFileWriter . These two classes are independent of any par-
ticular file format. The actual low level task of reading andtiwvg specific file formats is done
behind the scenes by a family of classes of tyjjelmagelO . Actually, the OTB image
Readers and Writers are very similar to those of ITK, but pteview functionnalities which
are specific to remote sensing images.

The first step for performing reading and writing is to inautie following headers.

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

Then, as usual, a decision must be made about the type ofysrel to represent the image
processed by the pipeline. Note that when reading and gritirages, the pixel type of the

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

96 Chapter 6. Reading and Writing Images

imageis not necessarilythe same as the pixel type stored in the file. Your choice optkel
type (and hence template parameter) should be driven miayrywo considerations:

e It should be possible to cast the file pixel type in the file ® pixel type you select. This
casting will be performed using the standard C-languagesrgo you will have to make
sure that the conversion does not result in informationdkiat.

e The pixel type in memory should be appropriate to the typero€gssing you intended
to apply on the images.

A typical selection for remote sensing images is illustldtethe following lines.

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef oth::image< PixelType, Dimension > ImageType;

Note that the dimension of the image in memory should matehotie of the image in file.
There are a couple of special cases in which this condition Imearelaxed, but in general it is
better to ensure that both dimensions match. This is notlasg# in remote sensing, unless
you want to consider multi-band images as volumes (3D) @d.dat

We can now instantiate the types of the reader and writersd hgo classes are parameterized
over the image type.

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::imageFileWriter< ImageType > WriterType;

Then, we create one object of each type using the New() methddassigning the result to a
itk::SmartPointer

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with theilgdi&me() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters téeceegipeline. For example, we
can create a short pipeline by passing the output of the re@etly to the input of the writer.

writer->Setinput(reader->GetOutput());

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

6.1. Basic Example 97

1 1
T = ImagelO <------ s
I I
ImageFileReader ! canReadFile():bool ! ImageFileWriter
| CanWriteFile():bool |
1 l l 'l
‘ PNGImagelO ‘ ‘ MetalmagelO ‘ ‘ GDALImagelO ‘ ‘ RawlmagelO ‘
‘ VTKImagelO ‘ ‘ONERAImagqu ‘ VOLImagelO ‘

Figure 6.1:Collaboration diagram of the ImagelO classes.

At first view, this may seem as a quite useless program, bsiaiciually implementing a pow-
erful file format conversion tool! The execution of the pipelis triggered by the invocation of
theUpdate() methods in one of the final objects. In this case, the final pig@line object is
the writer. It is a wise practice of defensive programmingnsert anyUpdate() call inside a
try/catch block in case exceptions are thrown during the executioh@pipeline.

try
{
writer->Update();

}
catch(itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;

}

Note that exceptions should only be caught by pieces of duatekhow what to do with them.
In a typical application thisatch block should probably reside on the GUI code. The action
on thecatch block could inform the user about the failure of the 10 opierat

The 10 architecture of the toolkit makes it possible to awiglicit specification of the file for-
mat used to read or write imagéghe object factory mechanism enables the ImageFileReader
and ImageFileWriter to determine (at run-time) with whicle fiormat it is working with. Typ-
ically, file formats are chosen based on the filename extenbiat the architecture supports
arbitrarily complex processes to determine whether a firebsaread or written. Alternatively,

the user can specify the data file format by explicit instgtidn and assignment the appropriate
itk::lmagelO subclass.

To better understand the 10 architecture, please refergor€s 6.1, 6.2, and 6.3.

The following section describes the internals of the 10 aechure provided in the toolbox.

1In this example no file format is specified; this program can leel@s a general file conversion utility.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

98 Chapter 6. Reading and Writing Images

Pluggable Factories Pluggable Factories

PNGImagelOFactory \
filpname
CanRead ? /< <&
&
A

<

/ ImagelOFactory
-

MetalmagelOFactory

e
e

CreatelmagelO

for Reading ImageFileReader

CreatelmagelO

for Writing

%

ImageFileWriter

Figure 6.2:Use cases of ImagelO factories.

ObjectFactoryBase ImagelOFactory

RegisterBuiltinFactories()

RegisterFactory(factory:ObjectFactoryBase) Croatel 10(string)
reateimage string

T

‘ PNGImagelOFactory ‘ ‘ VTKImagelOFactory ‘ ‘ other ITK Factories
‘ GDALImagelOFactory ‘ ‘ RawlmagelOFactory ‘
‘ ONERAImagelOFactory ‘ ‘ JPEGImagelOFactory ‘

‘ BMPImagelOFactory ‘

‘ MetalmagelOFactory ‘

‘ TIFFImagelOFactory

Figure 6.3:Class diagram of the ImagelO factories.

6.2. Pluggable Factories 99

6.2 Pluggable Factories

The principle behind the input/output mechanism used in B¢l therefore OTB is known
as pluggable-factoried33]. This concept is illustrated in the UML diagram in Figu8.1.
From the user’s point of view the objects responsible fodimg and writing files are the
oth::ImageFileReader and otb::ImageFileWriter classes. These two classes, however,
are not aware of the details involved in reading or writingtigalar file formats like PNG or
GeoTIFF. What they do is to dispatch the user’s requests td af specific classes that are
aware of the details of image file formats. These classedarékt:Imagel0 classes. The
ITK delegation mechanism enables users to extend the nushbapported file formats by just
adding new classes to the ImagelO hierarchy.

Each instance of ImageFileReader and ImageFileWriter hasirdep to an ImagelO object.
If this pointer is empty, it will be impossible to read or verin image and the image file
reader/writer must determine which ImagelO class to usestfopmn 10 operations. This is
done basically by passing the filename to a centralized,dlasstk::ImagelOFactory and
asking it to identify any subclass of ImagelO capable of mg@r writing the user-specified
file. This is illustrated by the use cases on the right sideigfife 6.2. The ImagelOFactory
acts here as a dispatcher that help to locate the actual t@ryaddasses corresponding to each
file format.

Each class derived from ImagelO must provide an associatgdriy class capable of producing
an instance of the ImagelO class. For example, for PNG fitesetis a itk::PNGImagelO
object that knows how to read this image files and thereitk: #NGImagelOFactory class
capable of constructing a PNGImagelO object and returnipgiater to it. Each time a new
file format is added (i.e., a new ImagelO subclass is creaéefdtory must be implemented as
a derived class of the ObjectFactoryBase class as illestiatFigure 6.3.

For example, in order to read PNG files, a PNGImagelOFactocydated and registered with
the central ImagelOFactory singleforiass as illustrated in the left side of Figure 6.2. When the
ImageFileReader asks the ImagelOFactory for an Imagel@duepf reading the file identified
with filenamethe ImagelOFactory will iterate over the list of registefadtories and will ask
each one of them is they know how to read the file. The fact@ayrésponds affirmatively will

be used to create the specific ImagelO instance that will hened to the ImageFileReader
and used to perform the read operations.

With respect to the ITK formats, OTB adds most of the remotgsisgy image formats. In
order to do so, the Geospatial Data Abstraction Library, GDwp://www.gdal.org/ , IS
encapsultated in a ImagelO factory. GDAL is a translatoralip for raster geospatial data
formats that is released under an X/MIT style Open Sour@n$ie. As a library, it presents a
single abstract data model to the calling application fosapported formats, which include
CEOS, GeoTIFF, ENVI, and much more. Se://www.gdal.org/formats _list.html

for the full format list.

Since GDAL is itself a multi-format library, the GDAL IO fagoty is able to choose the appro-

2Singletonmeans that there is only one instance of this class in a pkatiapplication

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIOFactory.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PNGImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PNGImageIOFactory.html
http://www.gdal.org/
http://www.gdal.org/formats_list.html

100 Chapter 6. Reading and Writing Images

priate ressource for reading and writing images.

In most cases the mechanism is transparent to the user whkdmetacts with the Image-
FileReader and ImageFileWriter. It is possible, howevesxglicitly select the type of ImagelO
object to use. Please see the ITK Software for more detadlstabis.

6.3 10 Streaming

6.3.1 Implicit Streaming

The source code for this example can be found in the file
Examples/IO/StreamingimageReadWrite.cxx

As we have seen, the reading of images is managed by the othsknageFileReader

while writing is performed by the classtb::ImageFileWriter . ITK’s pipeline implements
streaming. That means that a filter for which fffeeadedGenerateData method is imple-
mented, will only produce the data for the region requesigtiéfollowing filter in the pipeline.
Therefore, in order to use the streaming functionnality needs to use a filter at the end of
the pipeline which requests for adjacent regions of the antagbe processed. In ITK, the
itk::StreaminglmageFilter class is used for this purpose. However, ITK does not imple-
ment streaming from/to files. This means that even if thelpipdas a small memory footprint,
the images have to be stored in memory at least after the ma@toon and before the write
operation.

OTB implements read/write streaming. For the image file iregcdhis is transparent for the
programmer, and if a streaming loop is used at the end of fhalipe, the read operation will
be streamed. For the file writing, thatb::StreaminglmageFileWriter has to be used.

The first step for performing streamed reading and writirtg isiclude the following headers.

#include "otblmageFileReader.h"
#include "otbStreamingimageFileWriter.h"

Then, as usual, a decision must be made about the type ofysrel to represent the image
processed by the pipeline.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef otb::image< PixelType, Dimension > ImageType;

We can now instantiate the types of the reader and writers@h&o classes are parameter-
ized over the image type. We will rescale the intensitieshefds an example of intermediate
processing step.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

6.3. 10 Streaming 101

typedef oth::ImageFileReader< ImageType > ReaderType;
typedef itk::RescalelntensitylmageFilter< ImageType, | mageType> RescalerType;
typedef otb::StreaminglmageFileWriter< ImageType > Writ erType;

Then, we create one object of each type using the New() methddassigning the result to a
itk::SmartPointer

ReaderType::Pointer reader = ReaderType::New();
RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with theilgdtdme() method. We also
choose the range of intensities for the rescaler.

reader->SetFileName(inputFilename);
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters toecagaipeline.

rescaler->Setinput(reader->GetOutput());
writer->Setinput(rescaler->GetOutput());

We can now trigger the pipeline execution by calling tipglate method on the writer.
writer->Update();

The writer will ask its preceding filter to provide differgmbrtions of the image. Each filter in

the pipeline will do the same until the request arrives taréaler. In this way, the pipeline will

be executed for each requested region and the whole inpgeimdl be read, processed and
written without being fully loaded in memory.

6.3.2 Explicit Streaming

The source code for this example can be found in the file
Examples/IO/ExplicitStreamingExample.cxx

Usually, the streaming process is hidden within the pigelithis allows the user to get rid
of the annoying task of splitting the images into tiles, anda. However, for some kinds of
processing, we do not really need a pipeline: no writer isladeonly read access to pixel values
is wanted. In these cases, one has to explicitly set up tbarstng procedure. Fortunately, OTB
offers a high level of abstraction for this task. We will neéedhclude the following header files:

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

102 Chapter 6. Reading and Writing Images

#include "itkimageRegionSplitter.h"
#include "otbStreamingTraits.h"

The oth::StreamingTraits class manages the streaming approaches which are posgible w
the image type over which itis templated. The clakdmageRegionSplitter is templated
over the number of dimensions of the image and will perforengbtual image splitting. More
information on splitter can be found in section 21.3

typedef oth::StreamingTraits<ImageType> StreamingTrai tsType;
typedef itk::ImageRegionSplitter<2> SplitterType;

Once a region of the image is available, we will use classegibn iterators to get the pixels.

typedef ImageType::RegionType RegionType;

typedef itk::imageRegionConstlterator<imageType> Iter atorType,

We instantiate the image file reader, but in order to avoiddirea the whole im-
age, we call theGenerateOutputinformation() method instead of thé&pdate() one.
GenerateOutputinformation() will make available the information about sizes, band, reso
lutions, etc. After that, we can access the largest posgigien of the input image.

ImageReaderType::Pointer reader = ImageReaderType::New 0;

reader->SetFileName(infname);

reader->GenerateOutputinformation();

RegionType largestRegion = reader->GetOutput()->GetLar gestPossibleRegion();

We set up now the local streaming capabilities by asking tfeamiing traits to compute the
number of regions to split the image into given the splittee user defined number of lines,
and the input image information.

SplitterType::Pointer splitter = SplitterType::New();
unsigned int numberOfStreamDivisions =
StreamingTraitsType::CalculateNumberOfStreamDivisio ns(

reader->GetOutput(),
largestRegion,
splitter,
otb::SET_BUFFER_NUMBER_OF_LINES,
0,0,nbLinesForStreaming);

We can now get the split regions and iterate through them.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingTraits.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionSplitter.html

6.4. Reading and Writing RGB Images 103

unsigned int piece = 0;
RegionType streamingRegion;

for (piece = 0;
piece < numberOfStreamDivisions;
piece++)

{

We get the region

streamingRegion =
splitter->GetSplit(piece,numberOfStreamDivisions,la rgestRegion);

std::cout<<"Processing region: "<<streamingRegion<<st d::endl;

We ask the reader to provide the region.

reader->GetOutput()->SetRequestedRegion(streamingRe gion);
reader->GetOutput()->PropagateRequestedRegion();
reader->GetOutput()->UpdateOutputData();

We declare an iterator and walk through the region.

lteratorType it(reader->GetOutput(),streamingRegion)
it. GoToBegin();

while('it.ISAtEnd())
{

std::cout << it.Get() << std::endl;
+HL;

}

6.4 Reading and Writing RGB Images

The source code for this example can be found in the file
Examples/IO/RGBImageReadWrite.cxx

RGB images are commonly used for representing data acqfroed multispectral sensors.
This example illustrates how to read and write RGB color iesatp and from a file. This
requires the following headers as shown.

104 Chapter 6. Reading and Writing Images

#include "itkRGBPixel.h"
#include "othimage.h"

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

The itk::RGBPixel class is templated over the type used to represent each dhe oéd,
green and blue components. A typical instantiation of th@&R@age class might be as follows.

typedef itk::RGBPixel< unsigned char > PixelType;
typedef otb::image< PixelType, 2 > ImageType;

The image type is used as a template parameter to instatiéteader and writer.

typedef oth::ImageFileReader< ImageType > ReaderType;
typedef otb::imageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The filenames of the input and output files must be providelddogader and writer respectively.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally, execution of the pipeline can be triggered by irmgkthe Update() method in the
writer.

writer->Update();

You may have noticed that apart from the declaration ofRixelType there is nothing in
this code that is specific for RGB images. All the actions negfLito support color images are
implemented internally in thétk::imagelO objects.

6.5 Reading, Casting and Writing Images

The source code for this example can be found in the file
Examples/IO/imageReadCastWrite.cxx

Given that ITK and OTB are based on the Generic Programminadgam, most of the types
are defined at compilation time. It is sometimes importardriticipate conversion between
different types of images. The following example illusémthe common case of reading an
image of one pixel type and writing it on a different pixel &pThis process not only involves

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html
http://www.itk.org

6.5. Reading, Casting and Writing Images 105

casting but also rescaling the image intensity since thaaym range of the input and output
pixel types can be quite different. Thtk::RescalelntensitylmageFilter is used here to
linearly rescale the image values.

The first step in this example is to include the appropriatelbes.

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"
#include "itkRescalelntensitylmageFilter.h"

Then, as usual, a decision should be made about the pixethgpshould be used to represent
the images. Note that when reading an image, this pixel iypet necessarilythe pixel type

of the image stored in the file. Instead, it is the type thaltlsalused to store the image as soon
as itis read into memory.

typedef float InputPixelType;

typedef unsigned char OutputPixelType;

const unsigned int Dimension = 2;

typedef otb::image< InputPixelType, Dimension > Inputima geType;
typedef otb::image< OutputPixelType, Dimension > Outputl mageType;

We can now instantiate the types of the reader and writers& hgo classes are parameterized
over the image type.

typedef oth::imageFileReader< InputimageType > ReaderTy pe;
typedef otb::imageFileWriter< OutputimageType > WriterT ype;

Below we instantiate the RescalelntensitylmageFiltes<idat will linearly scale the image
intensities.

typedef itk::RescalelntensitylmageFilter<
InputimageType,
OutputimageType > FilterType;

A filter object is constructed and the minimum and maximunugalof the output are selected
using the SetOutputMinimum() and SetOutputMaximum() rodth

FilterType::Pointer filter = FilterType::New();
filter->SetOutputMinimum(0);
filter->SetOutputMaximum(255);

Then, we create the reader and writer and connect the pipelin

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

106 Chapter 6. Reading and Writing Images

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

filter->Setinput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

The name of the files to be read and written are passed withetiél&Name() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally we trigger the execution of the pipeline with the @pe() method on the writer. The
output image will then be the scaled and cast version of thetimage.

try
{
writer->Update();

}
catch(itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !I" << std::endl;
std:cerr << err << std:endl;

return EXIT_FAILURE;

}

6.6 Extracting Regions

The source code for this example can be found in the file
Examples/IO/imageReadRegionOfinterestWrite.cxx

This example should arguably be placed in the filtering afraptowever its usefulness for
typical 10 operations makes it interesting to mention hérke purpose of this example is to
read and image, extract a subregion and write this subrdgiarfile. This is a common task
when we want to apply a computationally intensive methotiéaégion of interest of an image.

As usual with OTB 10, we begin by including the appropriatader files.

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

The oth::ExtractROI is the filter used to extract a region from an image. Its heéler
included below.

#include "otbExtractROI.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractROI.html

6.6. Extracting Regions 107

Image types are defined below.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
const unsigned int Dimension = 2;
typedef otb::image< InputPixelType, Dimension > Inputima geType;
typedef oth::image< OutputPixelType, Dimension > Outputl mageType;
The types for theoth::ImageFileReader and oth::ImageFileWriter are instantiated us-

ing the image types.

typedef otb::imageFileReader< InputimageType > ReaderTy pe;
typedef otb::iImageFileWriter< OutputimageType > WriterT ype;

The ExtractROI type is instantiated using the input and wufixel types. Using the pixel
types as template parameters instead of the image typessathorestrict the use of this class
to otb:lImage s which are used with scalar pixel types. See section 6.8 théoextraction of
ROIs on oth::Vectorimage s. A filter object is created with the New() method and assigne
to a itk::SmartPointer

typedef otb::ExtractROI< InputimageType::PixelType,
OutputimageType::PixelType > FilterType;

FilterType::Pointer filter = FilterType::New();

The ExtractROI requires a region to be defined by the uses ihione by defining a rectangle
with the following methods (the filter assumes that a 2D imigleeing processed, for N-D
region extraction, you can use tlitk::RegionOfinterestimageFilter class).

)
)
)
).

filter->SetStartX(atoi(argv(3])
filter->SetStartY(atoi(argv[4])
filter->SetSizeX(atoi(argv[5])
filter->SetSizeY(atoi(argv[6])

Below, we create the reader and writer using the New() me#imstassigning the result to a
SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with theilgdi&me() method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegionOfInterestImageFilter.html

108 Chapter 6. Reading and Writing Images

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the gateessing pipeline.

filter->Setinput(reader->GetOutput());
writer->Setinput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on thaétev. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();

}
catch(itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;

}

6.7 Reading and Writing Vector Images

Images whose pixel type is a Vector, a CovariantVector, araydror a Complex are quite
common in image processing. One of the uses of these tye gkisna the processing of SLC
SAR images, which are complex.

6.7.1 Reading and Writing Complex Images

The source code for this example can be found in the file
Examples/IO/CompleximageReadWrite.cxx

This example illustrates how to read and write an image oélptiype std::complex . The
complex type is defined as an integral part of the C++ language

We start by including the headers of the complex class, tlegénand the reader and writer
classes.

#include <complex>

#include "othimage.h"

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

6.7. Reading and Writing Vector Images 109

The image dimension and pixel type must be declared. In #sis we use thetd::complex<>
as the pixel type. Using the dimension and pixel type we mdde instantiate the image type.

const unsigned int Dimension = 2;

typedef std::complex< float > PixelType;
typedef oth::image< PixelType, Dimension > ImageType;

The image file reader and writer types are instantiated ubmgnage type. We can then create
objects for both of them.

typedef oth::imageFileReader< ImageType > ReaderType;
typedef oth::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Filenames should be provided for both the reader and themvtit this particular example we
take those filenames from the command line arguments.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Here we simply connect the output of the reader as input taviiter. This simple program
could be used for converting complex images from one file&drim another.

writer->Setinput(reader->GetOutput());

The execution of this short pipeline is triggered by invakthe Update() method of the writer.
This invocation must be placed inside a try/catch blockesiteexecution may result in excep-
tions being thrown.

try
{
writer->Update();
}
catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::end|;
return EXIT_FAILURE;

}

For a more interesting use of this code, you may want to addea ifil between the reader and
the writer and perform any complex image to complex imageaijmn.

110 Chapter 6. Reading and Writing Images

6.8 Reading and Writing Multiband Images

The source code for this example can be found in the file
Examples/IO/MultibandimageReadWrite.cxx

The otb::lmage class with a vector pixel type could be used for representingispectral
images, with one band per vector component, however, thistia practical way, since the di-
mensionality of the vector must be known at compile time. @ffBrs the oth::Vectorimage

where the dimensionality of the vector stored for each pieel be chosen at runtime. This is
needed for the image file readers in order to dynamicallyreehtimber of bands of an image
read from a file.

The OTB Readers and Writers are able to deal vaiti:Vectorimage s transparently for the
user.

The first step for performing reading and writing is to incutie following headers.

#include "otblmageFileReader.h"
#include "otbimageFileWriter.h"

Then, as usual, a decision must be made about the type ofysrel to represent the image
processed by the pipeline. The pixel type corresponds tac¢hkar type stored in the vector
components. Therefore, for a multiban&Rbes image we will do:

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef otb::Vectorimage< PixelType, Dimension > ImageTy pe;

We can now instantiate the types of the reader and writers& hgo classes are parameterized
over the image type.

typedef oth::imageFileReader< ImageType > ReaderType;
typedef oth::ImageFileWriter< ImageType > WriterType;

Then, we create one object of each type using the New() methddssigning the result to a
itk::SmartPointer

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with theilgdi&me() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

6.8. Reading and Writing Multiband Images 111

We can now connect these readers and writers to filters ttecagaipeline. The only thig to take
care of is, when executing the program, choosing an outpagéfile format which supports
multiband images.

writer->Setinput(reader->GetOutput());

try
{
writer->Update();

}
catch(itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;

return EXIT_FAILURE;

}

6.8.1 Extracting ROIs

The source code for this example can be found in the file
Examples/IO/ExtractROI.cxx

This example shows the wuse of the oth:MultiChannelExtractROI and
oth::MultiToMonoChannelExtractROI which allow the extraction of ROIs from multiband
images stored intmtb::Vectorimage s. The first one povides a Vector Image as output, while
the second one provides a classioti::iImage with a scalar pixel type. The present example
shows how to extract a ROI from a 4-band SPOT 5 image and taupeod first multi-band
3-channel image and a second mono-channel one for the SWHR ban

We start by including the needed header files.

#include "otblmageFileReader.h"

#include "otblmageFileWriter.h"

#include "otbMultiChannelExtractROIl.h"
#include "otbMultiToMonoChannelExtractROl.h"

The program arguments define the image file names as well asdtangular area to be ex-
tracted.

const char * inputFilename = argv[l];
const char * outputFilenameRGB = argv[2];
const char * outputFilenameMIR = argv[3];

unsigned int startX((unsigned int)::atoi(argv[4]));
unsigned int startY((unsigned int)::atoi(argv[5]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

112 Chapter 6. Reading and Writing Images

unsigned int sizeX((unsigned int)::atoi(argv[6]));
unsigned int sizeY((unsigned int)::atoi(argv[7]));

As usual, we define the input and output pixel types.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

First of all, we extract the multiband part by using toib::MultiChannelExtractROI class,
which is templated over the input and output pixel types.sTdiass in not templated over the
images types in order to force these images to betlafVectorimage type.

typedef oth::MultiChannelExtractROI< InputPixelType,
OutputPixelType > ExtractROIFilterType;

We create the extractor filter by using thewmethod of the class and we set its parameters.

ExtractROIFilterType::Pointer extractROIFilter = Extra CtROIFilterType::New();

extractROIFilter->SetStartX
extractROIFilter->SetStartY
extractROIFilter->SetSizeX
extractROIFilter->SetSizeY

~

startX);
startY);
sizeX);
sizeY);

—_~ =X

We must tell the filter which are the channels to be used. Whiects®g contiguous bands,
we can use th&etFirstChannel and theSetLastChannel . Otherwise, we select individual
channels by using th&etChannel method.

extractROIFilter->SetFirstChannel(1);
extractROIFilter->SetLastChannel(3);

We will use the OTB readers and writers for file access.

typedef otb::imageFileReader< ExtractROIFilterType::| nputimageType > ReaderType;
typedef otb::ImageFileWriter< ExtractROIFilterType::l nputimageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Since the number of bands of the input image is dynamicatlgtseintime, theéJpdate method
of the reader must be called before using the extractor.filter

reader->SetFileName(inputFilename);
reader->Update();
writer->SetFileName(outputFilenameRGB);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

6.9. Reading Image Series 113

We can then build the pipeline as usual.

extractROIFilter->SetInput(reader->GetOutput());

writer->Setinput(extractROIFilter->GetOutput());
And execute the pipeline by calling thipdate method of the writer.
writer->Update();

The usage of the oth::MultiToMonoChannelExtractROI is similar to the one of the
oth::MultiChannelExtractROI described above.

The goal now is to extract an ROI from a multi-band image antegete a mono-channel image
as output.

We could use the otb::MultiChannelExtractROI and select a single channel, but us-
ing the otb::MultiToMonoChannelExtractROI we generate aoth:lmage instead of an
oth::Vectorimage . This is useful from a computing and memory usage point okvi€his

class is also templated over the pixel types.

typedef oth::MultiToMonoChannelExtractROI< InputPixel Type,
OutputPixelType > ExtractROIMonoFilterType;

For this filter, only one output channel has to be selected.
extractROIMonoFilter->SetChannel(4);

Figure 6.5 illustrates the result of the application of battraction filters on the image presented
in figure 6.4.

6.9 Reading Image Series

The source code for this example can be found in the file
Examples/IO/ImageSeriesIOExample.cxx

This example shows how to read a list of images and concatéimam into a vector image. We
will write a program which is able to perform this operatiaking advantage of the streaming
functionnalities of the processing pipeline. We will assuthat all the input images have the
same size and a single band.

The following header files will be needed:

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

114 Chapter 6. Reading and Writing Images

Figure 6.4:Quicklook of the original SPOT 5 image.

Figure 6.5:Result of the extraction. Left: 3-channel image. Right: mono-band image.

6.9. Reading Image Series 115

#include "otblmage.h"

#include "otbVectorimage.h"

#include "otblmageFileReader.h"

#include "otbObjectList.h"

#include "otbimageList.h"

#include "otblmageListToVectorimageFilter.h"
#include "otbStreaminglmageFileWriter.h"

We will start by defining the types for the input images andabsociated readers.

typedef unsigned short int PixelType;
const unsigned int Dimension = 2;

typedef otb::image< PixelType, Dimension > InputimageTyp e

typedef otb::imageFileReader< InputimageType > ImageRea derType;

We will use a list of image file readers in order to open all thyguit images at once. For this,

we use theoth::ObjectList object and we template it over the type of the readers.
typedef otb::ObjectList< ImageReaderType > ReaderListTy pe;
ReaderListType::Pointer readerList = ReaderListType::N ew();

We will also build a list of input images in order to store thmast pointers obtained at the
output of each reader. This allows us to build a pipeline aithreally reading the images and
using lots of RAM. Theoth::ImageList object will be used.

typedef otb::imageList< InputimageType > ImageListType;

ImageListType::Pointer imageList = ImageListType::New();

We can now loop over the input image list in order to populage reader list and the input
image list.

for(unsigned int i = 0; i<NbImages; i++)
ImageReaderType::Pointer imageReader = ImageReaderType ::New();

imageReader->SetFileName(argv[i+2]);

std::cout << "Adding image " << argv[i+2] << std::endl

http://www.melaneum.com/OTB/doxygen/classotb_1_1ObjectList.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList.html

116 Chapter 6. Reading and Writing Images

imageReader->UpdateOutputinformation();
imageList->PushBack(imageReader->GetOutput());

readerList->PushBack(imageReader);

}

All the input images will be concatenated into a single ottfactor image. For this matter, we
will use the otb::ImageListToVectorimageFilter which is templated over the input image
list type and the output vector image type.

typedef otb::Vectorimage< PixelType, Dimension > Vectorl mageType;

typedef otb::imageListToVectorimageFilter< ImageListT ype, VectorimageType >
ImageListToVectorimageFilterType;

ImageListToVectorimageFilterType::Pointer iL2VI =
ImageListToVectorimageFilterType::New();

We plug the image list as input of the filter and useth::StreamingimageFileWriter to
write the result image to a file, so that the streaming cajpigisilof all the readers and the filter
are used.

iL2VI->SetInput(imageList);
typedef otb::StreaminglmageFileWriter< VectorimageTyp e > ImageWriterType;
ImageWriterType::Pointer imageWriter = ImageWriterType ::New();

imageWriter->SetFileName(argv[1]);

We can tune the size of the image tiles as a function of the sumihinput images, so that the
total memory footprint of the pipeline is constant for angeution of the program.

unsigned long size = (10000 * 10000 * sizeof(PixelType)) / Nb Images;
std::cout<<"Streaming size: "<<size<<std::endl;

imageWriter->SetBufferMemorySize(size);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageListToVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

6.10. Reading and Writing Vector Data 117

imageWriter->Setinput(iL2VI->GetOutput());

imageWriter->Update();

6.10 Reading and Writing Vector Data

In Remote Sensing the use of vector data is common. Vectarislatsed to represent carto-
graphic objects, segmentation results, etc. OTB providestfonnalities for accessing this kind
of data.

6.10.1 Reading DXF Files

The source code for this example can be found in the file
Examples/IO/DXFReaderExample.cxx

This example illustrates how to read a DXF file and how to drhjects on a P binary image.
The graphical DXF objects which can be read are the followiRgint, Line Polyline, Circle
and 3DFace. The example begins by including the appropreaders.

#include "itkExceptionObject.h"

#include "otblmage.h"

#include "otbimageFileWriter.h"

#include "otbSpatialObjectDXFReader.h"

#include "otbSpatialObjectTolmageDrawingFilter.h"
#include "itkRescalelntensitylmageFilter.h"

Then, as usual, we select the pixel types and the image diomens

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned char OutputPixelType;

The DXF file reader and the image file writer types are instéedi. We can then create objects
for both of them. Graphical DXF objects will be represented iGroupSpatialObject.

typedef itk::GroupSpatialObject<Dimension> GroupType;
typedef otb::Image<PixelType,Dimension> ImageType;
typedef otb::Image<OutputPixelType,Dimension> Outputl mageType;
typedef otb::ImageFileWriter<OutputimageType> WriterT ype;
typedef otb::SpatialObjectDXFReader<GroupType>
SpatialObjectDXFReaderType;
typedef otb::SpatialObjectTolmageDrawingFilter<Group Type,ImageType>

118 Chapter 6. Reading and Writing Images

SpatialObjectTolmageDrawingFilterType;
typedef itk::RescalelntensitylmageFilter< ImageType,
OutputimageType > CastFilterType;
typedef itk::SpatialObject<Dimension> SpatialObjectTy pe;

/I Instantiating object
SpatialObjectDXFReaderType::Pointer reader =
SpatialObjectDXFReaderType::New();
SpatialObjectTolmageDrawingFilterType::Pointer image Generator =
SpatialObjectTolmageDrawingFilterType::New();
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer castFilter = CastFilterType::N ew();

Filenames should be provided for both the reader and themtit this particular example we
take those filenames from the command line arguments. Tkeo$ithe output image is also
specified. Thanks to the SetLayerName() method, a partitajar can be specified and other
layers will not be read. If no layer name is specified, all fayare read.

reader->SetFileName(inputFilename);
reader->SetLayerName(argv[2]);
writer->SetFileName(outputFilename);

const unsigned int outputSize = atoi(argv[3]);

The reading of the DXF file is performed with the Update() noethConsequently the group of
Spatial Objects is created.

reader->Update();
GroupType::Pointer group = reader->GetOutput();

We check if the group is empty. If it is not the case we will g@nt the Spatial Object group
on the output image. To determine the minimum and maximurmdioates of the group we
compute the bounding box of each element of the group.

if(group->GetNumberOfChildren() != 0)

{

[** Writing image **/

SpatialObjectType::ChildrenListType* children=group- >GetChildren(0);
SpatialObjectType::ChildrenListType::iterator it = chi Idren->begin();
SpatialObjectType::ChildrenListType::iterator end = ch ildren->end();

double maximum[Dimension],minimum[Dimension];
(*it)->ComputeBoundingBox();
minimum[0]=(*it)->GetBoundingBox()->GetMinimum()[0] ;
minimum[1]=(*it)->GetBoundingBox()->GetMinimum()[1] ;

while(it = end)

{

6.10. Reading and Writing Vector Data 119

(*it)}->ComputeBoundingBox();

if ((*it)->GetBoundingBox()->GetMinimum()[0] < minimum [0])
Eﬂinimum[O]:(*it)->GetBoundingBox()->GetMinimum()[O] ;

i}f ((it)->GetBoundingBox()->GetMinimum([1] < minimum)
Eninimum[l]=(*it)->GetBoundingBox()->GetMinimum()[1] ;

i}t++;

}

Origin can be set at the minimum coordinate of the group ardstfacing be adapted to the
specified output image size in order to represent all Spatigcts in the output image.

ImageType::SpacingType spacing;
spacing[0]=(maximum([0]-origin[0])/size[0];
spacing[1]=(maximum[1]-origin[1])/size[1];
imageGenerator->SetSpacing(spacing);

The output image is created with previously specified origpacing and size.

imageGenerator->Setlnput(group);
imageGenerator->Update();

The output image is written by calling the Update() method.
writer->Update();

Figure 6.6 represents Spatial Objects extracted from a DXF fi

6.10.2 Reading and Writing Vector Data Files

The source code for this example can be found in the file
Examples/IO/VectorDatalOExample.cxx

Although specific vector data import approaches, as the msepted in 6.10.1, can be useful, it
is even more interesting to have available approaches vaelnecindependent of the input format.
Unfortunately, many vector data formats do not share theetsddr the data they represent.
However, in some cases, when simple data is stored, it cardmnposed in simple objects
as for instance polylines, polygons and points. This is teedor the Shapefile and the KML
(Keyhole Markup Language), for instance.

Even though specific reader/writer for Shapefile (and soorLKkte available in OTB, we
designed a generic approach for the 10 of this kind of data.

120 Chapter 6. Reading and Writing Images

==

o
|

o owg mmlﬂ‘% .J_.ﬁﬁ b

O 3o goore g

Figure 6.6:Representation of a DXF file on an image.

This example illustrates the use of OTB’s vector data 10 famwrk.

We will start by including the header files for the classescdbig the vector data and the
corresponding reader and writer.

#include "otbVectorData.h"
#include "otbVectorDataFileReader.h"
#include "otbVectorDataFileWriter.h"

We will also need to include the header files for the classestwhodel the individual objects
that we get from the vector data structure.

#include "itkPreOrderTreelterator.h"
#include "otbObjectList.h"
#include "otbPolygon.h"

We define the types for the vector data structure and thesporeling file reader.

typedef otb::VectorData<PixelType,2> VectorDataType;

typedef otb::VectorDataFileReader<VectorDataType>
VectorDataFileReaderType;

We can now instantiate the reader and read the data.

VectorDataFileReaderType::Pointer reader = VectorDataF ileReaderType::New();

6.10. Reading and Writing Vector Data 121

reader->SetFileName(argv[1]);
reader->Update();

The vector data obtained from the reader wil provide a treaaafes containing the actual
objects of the scene. This tree will be accessed usinitkaRreOrderTreelterator

typedef VectorDataType::DataTreeType DataTreeType;
typedef itk::PreOrderTreelterator<DataTreeType> Treel teratorType;

In this example we will only read polygon objects from theunbfile before writing them to the
output file. We define the type for the polygon object as welim#erator to the vertices. The
polygons obtained will be stored in asib::ObjectList

typedef oth::Polygon<PixelType> PolygonType;

typedef PolygonType::VertexListlteratorType Polygonlt eratorType;
typedef otb::ObjectList<PolygonType> PolygonListType;

typedef PolygonListType::lterator PolygonListlterator Type;

PolygonListType::Pointer polygonList = PolygonListType :New();

We get the data tree and instantiate an iterator to walk trdu

TreelteratorType it(reader->GetOutput()->GetDataTree 0);
it. GoToBegin();
We check that the current object is a polygon usingl$RelygonFeature() method and get

its exterior ring in order to sore it into the list.

while('it.ISAtEnd())

{
if(it. Get()->IsPolygonFeature())

{
polygonList->PushBack(it.Get()->GetPolygonExteriorR ing());

}

+it;

}

http://www.melaneum.com/OTB/doxygen/classitk_1_1PreOrderTreeIterator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ObjectList.html

122 Chapter 6. Reading and Writing Images

Before writing the polygons to the output file, we have to thtiile vector data structure. This
structure will be build up of nodes. We define the types nedalethat.

VectorDataType::Pointer outVectorData = VectorDataType :New();

typedef VectorDataType::DataNodeType DataNodeType;

We fill the data structure with the nodes. The root node is aich@nt which is composed of
folders. A list of polygons can be seen as a multi polygondbje

DataNodeType::Pointer document = DataNodeType::New();
document->SetNodeType(oth::DOCUMENT);
document->SetNodeld("polygon");

DataNodeType::Pointer folder = DataNodeType::New();
folder->SetNodeType(otb::FOLDER);

DataNodeType::Pointer multiPolygon = DataNodeType::New 0;
multiPolygon->SetNodeType(otb::FEATURE_MULTIPOLYGON);

We assign these objects to the data tree stored by the vexttoodject.

DataTreeType::Pointer tree = outVectorData->GetDataTre e();
DataNodeType::Pointer root = tree->GetRoot()->Get();

tree->Add(document,root);
tree->Add(folder,document);
tree->Add(multiPolygon,folder);

We can now iterate through the polygon list and fill the vedtata structure.

for(PolygonListType::lterator it = polygonList->Begin();
it I= polygonList->End(); ++it)
{
DataNodeType::Pointer newPolygon = DataNodeType::New()
newPolygon->SetPolygonExteriorRing(it.Get());
tree->Add(newPolygon,multiPolygon);

}

An finally we write the vector data to a file using a genewstb::VectorDataFileWriter

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorDataFileWriter.html

6.11. Reading DEM Files 123

typedef otb::VectorDataFileWriter<VectorDataType> Wri terType;

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->Update();

6.11 Reading DEM Files

The source code for this example can be found in the file
Examples/IO/DEMTolmageGenerator.cxx

The following example illustrates the use of the otb::DEMiiageGenerator class. The aim of
this class is to generate an image from the srtm data (pngcise start extraction latitude and
longitude point). Each pixel is a geographic point and itensity is the altitude of the point.
If srtm doesn’t have altitude information for a point, thétatle value is set at -32768 (value of
the srtm norm).

Let's look at the minimal code required to use this algorittinst, the following header defin-
ing the oth:DEMTolmageGenerator ~ class must be included.

#include "otbDEMTolmageGenerator.h"

The image type is now defined using pixel type and dimensitie. dutput image is defined as
an oth::Image

const unsigned int Dimension = 2;
typedef oth::image<double , Dimension> ImageType;

The DEMTolmageGenerator is defined using the image pixed P a template parameter.
After that, the object can be instancied.

typedef oth::DEMTolmageGenerator<imageType> DEMTolmag eGeneratorType;

DEMTolmageGeneratorType::Pointer object = DEMTolmageGe neratorType::New();

Input parameter types are defined to set the value in the DERHAgeGenerator.

typedef DEMTolmageGeneratorType::SizeType SizeType;

typedef DEMTolmageGeneratorType::SpacingType SpacingT ype;
typedef DEMTolmageGeneratorType::DEMHandlerType DEMHa ndlerType;
typedef DEMHandlerType::PointType PointType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1DEMToImageGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

124 Chapter 6. Reading and Writing Images

The path to the DEM folder is given to the filter.
object->SetDEMDirectoryPath(folderPath);
The origin (Longitude/Latitude) of the output image in thENd is given to the filter.

PointType origin;
origin[0] = ::atof(argv[3]);
origin[1] = ::atof(argv[4]);

object->SetOutputOrigin(origin);
The size (in Pixel) of the output image is given to the filter.

SizeType size;
size[0] = ::atoi(argv(5]);
size[1] = ::atoi(argv(6]);

object->SetOutputSize(size);

The spacing (step between to consecutive pixel) is givehddilter. By default, this spacing is
setat 0.001.

SpacingType spacing;
spacing[0] = :atof(argv[7]);
spacing[1] = :atof(argv[8]);

object->SetOutputSpacing(spacing);
The output image name is given to the writer and the filter aiitplinked to the writer input.

writer->SetFileName(outputName);

writer->Setinput(object->GetOutput());

The invocation of theéJpdate() method on the writer triggers the execution of the pipelite.
is recommended to place update calls trygatch ~ block in case errors occur and exceptions
are thrown.

try
{
writer->Update();

}

6.11. Reading DEM Files 125

Figure 6.7:DEMTolmageGenerator image.

catch(itk::ExceptionObject & err)

{

std::cout << "Exception itk::ExceptionObject thrown !" << std::endl;
std::cout << err << std::endl;

return EXIT_FAILURE;

}

Let's now run this example using as input the SRTM data caethinDEM srtm folder. Figure
6.7 shows the obtained DEM. Invalid data values — hiddensadlea to SAR shadowing — are
set to zero.

CHAPTER

SEVEN

Basic Filtering

This chapter introduces the most commonly used filters fon@ITB. Most of these filters are
intended to process images. They will accept one or moreasag input and will produce one
or more images as output. OTB is based ITK’s data pipelineicture in which the output of
one filter is passed as input to another filter. (See Sect®orBpage 28 for more information.)

7.1 Thresholding

The thresholding operation is used to change or identifgelpiglues based on specifying one
or more values (called thithresholdvalue). The following sections describe how to perform
thresholding operations using OTB.

7.1.1 Binary Thresholding

The source code for this example can be found in the file
Examples/Filtering/BinaryThresholdimageFilter.cxx

128 Chapter 7. Basic Filtering

This example illustrates the use a‘t‘éf‘gt
of the binary threshold image fil- Inside Y
ter. This filter is used to transform e |
an image into a binary image by
changing the pixel values according
to the rule illustrated in Figure 7.1.
The user defines two thresholds—
Upper and Lower—and two inten- outside ¢
sity values—Inside and Outside. Value
For each pixel in the input image,
the value of the pixel is compared Input

. Lower Upper .
with the lower and upper thresh- Threshold Threshold Intensity
olds. If the pixel value is inside therigure 7.1: Transfer function of the BinaryThresholdimage-
range defined bylLowerUppell Eiter.
the output pixel is assigned the In-
sideValue. Otherwise the output pixels are assigned to thsideValue. Thresholding is com-
monly applied as the last operation of a segmentation pipeli

The first step required to use tlitk::BinaryThresholdimageFilter is to include its header
file.

#include "itkBinaryThresholdimageFilter.h"
The next step is to decide which pixel types to use for thetiapd output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using thegperive pixel types and dimen-
sions.

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::Image< OutputPixelType, 2 > OutputimageType ;

The filter type can be instantiated using the input and odutpage types defined above.

typedef itk::BinaryThresholdimageFilter<
InputimageType, OutputimageType > FilterType;

An oth:imageFileReader class is also instantiated in order to read image data froie.a fi
(See Section 6 on page 95 for more information about readidgwaiting data.)

typedef otb::imageFileReader< InputimageType > ReaderTy pe;

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

7.1. Thresholding 129

An otb::ImageFileWriter is instantiated in order to write the output image to a file.
typedef oth::ImageFileWriter< InputimageType > WriterTy pe;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to itk::SmartPointer S.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to treryBihresholdimageFilter.
filter->Setinput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lawckupper thresholds. The method
SetinsideValue() defines the intensity value to be assigned to pixels witmsits falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValue(insideValue);

The method$etLowerThreshold() andSetUpperThreshold() define the range of the input
image intensities that will be transformed into thsideValue . Note that the lower and upper
thresholds are values of the type of the input image pixeltélevthe inside and outside values
are of the type of the output image pixels.

filter->SetLowerThreshold(lowerThreshold);
filter->SetUpperThreshold(upperThreshold);

The execution of the filter is triggered by invoking tdpdate() method. If the filter's output
has been passed as input to subsequent filtersptete() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();
Figure 7.2 illustrates the effect of this filter on a ROI of 08P image of an agricultural area.

This figure shows the limitations of this filter for perforrgisegmentation by itself. These
limitations are particularly noticeable in noisy images amimages lacking spatial uniformity.

The following classes provide similar functionality:

e itk::ThresholdimageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

130 Chapter 7. Basic Filtering

Figure 7.2:Effect of the BinaryThresholdimagefFilter on a ROI of a Spot 5 image.

7.1.2 General Thresholding
The source code for this example can be found in the file
Examples/Filtering/ThresholdimageFilter.cxx

This example illustrates the use of tfitk:: ThresholdimageFilter . This filter can be used
to transform the intensity levels of an image in three défenways.

e First, the user can define a single threshold. Any pixels wailies below this threshold
will be replaced by a user defined value, called hereQhisideValue . Pixels with
values above the threshold remain unchanged. This typeeshblding is illustrated in
Figure 7.3.

e Second, the user can define a particular threshold such lthaeagixels with values
above the threshold will be replaced by thgsideValue . Pixels with values below the
threshold remain unchanged. This is illustrated in Figude 7

e Third, the user can provide two thresholds. All the pixelwimtensity values inside the
range defined by the two thresholds will remain unchangegel®ivith values outside
this range will be assigned to tideitsideValue . This is illustrated in Figure 7.5.

The following methods choose among the three operating sofe filter.

e ThresholdBelow()
e ThresholdAbove()
e ThresholdOutside()

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

7.1. Thresholding 131

QOutput
Intensity
Unchanged
Intensities
Outside L }
Value }
Threshold Input .
Below Intensity
Figure 7.3:ThresholdimageFilter using the threshold-below mode.
Output
Intensity
Outside ® --------------- —_—
Value |
|
Unchap_ged 3 Input
Intensities : Intensity
Threshold
Above
Figure 7.4:ThresholdimageFilter using the threshold-above mode.
Qutput
Intensity
|
7 Unchanged 1
. ' Intensities |
Outside R [
Value } I
Lower Upper Input .
Threshold Threshold ~ Intensity

Figure 7.5:ThresholdimageFilter using the threshold-outside mode.

132 Chapter 7. Basic Filtering

The first step required to use this filter is to include its teadite.
#include "itkThresholdimageFilter.h"

Then we must decide what pixel type to use for the image. Tités fs templated over a single
image type because the algorithm only modifies pixel valuéside the specified range, passing
the rest through unchanged.

typedef unsigned char PixelType;

The image is defined using the pixel type and the dimension.
typedef otb::lmage< PixelType, 2 > ImageType;

The filter can be instantiated using the image type definedaabo
typedef itk::ThresholdimageFilter< ImageType > FilterTy pe;

An otb::imageFileReader class is also instantiated in order to read image data frota.a fi
typedef oth::imageFileReader< ImageType > ReaderType;

An otb::lmageFileWriter is instantiated in order to write the output image to a file.
typedef otb::ImageFileWriter< ImageType > WriterType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input tdktEnresholdimageFilter
filter->Setinput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the laweeupper thresholds.

filter->SetOutsideValue(0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

7.1. Thresholding 133

The methodThresholdBelow() defines the intensity value below which pixels of the input
image will be changed to theutsideValue

filter->ThresholdBelow(40);

The filter is executed by invoking tHédpdate() method. If the filter is part of a larger image
processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

The output of this example is shown in Figure 7.3. The secqadaiing mode of the filter is
now enabled by calling the methdtresholdAbove()

filter->ThresholdAbove(100);
filter->SetOutsideValue(255);
filter->Update();

Updating the filter with this new setting produces the outghdwn in Figure 7.4. The third
operating mode of the filter is enabled by calliftgesholdOutside()

filter->ThresholdOutside(40,100);
filter->SetOutsideValue(0);
filter->Update();

The output of this third, “band-pass” thresholding modehisven in Figure 7.5.

The examples in this section also illustrate the limitagiofithe thresholding filter for perform-
ing segmentation by itself. These limitations are partidylnoticeable in noisy images and in
images lacking spatial uniformity.

The following classes provide similar functionality:

e itk::BinaryThresholdimageFilter

7.1.3 Threshold to Point Set
The source code for this example can be found in the file
Examples/FeatureExtraction/ThresholdToPointSetExamp le.cxx

Sometimes, it may be more valuable not to get an image frorthtieshold step but rather a list
of coordinates. This can be done with thth::ThresholdimageToPointSetFilter

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ThresholdImageToPointSetFilter.html

134 Chapter 7. Basic Filtering

The following example illustrates the use of ttoth:: ThresholdimageToPointSetFilter
which provide a list of points within given thresholds. Rsiset are described in section 5.2 on
page 76.

The first step required to use this filter is to include the leead

#include "otbThresholdimageToPointSetFilter.h"
#include "itkPointSet.h"

The next step is to decide which pixel types to use for thetimpage and the Point Set as well
as their dimension.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef oth::Image<PixelType, Dimension> ImageType;
typedef itk::PointSet<PixelType, Dimension> PointSetTy pe;

A reader is instanciated to read the input image

typedef otb::imageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

const char * filenamereader = argv[1];
reader->SetFileName(filenamereader);

We get the parameters from the command line for the thrediitdd The lower and upper
thresholds parameters are similar to those of itheBinaryThresholdimageFilter (see
Section 7.1.1 on page 127 for more information).

int lowerThreshold = atoi(argv[2]);
int upperThreshold = atoi(argv[3]);

Then we create the ThresholdimageToPointSetFilter andass fhe parameters.

typedef oth::ThresholdimageToPointSetFilter
< ImageType, PointSetType > FilterThresholdType;
FilterThresholdType::Pointer filterThreshold = FilterT hresholdType::New();
filterThreshold->SetLowerThreshold(lowerThreshold);
filterThreshold->SetUpperThreshold(upperThreshold);
filterThreshold->Setlnput(0, reader->GetOutput());

To manipulate and display the result of this filter, we malyuialstanciate a point set and we
call theUpdate() method on the threshold filter to trigger the pipeline exiecut

After this step, theointSet variable contains the point set.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ThresholdImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html

7.2. Gradients 135

PointSetType::Pointer pointSet = PointSetType::New();
pointSet = filterThreshold->GetOutput();

filterThreshold->Update();

To display each point, we create an iterator on the list ofifspiwhich is accessible through the
methodGetPoints() of the PointSet.

typedef PointSetType::PointsContainer ContainerType;

ContainerType* pointsContainer = pointSet->GetPoints() ;
typedef ContainerType::lterator lteratorType;

IteratorType itList = pointsContainer->Begin();

A while loop enable us to through the list a display the cawaith of each point.

while(itList != pointsContainer->End())

{

std::cout << itList.Value() << std::endl;
++itList;

}

7.2 Gradients

Computation of gradients is a fairly common operation ingearocessing. The term “gradi-
ent” may refer in some contexts to the gradient vectors amathers to the magnitude of the
gradient vectors. ITK filters attempt to reduce this amhigby including themagnitudeterm
when appropriate. ITK provides filters for computing botk thhage of gradient vectors and
the image of magnitudes.

7.2.1 Gradient Magnitude

The source code for this example can be found in the file
Examples/Filtering/GradientMagnitudelmageFilter.cxx

The magnitude of the image gradient is extensively used egernanalysis, mainly to help
in the determination of object contours and the separatiohomogeneous regions. The
itk::GradientMagnitudelmagerFilter computes the magnitude of the image gradient at
each pixel location using a simple finite differences apphoaFor example, in the case of
2D the computation is equivalent to convolving the image witisks of type

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

136 Chapter 7. Basic Filtering

[2]o]1]

then adding the sum of their squares and computing the sqotref the sum.

This filter will work on images of any dimension thanks to theternal use of
itk::Neighborhoodlterator and itk::NeighborhoodOperator

The first step required to use this filter is to include its teadite.
#include "itkGradientMagnitudelmageFilter.h"
Types should be chosen for the pixels of the input and outpages.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types can be defined using thetpipes.

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

The type of the gradient magnitude filter is defined by the inpage and the output image
types.

typedef itk::GradientMagnitudelmageFilter<
InputimageType, OutputimageType > FilterType;

A filter object is created by invoking th&lew() method and assigning the result to a
itk::SmartPointer

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another.fidere, the source is an image
reader.

filter->Setinput(reader->GetOutput());
Finally, the filter is executed by invoking thépdate() method.

filter->Update();

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.2. Gradients 137

Figure 7.6:Effect of the GradientMagnitudelmageFilter.

If the output of this filter has been connected to other filiera pipeline, updating any of the
downstream filters will also trigger an update of this filteor example, the gradient magnitude
filter may be connected to an image writer.

rescaler->Setinput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 7.6 illustrates the effect of the gradient magnitu@lee figure shows the sensitivity of
this filter to noisy data.

Attention should be paid to the image type chosen to reptebenoutput image since the
dynamic range of the gradient magnitude image is usuallflenthan the dynamic range of
the input image. As always, there are exceptions to this foteexample, images of man-made
objects that contain high contrast objects.

This filter does not apply any smoothing to the image beforamgding the gradients. The
results can therefore be very sensitive to noise and may edielst choice for scale space
analysis.

7.2.2 Gradient Magnitude With Smoothing
The source code for this example can be found in the file
Examples/Filtering/GradientMagnitudeRecursiveGaussi anlmagerFilter.cxx

Differentiation is an ill-defined operation over digitaltdaln practice it is convenient to define
a scale in which the differentiation should be performedsThusually done by preprocessing

138 Chapter 7. Basic Filtering

the data with a smoothing filter. It has been shown that a Gakernel is the most convenient
choice for performing such smoothing. By choosing a paldicualue for the standard devi-
ation (©) of the Gaussian, an associated scale is selected thaeghah frequency content,
commonly considered image noise.

The itk::GradientMagnitudeRecursiveGaussianimageFilter computes the magnitude
of the image gradient at each pixel location. The compuatiprocess is equivalent to first
smoothing the image by convolving it with a Gaussian kermel then applying a differential
operator. The user selects the valueof

Internally this is done by applying an lIR filter that approximates a convolution with the
derivative of the Gaussian kernel. Traditional convolatvall produce a more accurate result,
but the IIR approach is much faster, especially using lagf2, 23].

GradientMagnitudeRecursiveGaussianimageFilter wiltkvan images of any dimension by
taking advantage of the natural separability of the Gandsianel and its derivatives.

The first step required to use this filter is to include its lezdile.
#include "itkGradientMagnitudeRecursiveGaussianimage Filter.h"
Types should be instantiated based on the pixels of the anpibutput images.

typedef float InputPixelType;
typedef float OutputPixelType;

With them, the input and output image types can be instautiat

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::Image< OutputPixelType, 2 > OutputimageType ;

The filter type is now instantiated using both the input image the output image types.

typedef itk::GradientMagnitudeRecursiveGaussianimage Filter<
InputimageType, OutputimageType > FilterType;

A filter object is created by invoking th&lew() method and assigning the result to a
itk::SmartPointer

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another.filfere, an image reader is used
as source.

LInfinite Impulse Response

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.2. Gradients 139

Figure 7.7:Effect of the GradientMagnitudeRecursiveGaussianimagefFilter.

filter->Setinput(reader->GetOutput());

The standard deviation of the Gaussian smoothing kernelisset.
filter->SetSigma(sigma);

Finally the filter is executed by invoking thépdate() method.
filter->Update();

If connected to other filters in a pipeline, this filter willtamatically update when any down-
stream filters are updated. For example, we may connect thdiegnt magnitude filter to an
image file writer and then update the writer.

rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());
writer->Update();

Figure 7.7 illustrates the effect of this filter usiogvalues of 3 (left) and 5 (right). The figure
shows how the sensitivity to noise can be regulated by seteah appropriate. This type of
scale-tunable filter is suitable for performing scale-gpatalysis.

Attention should be paid to the image type chosen to reptebenoutput image since the
dynamic range of the gradient magnitude image is usually}lernthan the dynamic range of
the input image.

140 Chapter 7. Basic Filtering

7.2.3 Derivative Without Smoothing
The source code for this example can be found in the file
Examples/Filtering/DerivativelmageFilter.cxx

The itk::DerivativelmageFilter is used for computing the partial derivative of an image,
the derivative of an image along a particular axial dirattio

The header file corresponding to this filter should be indifitst.
#include "itkDerivativelmageFilter.h"

Next, the pixel types for the input and output images mustdiimdd and, with them, the image
types can be instantiated. Note that it is important to $elesigned type for the image, since
the values of the derivatives will be positive as well as tigga

typedef float InputPixelType;
typedef float OutputPixelType;

const unsigned int Dimension = 2;

typedef otb::image< InputPixelType, Dimension > Inputima geType;
typedef oth::image< OutputPixelType, Dimension > Outputl mageType;

Using the image types, it is now possible to define the filtpetsind create the filter object.

typedef itk::DerivativelmageFilter<
InputimageType, OutputimageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The order of the derivative is selected with 8&Order() method. The direction along which
the derivative will be computed is selected with SeDirection() method.

filter->SetOrder(atoi(argv[4]));
filter->SetDirection(atoi(argv[5]));

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanapleriter. An update call on any
downstream filter will trigger the execution of the derivatfilter.

filter->Setinput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure 7.8 illustrates the effect of the Derivativelmadtefi The derivative is taken along the
direction. The sensitivity to noise in the image is evideotd this result.

http://www.melaneum.com/OTB/doxygen/classitk_1_1DerivativeImageFilter.html

7.3. Second Order Derivatives 141

Figure 7.8:Effect of the Derivative filter.

7.3 Second Order Derivatives

7.3.1 Laplacian Filters
Laplacian Filter Recursive Gaussian

The source code for this example can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianimageF ilterl.cxx

This example illustrates how to use tlitk::RecursiveGaussianimageFilter for comput-
ing the Laplacian of an image.

The first step required to use this filter is to include its eadite.
#include "itkRecursiveGaussianimageFilter.h"
Types should be selected on the desired input and outputtppes.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated usingiet fypes.

typedef otb:lmage< InputPixelType, 2 > InputimageType;
typedef otb:lmage< OutputPixelType, 2 > OutputimageType ;

The filter type is now instantiated using both the input image the output image types.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

142 Chapter 7. Basic Filtering

typedef itk::RecursiveGaussianimageFilter<
InputimageType, OutputimageType > FilterType;

This filter applies the approximation of the convolutionraja single dimension. Itis therefore
necessary to concatenate several of these filters to pramucething in all directions. In this

example, we create a pair of filters since we are processifyimage. The filters are created
by invoking theNew() method and assigning the result tatia:SmartPointer

We need two filters for computing the X component of the Lajpla@nd two other filters for
computing the Y component.

FilterType::Pointer filterX1
FilterType::Pointer filterY1

FilterType::New();
FilterType::New();
FilterType::Pointer filterX2
FilterType::Pointer filterY2

FilterType::New();
FilterType::New();
Since each one of the newly created filters has the potewtipetform filtering along any
dimension, we have to restrict each one to a particular tiimec This is done with the
SetDirection() method.

filterX1->SetDirection(0); // 0 --> X direction
filtery1->SetDirection(1); // 1 --> Y direction

filterX2->SetDirection(0); // 0 --> X direction
filtery2->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianimageFilter can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select on¢he$e options by using the
SetOrder() method. Note that the argument is emum whose values can héeroOrder ,
FirstOrder andSecondOrder . For example, to compute thepartial derivative we should
selectFirstOrder for x andZeroOrder for y. Here we want only to smooth andy, so we
selectZeroOrder in both directions.

filterX1->SetOrder(FilterType::ZeroOrder);
filterY1->SetOrder(FilterType::SecondOrder);

filterX2->SetOrder(FilterType::SecondOrder);
filterY2->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depenain their application. For scale-
space analysis it is desirable to use a normalization tHhpreiserve the maximum value of the
input. This normalization is represented by the followingiation.

1
ovV2m

(7.1)

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

7.3. Second Order Derivatives 143

In applications that use the Gaussian as a solution of tties@hifh equation it is desirable to
use a normalization that preserve the integral of the sigrtak last approach can be seen as a
conservation of mass principle. This is represented bydheWing equation.

1
02/21m

The itk::RecursiveGaussianimageFilter has a boolean flag that allows users to
select between these two normalization options. Seleciordone with the method
SetNormalizeAcrossScale() . Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact becausar@vactually renormalizing the
output to the dynamic range of the reader, so we simply diste! flag.

(7.2)

const bool normalizeAcrossScale = false;

filterX1->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filtery1->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filterX2->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filterY2->SetNormalizeAcrossScale(normalizeAcrossSc ale);

The input image can be obtained from the output of another.filHere, an image reader is
used as the source. The image is passed t tiileer and then to they filter. The reason
for keeping these two filters separate is that it is usual alesspace applications to compute
not only the smoothing but also combinations of derivataedifferent orders and smoothing.
Some factorization is possible when separate filters attoggenerate the intermediate results.
Here this capability is less interesting, though, since wy avant to smooth the image in all
directions.

filterX1->Setlnput(reader->GetOutput());
filtery1->Setlnput(filterX1->GetOutput());

filterY2->Setlnput(reader->GetOutput());
filterX2->Setlnput(filtery2->GetOutput());

It is now time to select the of the Gaussian used to smooth the data. Notedhaust be
passed to both filters and that sigma is considered to be inrite of the image spacing. That
is, at the moment of applying the smoothing process, the filiétake into account the spacing
values defined in the image.

filterX1->SetSigma
filtery1->SetSigma
filterX2->SetSigma
filtery2->SetSigma

sigma
sigma
sigma
sigma

A,_\,_\A
~— — ~— ~—

Finally the two components of the Laplacian should be addedether. The
itk::AddImageFilter is used for this purpose.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1AddImageFilter.html

144 Chapter 7. Basic Filtering

typedef itk::AddimageFilter<
OutputimageType,
OutputimageType,
OutputimageType > AddFilterType;

AddFilterType::Pointer addFilter = AddFilterType::New();

addFilter->Setlnputl(filterY1->GetOutput());
addFilter->Setlnput2(filterX2->GetOutput());

The filters are triggered by invokirigpdate() on the Add filter at the end of the pipeline.

try

addFilter->Update();

}
catch(itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std:endl;
return EXIT_FAILURE;

}

The resulting image could be saved to a file using dte:ImageFileWriter class.

typedef float WritePixelType;

typedef oth::lmage< WritePixelType, 2 > WritelmageType;

typedef oth::ImageFileWriter< WritelmageType > WriterTy pe;
WriterType::Pointer writer = WriterType::New();

writer->Setinput(addFilter->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

Figure 7.9 illustrates the effect of this filter usiogvalues of 3 (left) and 5 (right). The fig-
ure shows how the attenuation of noise can be regulated bytsg the appropriate standard
deviation. This type of scale-tunable filter is suitablegerforming scale-space analysis.

The source code for this example can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianimageF ilter2.cxx

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

7.3. Second Order Derivatives 145

Figure 7.9:Effect of the LaplacianRecursiveGaussianimageFilter.

The previous exampled showed how to use thik:RecursiveGaussianimageFilter

for computing the equivalent of a Laplacian of an image a#feroothing with a Gaus-

sian. The elements used in this previous example have bedraged together in the

itk::LaplacianRecursiveGaussianimageFilter in order to simplify its usage. This cur-

rent example shows how to use this convenience filter foreaaty the same results as the
previous example.

The first step required to use this filter is to include its leedite.
#include "itkLaplacianRecursiveGaussianimageFilter.h
Types should be selected on the desired input and outputtppes.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated usingiket types.

typedef otb::Image< InputPixelType, 2 > InputimageType;
typedef otb::lmage< OutputPixelType, 2 > OutputimageType ;

The filter type is now instantiated using both the input image the output image types.

typedef itk::LaplacianRecursiveGaussianimageFilter<
InputimageType, OutputimageType > FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianRecursiveGaussianImageFilter.html

146 Chapter 7. Basic Filtering

This filter packages all the components illustrated in tlewipus example. The filter is created
by invoking theNew() method and assigning the result tatla: SmartPointer

FilterType::Pointer laplacian = FilterType::New();
The option for normalizing across scale space can also betsdlin this filter.
laplacian->SetNormalizeAcrossScale(false);

The input image can be obtained from the output of another.filfere, an image reader is used
as the source.

laplacian->Setlnput(reader->GetOutput());

It is now time to select the of the Gaussian used to smooth the data. Notedhaust be
passed to both filters and that sigma is considered to be iartite of the image spacing. That
is, at the moment of applying the smoothing process, the filiétake into account the spacing
values defined in the image.

laplacian->SetSigma(sigma);
Finally the pipeline is executed by invoking thiedate() method.

try
{

laplacian->Update();

}
catch(itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;

}

Figure 7.10 illustrates the effect of this filter usiogvalues of 3 (left) and 5 (right). The
figure shows how the attenuation of noise can be regulatedlbgting the appropriate standard
deviation. This type of scale-tunable filter is suitablegerforming scale-space analysis.

7.4 Edge Detection

7.4.1 Canny Edge Detection

The source code for this example can be found in the file
Examples/Filtering/CannyEdgeDetectionimageFilter.cx X.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.4. Edge Detection 147

Figure 7.10:Effect of the LaplacianRecursiveGaussianimageFilter.

This example introduces the use of tile:CannyEdgeDetectionimageFilter . This filter
is widely used for edge detection since it is the optimal otusatisfying the constraints of
good sensitivity, localization and noise robustness.

The first step required for using this filter is to include iealder file
#include "itkCannyEdgeDetectionimageFilter.h"

This filter operates on image of pixel type float. It is thenessary to cast the type of the input
images that are usually of integer type. Tlitk:CastimageFilter is used here for that
purpose. Its image template parameters are defined fongdstim the input type to the float
type using for processing.

typedef itk::CastimageFilter< CharlmageType, Reallmage Type> CastToRealFilterType;

The itk::CannyEdgeDetectionimageFilter is instantiated using the float image type.

Figure 7.11 illustrates the effect of this filter on a ROI off@§5 image of an agricultural area.

7.4.2 Ratio of Means Detector

The source code for this example can be found in the file
Examples/FeatureExtraction/TouziEdgeDetectorExample .CXX .

This example illustrates the use of thah::TouziEdgeDetectorimageFilter . This filter
belongs to the family of the fixed false alarm rate edge detsdiut it is apropriate for SAR
images, where the speckle noise is considered as multipicay analogy with the classical

http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

148 Chapter 7. Basic Filtering

Figure 7.11Effect of the CannyEdgeDetectorimageFilter on a ROI of a Spot 5 image.

gradient-based edge detectors which are suited to thevedddise case, this filter computes a
ratio of local means in both sides of the edge [85]. In orddraee a normalized response, the
following computation is performed :
rzlfmin{%,@ , (7.3)
Hs Ha

wherep andyg are the local means computed at both sides of the edge. Intordetect edges
with any orientationr is computed for the 4 principal directions and the maximuspoase is
kept.

The first step required to use this filter is to include its teadite.

#include "othTouziEdgeDetectorimageFilter.h"

Then we must decide what pixel type to use for the image. Wesshto make all computations
with floating point precision and rescale the results betnw&and 255 in order to export PNG

images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > Internallmage Type;
typedef otb::lmage< OutputPixelType, 2 > OutputimageType ;

The filter can be instantiated using the image types definedeab

7.4. Edge Detection 149

typedef otb::TouziEdgeDetectorimageFilter< Internallm ageType, InternallmageType > FilterType;

An ImageFileReader::.c lass is also instantiated in order to read image data frore a fil

typedef oth::imageFileReader< InternallmageType > Reade rType;
An ImageFileWriter::i s instantiated in order to write the output image to a file.
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

The intensity rescaling of the results will be carried out byhe

itk::RescalelntensitylmageFilter which is templated by the input and output im-
age types.
typedef itk::RescalelntensitylmageFilter< Internalima geType,

OutputimageType > RescalerType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescalelntensitylmageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be choa@eneric way by using the
NumericTraits ~ functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

The image obtained with the reader is passed as input to the
oth::TouziEdgeDetectorimageFilter . The pipeline is built as follows.

filter->Setinput(reader->GetOutput());
rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

http://www.melaneum.com/OTB/doxygen/classImageFileReader_1_1c.html
http://www.melaneum.com/OTB/doxygen/classImageFileWriter_1_1i.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

150 Chapter 7. Basic Filtering

Figure 7.12Result of applying the oth::TouziEdgeDetectorimageFilter to a SAR image. From left
to right : original image, edge intensity and edge orientation.

The methodsetRadius() defines the size of the window to be used for the computatidheof
local means.

FilterType::SizeType Radius;
Radius[0]= atoi(argv[4]);
Radius[1]= atoi(argv[4]);

filter->SetRadius(Radius);

The filter is executed by invoking tHdpdate() method. If the filter is part of a larger image
processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();
We can also obtain the direction of the edges by invokings#t@utputDirection() method.

rescaler->SetInput(filter->GetOutputDirection());
writer->Setinput(rescaler->GetOutput());
writer->Update();

Figure 7.12 shows the result of applying the Touzi edge datditter to a SAR image.

7.5 Neighborhood Filters

The concept of locality is frequently encountered in imageecpssing in the form of filters that
compute every output pixel using information from a smatjioa in the neighborhood of the
input pixel. The classical form of these filters are the 3 filters in 2D images. Convolution
masks based on these neighborhoods can perform diversertasiing from noise reduction,
to differential operations, to mathematical morphology.

http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

7.5. Neighborhood Filters 151

The Insight toolkit implements an elegant approach to naighood-based image filtering. The
input image is processed using a special iterator calleditthi&eighborhoodIterator

This iterator is capable of moving over all the pixels in araga and, for each position, it can
address the pixels in a local neighborhood. Operators dmeedethat apply an algorithmic
operation in the neighborhood of the input pixel to producalae for the output pixel. The
following section describes some of the more commonly ustenldithat take advantage of this
construction. (See Chapter 19 on page 471 for more infoomaibout iterators.)

7.5.1 Mean Filter

The source code for this example can be found in the file
Examples/Filtering/MeanimageFilter.cxx

The itk::MeanlmageFilter is commonly used for noise reduction. The filter computes the
value of each output pixel by finding the statistical mearhefrieighborhood of the correspond-
ing input pixel. The following figure illustrates the locdfect of the MeanlmageFilter. The
statistical mean of the neighborhood on the left is passétteasutput value associated with the
pixel at the center of the neighborhood.

28 | 26 | s0
27 | 25 | 29 | —~|3022}—| 30 |
25 | 30 | 32

Note that this algorithm is sensitive to the presence of ienstl in the neighbor-
hood. This filter will work on images of any dimension thanks the internal use of
itk::SmartNeighborhoodlterator and itk::NeighborhoodOperator . The size of the
neighborhood over which the mean is computed can be set isthe

The header file corresponding to this filter should be indlifirst.
#include "itkMeanlmageFilter.h"

Then the pixel types for input and output image must be defimeld with them, the image types
can be instantiated.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

Using the image types it is now possible to instantiate therfiype and create the filter object.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

152 Chapter 7. Basic Filtering

Figure 7.13:Effect of the MeanimageFilter.

typedef itk::MeanimageFilter<
InputimageType, OutputimageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensjgpassing &izeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2a size of 12 will result in a 3x 5 neighborhood.

InputimageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, foample a reader. The output
can be passed down the pipeline to other filters, for exanapleiter. An update call on any
downstream filter will trigger the execution of the mean filte

filter->Setinput(reader->GetOutput());
writer->Setinput(filter->GetOutput());
writer->Update();

Figure 7.13 illustrates the effect of this filter using ndighhood radii of 11 which corresponds
to a 3x 3 classical neighborhood. It can be seen from this pictaedtiges are rapidly degraded
by the diffusion of intensity values among neighbors.

7.5. Neighborhood Filters 153

7.5.2 Median Filter

The source code for this example can be found in the file
Examples/Filtering/MedianimageFilter.cxx

The itk::MedianimageFilter is commonly used as a robust approach for noise reduction.
This filter is particularly efficient againstalt-and-peppenoise. In other words, it is robust

to the presence of gray-level outliers. MedianimageFitnputes the value of each output
pixel as the statistical median of the neighborhood of \@laund the corresponding input
pixel. The following figure illustrates the local effect diis$ filter. The statistical median of the
neighborhood on the left is passed as the output value asedavith the pixel at the center of
the neighborhood.

28 | 26 | 50
27 | 25 | 29 | —~| 28 |
25 [30 | 32

This filter will work on images of any dimension thanks to theternal use of
itk::Neighborhoodlterator and itk::NeighborhoodOperator . The size of the neigh-
borhood over which the median is computed can be set by thie use

The header file corresponding to this filter should be inalifirst.
#include "itkMedianimagefFilter.h"
Then the pixel and image types of the input and output musefieet.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::Image< OutputPixelType, 2 > OutputimageType ;

Using the image types, it is now possible to define the filtpetsind create the filter object.

typedef itk::MedianimageFilter<
InputimageType, OutputimageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensygmassing &izeType object
with the corresponding values. The value on each dimensiarséd as the semi-size of a
rectangular box. For example, iD2 size of 12 will result in a 3x 5 neighborhood.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MedianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

154 Chapter 7. Basic Filtering

Figure 7.14Effect of the MedianimageFilter.

InputimageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, foamyple a reader. The output
can be passed down the pipeline to other filters, for exanapleriter. An update call on any
downstream filter will trigger the execution of the mediatefil

filter->Setinput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure 7.14 illustrates the effect of the MedianimageFililéer a neighborhood radius of 1,
which corresponds to a 83 classical neighborhood. The filtered image demonstréies t
moderate tendency of the median filter to preserve edges.

7.5.3 Mathematical Morphology

Mathematical morphology has proved to be a powerful resfmcimage processing and anal-
ysis [79]. ITK implements mathematical morphology filteing Neighborhoodlterators and
itk::NeighborhoodOperator s. The toolkit contains two types of image morphology algo-
rithms, filters that operate on binary images and filters tiparate on grayscale images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

7.5. Neighborhood Filters 155

Binary Filters

The source code for this example can be found in the file
Examples/Filtering/MathematicalMorphologyBinaryFilt €rS.CxXX

The following section illustrates the use of filters that fpen basic mathematical
morphology operations on binary images. Thik::BinaryErodelmageFilter and
itk::BinaryDilatelmageFilter are described here. The filter names clearly specify the
type of image on which they operate. The header files reqtirednstruct a simple example
of the use of the mathematical morphology filters are inadiigeow.

#include "itkBinaryErodelmageFilter.h"
#include "itkBinaryDilatelmageFilter.h"
#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::lmage< InputPixelType, Dimension > Inputima geType;
typedef otb::image< OutputPixelType, Dimension > Outputl mageType;

Mathematical morphology operations are implemented byyappan operator over the neigh-
borhood of each input pixel. The combination of the rule g teighborhood is known as
structuring elementAlthough some rules have become de facto standards foreipamress-
ing, there is a good deal of freedom as to what kind of algonitirule should be applied to the
neighborhood. The implementation in ITK follows the typinale of minimum for erosion and
maximum for dilation.

The structuring element is implemented as a Neighborhoed@gr. In particular, the default
structuring element is thék::BinaryBallStructuringElement class. This class is instan-
tiated using the pixel type and dimension of the input image.

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with thetimma output image types for
instantiating the type of the filters.

typedef itk::BinaryErodelmageFilter<
InputimageType,

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryErodeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryDilateImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html

156 Chapter 7. Basic Filtering

OutputimageType,
StructuringElementType > ErodeFilterType;

typedef itk::BinaryDilatelmageFilter<
InputimageType,
OutputimageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking tHew() method and assigning the result to
itk::SmartPointer S.

ErodeFilterType::Pointer binaryErode = ErodeFilterType ::New();
DilateFilterType::Pointer hinaryDilate = DilateFilterT ype::New();

The structuring element is not a reference counted classus This created as a C++
stack object instead of usingew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with SeRadius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathenmaticaphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;
structuringElement.SetRadius(1); // 3x3 structuring ele ment
structuringElement.CreateStructuringElement();

binaryErode->SetKernel(structuringElement);
binaryDilate->SetKernel(structuringElement);

A binary image is provided as input to the filters. This imagghhbe, for example, the output
of a binary threshold image filter.

thresholder->Setinput(reader->GetOutput());

InputPixelType background = 0;
InputPixelType foreground = 255;

thresholder->SetOutsideValue(background);
thresholder->SetlnsideValue(foreground);

thresholder->SetLowerThreshold(lowerThreshold);
thresholder->SetUpperThreshold(upperThreshold);

binaryErode->Setlnput(thresholder->GetOutput());
binaryDilate->Setinput(thresholder->GetOutput());

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.5. Neighborhood Filters 157

Figure 7.15:Effect of erosion and dilation in a binary image.

The values that correspond to “objects” in the binary imagge specified with the methods
SetErodeValue() andSetDilateValue() . The value passed to these methods will be con-
sidered the value over which the dilation and erosion ruldsapply.

binaryErode->SetErodeValue(foreground);
binaryDilate->SetDilateValue(foreground);

The filter is executed by invoking itdpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->SetInput(binaryDilate->GetOutput()) ;
writerDilation->Update();

Figure 7.15 illustrates the effect of the erosion and ditafilters. The figure shows how these
operations can be used to remove spurious details from sggthenages.

Grayscale Filters

The source code for this example can be found in the file
Examples/Filtering/MathematicalMorphologyGrayscaleF ilters.cxx

The following section illustrates the use of filters for merhing basic mathematical mor-
phology operations on grayscale images. Tlhik:GrayscaleErodelmageFilter and
itk::GrayscaleDilatelmageFilter are covered in this example. The filter names clearly
specify the type of image on which they operate. The headsrriilquired for a simple example
of the use of grayscale mathematical morphology filters ezegnted below.

#include "itkGrayscaleErodelmageFilter.h"
#include "itkGrayscaleDilatelmageFilter.h"
#include "itkBinaryBallStructuringElement.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1GrayscaleErodeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GrayscaleDilateImageFilter.html

158 Chapter 7. Basic Filtering

The following code defines the input and output pixel types their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image< InputPixelType, Dimension > Inputima geType;
typedef otb::Image< OutputPixelType, Dimension > Outputl mageType;

Mathematical morphology operations are based on the atiglicof an operator over a neigh-
borhood of each input pixel. The combination of the rule dmalteighborhood is known as
structuring elementAlthough some rules have become the de facto standard geimacess-
ing there is a good deal of freedom as to what kind of algoiittmie should be applied on the
neighborhood. The implementation in ITK follows the tygingae of minimum for erosion and
maximum for dilation.

The structuring element is implemented askaNeighborhoodOperator . In particular, the
default structuring element is thig::BinaryBallStructuringElement class. This class is
instantiated using the pixel type and dimension of the impiaige.

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with thetimma output image types for
instantiating the type of the filters.

typedef itk::GrayscaleErodelmageFilter<
InputimageType,
OutputimageType,
StructuringElementType > ErodeFilterType;

typedef itk::GrayscaleDilatelmageFilter<
InputimageType,
OutputimageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking tew() method and assigning the result to Smart-
Pointers.

ErodeFilterType::Pointer grayscaleErode = ErodeFilterT ype::New();
DilateFilterType::Pointer grayscaleDilate = DilateFilt erType::New();

The structuring element is not a reference counted classus This created as a C++
stack object instead of usingew() and SmartPointers. The radius of the neighborhood

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html

7.6. Smoothing Filters 159

Figure 7.16:Effect of erosion and dilation in a grayscale image.

associated with the structuring element is defined with Se#Radius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathenmaticeiphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;
structuringElement.SetRadius(1); // 3x3 structuring ele ment
structuringElement.CreateStructuringElement();

grayscaleErode->SetKernel(structuringElement);
grayscaleDilate->SetKernel(structuringElement);

A grayscale image is provided as input to the filters. Thisgenaight be, for example, the
output of a reader.

grayscaleErode->Setlnput(reader->GetOutput());
grayscaleDilate->Setlnput(reader->GetOutput());

The filter is executed by invoking itdpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->Setinput(grayscaleDilate->GetOutput 0
writerDilation->Update();

Figure 7.16 illustrates the effect of the erosion and ditafilters. The figure shows how these
operations can be used to remove spurious details from sggcthenages.

7.6 Smoothing Filters

Real image data has a level of uncertainty that is manifeistetie variability of measures
assigned to pixels. This uncertainty is usually interptet®noise and considered an undesirable

160 Chapter 7. Basic Filtering

component of the image data. This section describes sawethlods that can be applied to
reduce noise on images.

7.6.1 Blurring

Blurring is the traditional approach for removing noisenframages. It is usually implemented
in the form of a convolution with a kernel. The effect of bing on the image spectrum is
to attenuate high spatial frequencies. Different kerngnaate frequencies in different ways.
One of the most commonly used kernels is the Gaussian. Twieingntations of Gaussian
smoothing are available in the toolkit. The first one is based traditional convolution while
the other is based on the application of IIR filters that agipnate the convolution with a
Gaussian [22, 23].

Discrete Gaussian

The source code for this example can be found in the file
Examples/Filtering/DiscreteGaussianimageFilter.cxx

1 T

The itk::DiscreteGaussianimageFilter ool 7
computes the convolution of the input im- | 7171
age with a Gaussian kernel. This is o
done inND by taking advantage of the osf
separability of the Gaussian kernel. A |
one-dimensional Gaussian function is ;|
discretized on a convolution kernel. The .|

size of the kernel is extended until there o1

0 I I

04

are enough discrete points in the Gaussian 2 -5 1+ s o o5 1 15
to ensure that a user-provided maximum L Kemenwain —]
error is not exceeded. Since the size of the Figure 7.17 Discretized Gaussian.

kernel is unknown a priori, it is necessary

to impose a limit to its growth. The user can thus provide a&&b be the maximum admissible
size of the kernel. Discretization error is defined as thiedihce between the area under the
discrete Gaussian curve (which has finite support) and geew@nder the continuous Gaussian.

Gaussian kernels in ITK are constructed according to theryhef Tony Lindeberg [57] so that
smoothing and derivative operations commute before amd dicretization. In other words,
finite difference derivatives on an imagethat has been smoothed by convolution with the
Gaussian are equivalent to finite differences computedmnconvolving with a derivative of
the Gaussian.

The first step required to use this filter is to include its lezdile.

#include "itkDiscreteGaussianimageFilter.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1DiscreteGaussianImageFilter.html

7.6. Smoothing Filters 161

Types should be chosen for the pixels of the input and outpagées. Image types can be
instantiated using the pixel type and dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputimageType;
typedef otb::image< OutputPixelType, 2 > OutputimageType

The discrete Gaussian filter type is instantiated using tipaitiand output image types. A
corresponding filter object is created.

typedef itk::DiscreteGaussianimageFilter<
InputimageType, OutputimageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another.filfere, an image reader is used
as its input.

filter->Setinput(reader->GetOutput());

The filter requires the user to provide a value for the vagaassociated with the Gaussian
kernel. The metho&etvariance() is used for this purpose. The discrete Gaussian is con-
structed as a convolution kernel. The maximum kernel sindbesset by the user. Note that the
combination of variance and kernel-size values may reswttruncated Gaussian kernel.

filter->SetVariance(gaussianVariance);
filter->SetMaximumKernelWidth(maxKernelWidth);

Finally, the filter is executed by invoking thépdate() method.
filter->Update();

If the output of this filter has been connected to other filtran the pipeline, updating any
of the downstream filters would have triggered the execuifcthis one. For example, a writer
could have been used after the filter.

rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());
writer->Update();

Figure 7.18 illustrates the effect of this filter.

Note that large Gaussian variances will produce large datien kernels and correspondingly
slower computation times. Unless a high degree of accusasguired, it may be more desir-
able to use the approximatinitk::RecursiveGaussianimageFilter with large variances.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

162 Chapter 7. Basic Filtering

Figure 7.18:Effect of the DiscreteGaussianimageFilter.

7.6.2 Edge Preserving Smoothing
Introduction to Anisotropic Diffusion

The drawback of image denoising (smoothing) is that it teéaddur away the sharp boundaries
in the image that help to distinguish between the largelesaaatomical structures that one
is trying to characterize (which also limits the size of timeosthing kernels in most applica-
tions). Even in cases where smoothing does not obliteratedaries, it tends to distort the fine
structure of the image and thereby changes subtle aspetits ahatomical shapes in question.

Perona and Malik [70] introduced an alternative to lineletfing that they callecnisotropic
diffusion Anisotropic diffusion is closely related to the earlier nwoof Grossberg [37],
who used similar nonlinear diffusion processes to modelduwision. The motivation for
anisotropic diffusion (also calleabnuniformor variable conductancdiffusion) is that a Gaus-
sian smoothed image is a single time slice of the solutiorhéoheat equation, that has the
original image as its initial conditions. Thus, the solatio

A _ 0. gy 7.4
whereg(x,y,0) = f(x,y) is the input image, ig(x,y;t) = G(v/2t) ® f(x,y), whereG(o) is a
Gaussian with standard deviation

Anisotropic diffusion includes a variable conductancentéhat, in turn, depends on the dif-

ferential structure of the image. Thus, the variable cotahae can be formulated to limit the
smoothing at “edges” in images, as measured by high gragiaghitude, for example.

o = U-c(|Cg|)0g, (7.5)

where, for notational convenience, we leave off the inddpahparameters af and use the
subscripts with respect to those parameters to indicatapderivatives. The function(|dg|)
is a fuzzy cutoff that reduces the conductance at areasg# |&g|, and can be any one of a

7.6. Smoothing Filters 163

number of functions. The literature has shown

|0g|2

c(|0gl) =e 2 (7.6)

to be quite effective. Notice that conductance term intoadua free paramet&r the conduc-
tance parameterthat controls the sensitivity of the process to edge cehtighus, anisotropic
diffusion entails two free parameters: the conductancamaterk, and the time parametdt,
that is analogous to, the effective width of the filter when using Gaussian kesnel

Equation 7.5 is a nonlinear partial differential equatibattcan be solved on a discrete grid
using finite forward differences. Thus, the smoothed imagebitained only by an iterative
process, not a convolution or non-stationary, linear filtBypically, the number of iterations
required for practical results are small, and large 2D irsagm be processed in several tens of
seconds using carefully written code running on moderngegdmurpose, single-processor
computers. The technique applies readily and effectivel3 images, but requires more
processing time.

In the early 1990's several research groups [34, 92] demamst the effectiveness of
anisotropic diffusion on medical images. In a series of papa the subject [97, 94, 96, 92, 93,
95], Whitaker described a detailed analytical and empireellysis, introduced a smoothing
term in the conductance that made the process more robushtéd a numerical scheme that
virtually eliminated directional artifacts in the origina@gorithm, and generalized anisotropic
diffusion to vector-valued images, an image processingrigeie that can be used on vector-
valued medical data (such as the color cryosection dataedfiible Human Project).

For a vector-valued inpw : U — ™ the process takes the form
R =0-c(DF)F, (7.7)

whereDF is adissimilaritymeasure of , a generalization of the gradient magnitude to vector-
valued images, that can incorporate linear and nonlineandamate transformations on the range
of F. In this way, the smoothing of the multiple images assodiati¢h vector-valued data is
coupled through the conductance term, that fuses the ifiiomin the different images. Thus
vector-valued, nonlinear diffusion can combine low-leirebge features (e.g. edges) across
all “channels” of a vector-valued image in order to presewenhance those features in all of
image “channels”.

Vector-valued anisotropic diffusion is useful for denogidata from devices that produce mul-
tiple values such as MRI or color photography. When perfogmionlinear diffusion on a color

image, the color channels are diffused separately, buedirtkrough the conductance term.
Vector-valued diffusion it is also useful for processingistered data from different devices or
for denoising higher-order geometric or statistical feasufrom scalar-valued images [95, 102].

The output of anisotropic diffusion is an image or set of iemthat demonstrates reduced noise
and texture but preserves, and can also enhance, edgesintagds are useful for a variety
of processes including statistical classification, vieadion, and geometric feature extraction.
Previous work has shown [93] that anisotropic diffusionero& wide range of conductance

164 Chapter 7. Basic Filtering

parameters, offers quantifiable advantages over linearifij for edge detection in medical
images.

Since the effectiveness of nonlinear diffusion was first destrated, numerous variations of
this approach have surfaced in the literature [84]. Theskide alternatives for constructing
dissimilarity measures [78], directional (i.e., tensateed) conductance terms [90, 4] and level
set interpretations [98].

Gradient Anisotropic Diffusion

The source code for this example can be found in the file
Examples/Filtering/GradientAnisotropicDiffusionimag eFilter.cxx

The itk::GradientAnisotropicDiffusionimageFilter implements anN-dimensional
version of the classic Perona-Malik anisotropic diffussguation for scalar-valued images [70].

The conductance term for this implementation is chosen ascibn of the gradient magnitude
of the image at each point, reducing the strength of difiusibedge pixels.

[ImTeS])2

Cx)=e " x (7.8)

The numerical implementation of this equation is similathtat described in the Perona-Malik
paper [70], but uses a more robust technique for gradienninalp estimation and has been
generalized tiN-dimensions.

The first step required to use this filter is to include its ledile.
#include "itkGradientAnisotropicDiffusionimageFilter .h"

Types should be selected based on the pixel types requirdagfanput and output images. The
image types are defined using the pixel type and the dimension

typedef float InputPixelType;
typedef float OutputPixelType;

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

The filter type is now instantiated using both the input imagd the output image types. The
filter object is created by thidew() method.

typedef itk::GradientAnisotropicDiffusionimageFilter <
InputimageType, OutputimageType > FilterType;
FilterType::Pointer filter = FilterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

7.6. Smoothing Filters 165

Figure 7.19:Effect of the GradientAnisotropicDiffusionimagefFilter.

The input image can be obtained from the output of another.fifere, an image reader is used
as source.

filter->Setinput(reader->GetOutput());

This filter requires three parameters, the number of iwnatito be performed, the time
step and the conductance parameter used in the computdtitine devel set evolution.
These parameters are set using the metBetiumberOfiterations() , SetTimeStep() and
SetConductanceParameter() respectively. The filter can be executed by invoking Update(

filter->SetNumberOfiterations(numberOfiterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(conductance);

filter->Update();
A typical value for the time step is.025. The number of iterations is typically set to 5; more

iterations result in further smoothing and will increase tomputing time linearly.

Figure 7.19 illustrates the effect of this filter. In this exale the filter was run with a time step
of 0.125, and 5 iterations. The figure shows how homogeneousnegi® smoothed and edges
are preserved.

The following classes provide similar functionality:

o itk::BilaterallmagefFilter
o itk::CurvatureAnisotropicDiffusionimageFilter

e itk::CurvatureFlowlmageFilter

http://www.melaneum.com/OTB/doxygen/classitk_1_1BilateralImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

166 Chapter 7. Basic Filtering

7.6.3 Edge Preserving Speckle Reduction Filters

The source code for this example can be found in the file
Examples/BasicFilters/LeelmageFilter.cxx

This example illustrates the use of thth::LeelmageFilter . This filter belongs to the family
of the edge-preserving smoothing filters which are usualbdufor speckle reduction in radar
images. The Lee filter [56] aplies a linear regression whigtimizes the mean-square error in
the frame of a multiplicative speckle model.

The first step required to use this filter is to include its teadite.

#include "otbLeelmageFilter.h"

Then we must decide what pixel type to use for the image.
typedef unsigned char PixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< PixelType, 2 > InputimageType;
typedef oth::image< PixelType, 2 > OutputimageType;

The filter can be instantiated using the image types definedeab
typedef oth::LeelmageFilter< InputimageType, Outputima geType > FilterType;

An oth::ImageFileReader class is also instantiated in order to read image data frola.a fi

typedef otb::imageFileReader< InputimageType > ReaderTy pe;
An otb::ImageFileWriter is instantiated in order to write the output image to a file.
typedef otb::imageFileWriter< OutputimageType > WriterT ype;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input totth&eelmageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html

7.6. Smoothing Filters 167

Figure 7.20Result of applying the oth::LeelmageFilter to a SAR image.

filter->Setinput(reader->GetOutput());

The methodsetRadius() defines the size of the window to be used for the computatidheof
local statistics. The methdgetNbLooks() sets the number of looks of the input image.

FilterType::SizeType Radius;
Radius[0]= atoi(argv[3]);
Radius[1]= atoi(argv[3]);

filter->SetRadius(Radius);
filter->SetNbLooks(atoi(argv[4]));

The filter is executed by invoking tHépdate() method. If the filter is part of a larger image
processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

Figure 7.20 shows the result of applying the Lee filter to a SBRge.

The following classes provide similar functionality:

e oth::FrostimageFilter

7.6.4 Edge preserving Markov Random Field

The Markov Random Field framework for OTB is more detailled.7.1.5 (p. 419).

The source code for this example can be found in the file
Examples/Markov/MarkovRestaurationExample.cxx

http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FrostImageFilter.html

168 Chapter 7. Basic Filtering

The Markov Random Field framework can be used to apply an pdegerving filtering, thus
playing a role of restauration.

This example applies thetb::MarkovRandomFieldFilter forimage restauration. The struc-
ture of the example is similar to the other MRF example. Thegimal image is assumed to be
coded in one byte, thus 256 states are possible for each pix&l only other modifications
reside in the energy function chosen for the fidelity and lierregularization.

For the regularization energy function, we choose an edgsepving function:

2

d(u) (7.9)

T
and for the fidelity function, we choose a gaussian model.

The starting state of the Markov Random Field is given by thage itself as the final state
should not be too far from it.

The first step toward the use of this filter is the inclusionhaf proper header files:

#include "otbMRFEnergyEdgeFidelity.n"
#include "otbMRFEnergyGaussian.h”
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"

We declare the usual types:

const unsigned int Dimension = 2;

typedef double InternalPixelType;

typedef unsigned char LabelledPixelType;

typedef otb::Image<InternalPixelType, Dimension> Input ImageType;
typedef oth::iImage<LabelledPixelType, Dimension> Label ledimageType;

We need to declare an additional reader for the initial sthtte MRF. This reader has to be
instantiated on the LabelledimageType.

typedef otb::imageFileReader< InputimageType > ReaderTy pe;
typedef otb::imageFileReader< LabelledimageType > Reade rLabelledType;
typedef oth::imageFileWriter< LabelledimageType > Write rType;

ReaderType::Pointer reader = ReaderType::New();
ReaderLabelledType::Pointer reader2 = ReaderLabelledTy pe::New();
WriterType::Pointer writer = WriterType::New();

const char * inputFilename = argv[1];
const char * labelledFilename = argv[2];

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

7.6. Smoothing Filters 169

const char * outputFilename = argv(3];
reader->SetFileName(inputFilename);

reader2->SetFileName(labelledFilename);
writer->SetFileName(outputFilename);

We declare all the necessary types for the MRF:

typedef oth::MarkovRandomFieldFilter
<InputimageType,LabelledimageType> MarkovRandomField FilterType;

typedef oth::MRFSamplerRandom< InputimageType, Labelle dimageType> SamplerType;

typedef otb::MRFOptimizerMetropolis OptimizerType;

The regularization and the fidelity energy are declared asthnciated:

typedef otb::MRFEnergyEdgeFidelity

<LabelledimageType, LabelledimageType> EnergyRegulari zationType;

typedef otb::MRFEnergyGaussian

<InputimageType, LabelledimageType> EnergyFidelityTyp e
MarkovRandomFieldFilterType::Pointer markovFilter = Ma rkovRandompFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularizati on = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFid elityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();

SamplerType::Pointer sampler = SamplerType::New();

The number of possible states for each pixel is 256 as thednsagssumed to be coded on one
byte and we pass the parameters to the markovFilter.

unsigned int nClass = 256;

optimizer->SetSingleParameter(atof(argv[6]));
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfiterations(atoi(arg v[5));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv(4]));
markovFilter->SetNeighborhoodRadius(1);

170 Chapter 7. Basic Filtering

Figure 7.21:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-
bird image for restauration. From left to right : original image, restaured image with edge preservation.

markovFilter->SetEnergyRegularization(energyRegular ization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);

markovFilter->SetSampler(sampler);

The original state of the MRF filter is passed through3b&Traininginput() method:
markovFilter->SetTraininglnput(reader2->GetOutput());
And we plug the pipeline:

markovFilter->Setlnput(reader->GetOutput());
typedef itk::RescalelntensitylmageFilter

< LabelledimageType, LabelledimageType > RescaleType;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());

writer->Update();

Figure 7.21 shows the output of the Markov Random Field teation.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

7.7. Distance Map 171

7.7 Distance Map

The source code for this example can be found in the file
Examples/Filtering/DanielssonDistanceMaplmageFilter CXX .

This example illustrates the use of thik::DanielssonDistanceMaplmageFilter . Thisfil-

ter generates a distance map from the input image usingdbétaim developed by Danielsson
[19]. As secondary outputs, a Voronoi partition of the inplgments is produced, as well as a
vector image with the components of the distance vectordalhsest point. The input to the
map is assumed to be a set of points on the input image. Eantigieel is considered to be a
separate entity even if they share the same gray level value.

The first step required to use this filter is to include its ledile.
#include "itkDanielssonDistanceMaplmagefFilter.h"

Then we must decide what pixel types to use for the input atplubimages. Since the output
will contain distances measured in pixels, the pixel typeusth be able to represent at least
the width of the image, or said iN — D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined us&igrespective pixel type and
dimension.

typedef unsigned char InputPixelType;

typedef unsigned short OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputimageType;

typedef otb::lmage< OutputPixelType, 2 > OutputimageType ;

The filter type can be instantiated using the input and outpage types defined above. A filter
object is created with thidew() method.

typedef itk::DanielssonDistanceMaplmageFilter<
InputimageType, OutputimageType > FilterType;
FilterType::Pointer filter = FilterType::New();

The input to the filter is taken from a reader and its output @ssed to a
itk::RescalelntensitylmagerFilter and then to a writer.

filter->Setinput(reader->GetOutput());
scaler->Setlnput(filter->GetOutput());
writer->Setinput(scaler->GetOutput());

The type of input image has to be specified. In this case, ayimege is selected.

filter->InputlsBinaryOn();

http://www.melaneum.com/OTB/doxygen/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

172 Chapter 7. Basic Filtering

Figure 7.22:DanielssonDistanceMaplmageFilter output. Set of pixels, distance map and Voronoi parti-
tion.

Figure 7.22 illustrates the effect of this filter on a binamaige with a set of points. The input
image is shown at left, the distance map at the center anddtanbi partition at right. This
filter computes distance maps in N-dimensions and is thexefapable of produciniyl — D
Voronoi partitions.

The Voronoi map is obtained with ti@etVoronoiMap() method. In the lines below we connect
this output to the intensity rescaler and save the resulfile.a

scaler->Setlnput(filter->GetVoronoiMap());
writer->SetFileName(voronoiMapFileName);
writer->Update();

The distance filter also produces an imageittf.Offset pixels representing the vectorial
distance to the closest object in the scene. The type of titisub image is defined by the
VectorlmageType trait of the filter type.

typedef FilterType::VectorimageType OffsetimageType;

We can use this type for instantiating atb::ImageFileWriter type and creating an object
of this class in the following lines.

typedef otb::ImageFileWriter< OffsetimageType > WriterO ffsetType;
WriterOffsetType::Pointer offsetWriter = WriterOffsetT ype::New();

The output of the distance filter can be connected as inphetovtiter.
offsetWriter->Setlnput(filter->GetVectorDistanceMap 0

Execution of the writer is triggered by the invocation of tedate() method. Since this
method can potentially throw exceptions it must be placeatiyicatch ~ block.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

7.7. Distance Map 173

try
{
offsetWriter->Update();
}
catch(itk::ExceptionObject exp)
{
std::cerr << "Exception caught !" << std::endl;
std:cerr << exp << std::endl;
}

Note that only theitk::MetalmagelO class supports reading and writing images of pixel type
itk::Offset

http://www.melaneum.com/OTB/doxygen/classitk_1_1MetaImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

CHAPTER

EIGHT

Image Registration

This chapter introduces OTB'’s (ac-
tually mainly ITK's) capabilities
for performing image registration. P
Please note that the disparity ma
estimation approach presented i
chapter 9 are very closely relateq
to image registration. Image regis-
tration is the process of determin—. . o . .
. - Figure 8.1:Image registration is the task of finding a spatial
ing the spatial transform that maps _ . .

. . transform mapping on image into another.
points from one image to homolo-
gous points on a object in the second image. This concepthisnsatically represented in
Figure 8.1. In OTB, registration is performed within a frameek of pluggable components
that can easily be interchanged. This flexibility means éhedmbinatorial variety of registra-
tion methods can be created, allowing users to pick and ehibesright tools for their specific

application.

-

8.1 Registration Framework

The components of the registration framework and theiramenections are shown in Figure
8.2. The basic input data to the registration process arémages: one is defined as tfieed
image f(X) and the other as theovingimagem(X). WhereX represents a position in N-
dimensional space. Registration is treated as an optiibizptoblem with the goal of finding
the spatial mapping that will bring the moving image int@atnent with the fixed image.

Thetransformcomponent (X) represents the spatial mapping of points from the fixed image
space to points in the moving image space. ifiterpolatoris used to evaluate moving image
intensities at non-grid positions. Theetriccomponen§(f,mo T) provides a measure of how
well the fixed image is matched by the transformed moving enaghis measure forms the
guantitative criterion to be optimized by tlogptimizerover the search space defined by the

176 Chapter 8. Image Registration

_ pixels _ fitness value
Fixed Image Metric
[
s

Transform
Transform

Interpolator

parameter:

Moving Image

pixels points

Figure 8.2: The basic components of the registration framework are two input images, a transform, a
metric, an interpolator and an optimizer.

parameters of theransform

These various OTB/ITK registration components will be dibsd in later sections. First, we
begin with some simple registration examples.

8.2 "Hello World” Registration

The source code for this example can be found in the file
Examples/Registration/ImageRegistration1.cxx

This example illustrates the use of the image registrattaméwork in ITK/OTB. It should
be read as a "Hello World” for registration. Which means tlatrfow, you don’t ask “why?”.
Instead, use the example as an introduction to the elentettare typically involved in solving
an image registration problem.

A registration method requires the following set of compuse two input images, a trans-
form, a metric, an interpolator and an optimizer. Some of¢heomponents are parameterized
by the image type for which the registration is intended. Tdilowing header files provide
declarations of common types used for these components.

#include "itkimageRegistrationMethod.h"

#include "itkTranslationTransform.h"

#include "itkMeanSquaresimageTolmageMetric.h"
#include "itkLinearInterpolatelmageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "otblmage.h"

The types of each one of the components in the registratidhads should be instantiated first.
With that purpose, we start by selecting the image dimereiahthe type used for representing
image pixels.

const unsigned int Dimension = 2;

8.2. "Hello World” Registration 177

typedef float PixelType;
The types of the input images are instantiated by the foligines.

typedef otb::image< PixelType, Dimension > FixedlmageTyp e,
typedef oth::image< PixelType, Dimension > MovinglmageTy pe;

The transform that will map the fixed image space into the npirnage space is defined below.
typedef itk::TranslationTransform< double, Dimension > T ransformType;

An optimizer is required to explore the parameter space ettdinsform in search of optimal
values of the metric.

typedef itk::RegularStepGradientDescentOptimizer Opti mizerType;

The metric will compare how well the two images match eacteiotMetric types are usually
parameterized by the image types as it can be seen in theviofjdype declaration.

typedef itk::MeanSquaresimageTolmageMetric<
FixedimageType,
MovinglmageType > MetricType;

Finally, the type of the interpolator is declared. The ipt#ator will evaluate the intensities of
the moving image at non-grid positions.

typedef itk:: LinearlnterpolatelmageFunction<
MovinglmageType,
double > InterpolatorType;

The registration method type is instantiated using thedygfethe fixed and moving images.
This class is responsible for interconnecting all the conembs that we have described so far.

typedef itk::ImageRegistrationMethod<
FixedimageType,
MovinglmageType > RegistrationType;

Each one of the registration components is created usitggi§ method and is assigned to
its respectiveitk::SmartPointer

MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorT ype::New();

RegistrationType::Pointer registration = RegistrationT ype::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

178 Chapter 8. Image Registration

Each component is now connected to the instance of the ratipst method.

registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);

registration->Setlnterpolator(interpolator);

Since we are working with high resolution images and expeshéfts are larger than the reso-
lution, we will need to smooth the images in order to avoidapgmizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanimageFilter<
FixedimageType, FixedimageType > FixedFilterType;

typedef itk::MeanimageFilter<
MovinglmageType, MovinglmageType > MovingFilterType;

FixedFilterType::Pointer fixedFilter = FixedFilterType :New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New(

= =

FixedimageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; // radius along y

fixedFilter->SetRadius(indexFRadius);
MovinglmageType::SizeType indexMRadius;

indexMRadius[0] = 4; // radius along x
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->SetInput(fixedimageReader->GetOutput());
movingFilter->Setinput(movinglmageReader->GetOutput 0

Now we can plug the output of the smoothing filters at the imgidhe registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovingimage(movingFilter->GetOutpu))

8.2. "Hello World” Registration 179

The registration can be restricted to consider only a paeicregion of the fixed image as
input to the metric computation. This region is defined whike $etFixedimageRegion()
method. You could use this feature to reduce the computtiime of the registration or
to avoid unwanted objects present in the image from affgdfire registration outcome. In
this example we use the full available content of the imaghis Tegion is identified by the
BufferedRegion of the fixed image. Note that for this region to be valid thedegamust first
invoke itsUpdate() method.

fixedFilter->Update();
registration->SetFixedimageRegion(
fixedFilter->GetOutput()->GetBufferedRegion());

The parameters of the transform are initialized by pasgiegitin an array. This can be used
to setup an initial known correction of the misalignment.this particular case, a translation
transform is being used for the registration. The array odpeeters for this transform is simply
composed of the translation values along each dimensidtingéhe values of the parameters
to zero initializes the transform to ddentitytransform. Note that the array constructor requires
the number of elements to be passed as an argument.

typedef RegistrationType::ParametersType ParametersTy pe;
ParametersType initialParameters(transform->GetNumbe rOfParameters());

initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y

registration->SetlnitialTransformParameters(initial Parameters);

At this point the registration method is ready for executidine optimizer is the component
that drives the execution of the registration. However,lthageRegistrationMethod class or-
chestrates the ensemble to make sure that everything iaée plefore control is passed to the
optimizer.

Itis usually desirable to fine tune the parameters of thevopér. Each optimizer has particular
parameters that must be interpreted in the context of thengattion strategy it implements.

The optimizer used in this example is a variant of gradiestdat that attempts to prevent it
from taking steps that are too large. At each iteration, dpsmizer will take a step along

the direction of theitk::lmageTolmageMetric derivative. The initial length of the step is
defined by the user. Each time the direction of the derivalwiptly changes, the optimizer
assumes that a local extrema has been passed and reactsitingatie step length by a half.
After several reductions of the step length, the optimizey e moving in a very restricted
area of the transform parameter space. The user can definerhalithe step length should be
to consider convergence to have been reached. This is ésputiva defining the precision with

which the final transform should be known.

The initial step length is defined with the meth®etMaximumStepLength() , while the toler-
ance for convergence is defined with the metBetllinimumStepLength()

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html

180 Chapter 8. Image Registration

optimizer->SetMaximumStepLength(3);
optimizer->SetMinimumStepLength(0.01);

In case the optimizer never succeeds reaching the desieetsion tolerance, it is prudent to
establish a limit on the number of iterations to be performigds maximum number is defined
with the methodsetNumberOfiterations()

optimizer->SetNumberOfiterations(200);

The registration process is triggered by an invocation ¢dJidate() method. If something
goes wrong during the initialization or execution of theisagtion an exception will be thrown.
We should therefore place thipdate() method inside &y/catch block as illustrated in the
following lines.

try
{

registration->Update();

}
catch(itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !I" << std::endl;
std::cerr << err << std::endl;
return -1;

}

In a real life application, you may attempt to recover frora #rror by taking more effective
actions in the catch block. Here we are simply printing outessage and then terminating the
execution of the program.

The result of the registration process is an array of pararattat defines the spatial transforma-
tion in an unique way. This final result is obtained using@e& astTransformParameters()
method.

ParametersType finalParameters = registration->GetlLast TransformParameters();

In the case of theitk:: TranslationTransform , there is a straightforward interpretation of
the parameters. Each element of the array correspondsdnsation along one spatial dimen-
sion.

const double TranslationAlongX
const double TranslationAlongY

finalParameters[0];
finalParameters[1];

The optimizer can be queried for the actual number of itenatiperformed to reach conver-
gence. ThésetCurrentlteration() method returns this value. A large number of iterations
may be an indication that the maximum step length has begasemall, which is undesirable
since it results in long computational times.

http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

8.2. "Hello World” Registration 181

Figure 8.3:Fixed and Moving image provided as input to the registration method.

const unsigned int numberOflterations = optimizer->GetCu rrentlteration();

The value of the image metric corresponding to the last spatdmeters can be obtained with
theGetValue() method of the optimizer.

const double bestValue = optimizer->GetValue();
Let's execute this example over two of the images providetkamples/Data

e QB _Suburb.png
e QB _Suburb13x17y.png
The second image is the result of intentionally translathmg first image by(13,17) pixels.

Both images have unit-spacing and are shown in Figure 8.8 rdgistration takes 18 iterations
and the resulting transform parameters are:

12.0192
16.0231

Translation X
Translation Y

As expected, these values match quite well the misaligntientwe intentionally introduced
in the moving image.

It is common, as the last step of a registration task, to use re#sulting transform
to map the moving image into the fixed image space. This islyeakkine with the
itk::ResamplelmageFilter . First, a ResamplelmageFilter type is instantiated ugiegr-
age types. Itis convenient to use the fixed image type as ttpeibtype since it is likely that
the transformed moving image will be compared with the fixedge.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ResampleImageFilter.html

182 Chapter 8. Image Registration

Figure 8.4:Mapped moving image and its difference with the fixed image before and after registration

typedef itk::ResamplelmageFilter<
MovinglmageType,
FixedlmageType > ResampleFilterType;

A resampling filter is created and the moving image is corateas its input.

ResampleFilterType::Pointer resampler = ResampleFilter Type::New();
resampler->Setinput(movinglmageReader->GetOutput()) ;

The Transform that is produced as output of the Registratiethod is also passed as input to
the resampling filter. Note the use of the meth@dutput() andGet() . This combination

is needed here because the registration method acts asranfilbse output is a transform
decorated in the form of &k::DataObject . For details in this construction you may want to
read the documentation of thtk::DataObjectDecorator

resampler->SetTransform(registration->GetOutput()-> Get());

The ResamplelmageFilter requires additional parametdys specified, in particular, the spac-
ing, origin and size of the output image. The default pixdugas also set to a distinct gray
level in order to highlight the regions that are mapped detsif the moving image.

FixedimageType::Pointer fixedimage = fixedimageReader- >GetOutput();
resampler->SetSize(fixedimage->GetLargestPossibleRe gion().GetSize());
resampler->SetOutputOrigin(fixedimage->GetOrigin()) ;
resampler->SetOutputSpacing(fixedimage->GetSpacing())

resampler->SetDefaultPixelValue(100);

The output of the filter is passed to a writer that will stor@ timage in a file. An
itk::CastimageFilter is used to convert the pixel type of the resampled image tdinlaé¢
type used by the writer. The cast and writer filters are in&ttad below.

typedef unsigned char OutputPixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObjectDecorator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html

8.2. "Hello World” Registration 183

Registration Method

Resample Subtract
»—(Fi 9— Filter i
Reader Smooth Fixed Imag Filter Writer
Parameters -
Transform|
i X Resample Subtract
Reader Smooth Moving Imagg (Filter Cltor Writer

Figure 8.5:Pipeline structure of the registration example.

typedef otb::image< OutputPixelType, Dimension > Outputl mageType;
typedef itk::CastimageFilter<

FixedimageType,

OutputimageType > CastFilterType;
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

The filters are created by invoking thélew() method.

WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New() ;

The filters are connected together andltipdate() method of the writer is invoked in order to
trigger the execution of the pipeline.

caster->SetInput(resampler->GetOutput());
writer->Setinput(caster->GetOutput())
writer->Update();

The fixed image and the transformed moving image can easilgdmepared using the
itk::SubtractimagerFilter . This pixel-wise filter computes the difference between bbm
ogous pixels of its two input images.

typedef itk::SubtractimageFilter<
FixedimageType,
FixedimageType,
FixedimageType > DifferenceFilterType;

DifferenceFilterType::Pointer difference = DifferenceF ilterType::New();

difference->Setinput1(fixedimageReader->GetOutput());
difference->Setinput2(resampler->GetOutput());

Note that the use of subtraction as a method for comparindnthges is appropriate here
because we chose to represent the images using a pixellagpe. A different filter would
have been used if the pixel type of the images were any afrtkigned integer type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SubtractImageFilter.html

184 Chapter 8. Image Registration

Since the differences between the two images may corregporety low values of intensity,
we rescale those intensities withitk::RescalelntensitylmageFilter in order to make
them more visible. This rescaling will also make possiblgismalize the negative values even
if we save the difference image in a file format that only suppasigned pixel valués We
also reduce th®efaultPixelValue to “1” in order to prevent that value from absorbing the
dynamic range of the differences between the two images.

typedef itk::RescalelntensitylmageFilter<
FixedimageType,
OutputimageType > RescalerType;

RescalerType::Pointer intensityRescaler = RescalerType ::New();

intensityRescaler->SetInput(difference->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);

resampler->SetDefaultPixelValue(1);
Its output can be passed to another writer.

WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput(intensityRescaler->GetOutput());

For the purpose of comparison, the difference between tleel fixage and the moving im-
age before registration can also be computed by simplyngettie transform to an identity
transform. Note that the resampling is still necessary lse#he moving image does not nec-
essarily have the same spacing, origin and number of pisetheafixed image. Therefore a
pixel-by-pixel operation cannot in general be performelde Tesampling process with an iden-
tity transform will ensure that we have a representatiorhefrhoving image in the grid of the
fixed image.

TransformType::Pointer identityTransform = TransformTy pe::New();
identity Transform->Setldentity();
resampler->SetTransform(identityTransform);

The complete pipeline structure of the current example ésgmted in Figure 8.5. The com-
ponents of the registration method are depicted as wellurEig§.4 (left) shows the result of
resampling the moving image in order to map it onto the fixedgenspace. The top and right
borders of the image appear in the gray level selected wilsétDefaultPixelValue() in
the ResamplelmageFilter. The center image shows the elifterbetween the fixed image and
the original moving image. That is, the difference before tégistration is performed. The
right image shows the difference between the fixed image lamtransformed moving image.

1This is the case of PNG, BMP, JPEG and TIFF among other commomfiteats.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

8.3. Features of the Registration Framework 185

>

i i
Fixed Image Grid Moving Image Grid

T1

T2
y
Space Transform 3 .
[+

\/ (é%eé\“\?»e
X X

Fixed Image Moving Image
Physical Coordinates Physical Coordinates

Figure 8.6:Different coordinate systems involved in the image registration process. Note that the trans-
form being optimized is the one mapping from the physical space of the fixed image into the physical space
of the moving image.

That is, after the registration has been performed. Boflerdiice images have been rescaled
in intensity in order to highlight those pixels where diffaces exist. Note that the final reg-
istration is still off by a fraction of a pixel, which resulis bands around edges of anatomical
structures to appear in the difference image. A perfecsteggion would have produced a null
difference image.

8.3 Features of the Registration Framework

This section presents a discussion on the two most comméaudties that users encounter
when they start using the ITK registration framework. Theg, & order of difficulty

e The direction of the Transform mapping

e The fact that registration is done in physical coordinates
Probably the reason why these two topics tend to create siomfis that they are implemented
in different ways in other systems and therefore users tehe\e different expectations regard-

ing how things should work in OTB. The situation is furthemgaicated by the fact that most
people describe image operations as if they were manuallgrpged in a picture in paper.

186 Chapter 8. Image Registration

8.3.1 Direction of the Transform Mapping

The Transform that is optimized in the ITK registration fiamork is the one that maps points
from the physical space of the fixed image into the physicatemf the moving image. This
is illustrated in Figure 8.6. This implies that the Transfowill accept as input points from the
fixed image and it will compute the coordinates of the analisgmoints in the moving image.
What tends to create confusion is the fact that when the Toamsshifts a point on thpositive

X direction, the visual effect of this mapping, once the nmgyMimage is resampled, is equivalent
to manually shiftinghe moving image along theegative X direction. In the same way, when
the Transform applies elock-wiserotation to the fixed image points, the visual effect of this
mapping once the moving image has been resampled is eqtitalenanually rotatingthe
moving imagecounter-clock-wise

The reason why this direction of mapping has been choseméolTK implementation of the
registration framework is that this is the direction thattéefits the fact that the moving image
is expected to be resampled using the grid of the fixed imalge nature of the resampling pro-
cess is such that an algorithm must go through every pixdiefixedimage and compute the
intensity that should be assigned to this pixel from the nrappf themovingimage. This com-
putation involves taking the integral coordinates of thespin the image grid, usually called
the “(i,j)” coordinates, mapping them into the physical apaf the fixed image (transforifil

in Figure 8.6), mapping those physical coordinates intgthesical space of the moving image
(Transform to be optimized), then mapping the physical dimates of the moving image in to
the integral coordinates of the discrete grid of the movingge (transfornT2 in the figure),
where the value of the pixel intensity will be computed byenpblation.

If we have used the Transform that maps coordinates from théng image physical space
into the fixed image physical space, then the resamplinggssocould not guarantee that every
pixel in the grid of the fixed image was going to receive one@mlgl one value. In other words,
the resampling will have resulted in an image with holes aitkd dundant or overlapped pixel
values.

As you have seen in the previous examples, and you will coraib in the remaining examples
in this chapter, the Transform computed by the registrdtimmework is the Transform that can
be used directly in the resampling filter in order to map theimgpimage into the discrete grid
of the fixed image.

There are exceptional cases in which the transform that yant i8 actually the inverse trans-
form of the one computed by the ITK registration frameworkalyOin those cases you may
have to recur to invoking th&etinverse() = method that most transforms offer. Make sure
that before you consider following that dark path, you iatémwith the examples of resampling
illustrated in sectior??in order to get familiar with the correct interpretation béttransforms.

8.4. Multi-Modality Registration 187

8.3.2 Registration is done in physical space

The second common difficulty that users encounter with the d@gistration framework is
related to the fact that ITK performs registration in the texh of physical space and not in
the discrete space of the image grid. Figure 8.6 show thiseqirby crossing the transform
that goes between the two image grids. One important corseguof this fact is that having
the correct image origin and image pixel size is fundamentahe success of the registration
process in ITK. Users must make sure that they provide coraedges for the origin and spacing
of both the fixed and moving images.

A typical case that helps to understand this issue, is toidenthe registration of two images
where one has a pixel size different from the other. For exengpSPOt 5 image and a Quick-
Bird image. Typically a Quickbird image will have a pixel siin the order of 0.6 m, while a
SPOT 5 image will have a pixel size of 2.5 m.

A user performing registration between a SPOT 5 image andekQitd image may be naively
expecting that because the SPOT 5 image has less pixstsliagfactor is required in the
Transform in order to map this image into the Quickbird imagé that point, this person is
attempting to interpret the registration process dirdotliijwveen the two image grids, orpixel
space What ITK will do in this case is to take into account the pixi&esthat the user has
provided and it will use that pixel size in order to computecaling factor for Transform31
andT2in Figure 8.6. Since these two transforms take care of theined scaling factor, the
spatial Transform to be computed during the registrati@tgss does not need to be concerned
about such scaling. The transform that ITK is computing ésahe that will physically map the
landscape the moving image into the landscape of the fixeddéma

In order to better understand this concepts, it is very ugefdraw sketches of the fixed and
moving imageat scalein the same physical coordinate system. That is the gearaktonfig-
uration that the ITK registration framework uses as contégeping this in mind helps a lot for
interpreting correctly the results of a registration pgxperformed with ITK.

8.4 Multi-Modality Registration

Some of the most challenging cases of image registratise alen images of different modal-
ities are involved. In such cases, metrics based on direapadson of gray levels are not
applicable. It has been extensively shown that metricschasehe evaluation of mutual infor-
mation are well suited for overcoming the difficulties of tiwmhodality registration.

The concept of Mutual Information is derived from InfornmatiTheory and its application to
image registration has been proposed in different formsfisrdnt groups [17, 61, 89], a more
detailed review can be found in [45]. The OTB, through ITKgremtly provides five different

implementations of Mutual Information metrics (see sati#o7 for details). The following

example illustrates the practical use of some of these osetri

188 Chapter 8. Image Registration

8.4.1 Viola-Wells Mutual Information

The source code for this example can be found in the file
Examples/Registration/ImageRegistration2.cxx

The following simple example illustrates how multiple iniragy modalities can be registered
using the ITK registration framework. The first differencasween this and previous examples
is the use of theitk::MutuallnformationimageTolmageMetric as the cost-function to be
optimized. The second difference is the use of tteGradientDescentOptimizer . Due

to the stochastic nature of the metric computation, theaghire too noisy to work successfully
with the itk::RegularStepGradientDescentOptimizer . Therefore, we will use the simpler
GradientDescentOptimizer with a user defined learning réte following headers declare the
basic components of this registration method.

#include "itkimageRegistrationMethod.h"

#include "itkTranslationTransform.h"

#include "itkMutualinformationimageTolmageMetric.h"
#include "itkLinearlnterpolatelmageFunction.h"
#include "itkGradientDescentOptimizer.h"

#include "otblmage.h"

One way to simplify the computation of the mutual informatis to normalize the statistical
distribution of the two input images. Thi&::NormalizelmageFilter is the perfect tool for
this task. It rescales the intensities of the input imagesdier to produce an output image with
zero mean and unit variance.

#include "itkNormalizelmageFilter.h"

Additionally, low-pass filtering of the images to be registe will also increase robustness
against noise. In this example, we will use tlitk::DiscreteGaussianimageFilter for
that purpose. The characteristics of this filter have bestudsed in Section 7.6.1.

#include "itkDiscreteGaussianimageFilter.h"
The moving and fixed images types should be instantiated first

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef otb::image< PixelType, Dimension > FixedlmageTyp e
typedef oth::lmage< PixelType, Dimension > MovinglmageTy pe;

It is convenient to work with an internal image type becausgual information will perform
better on images with a normalized statistical distributidhe fixed and moving images will
be normalized and converted to this internal type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1DiscreteGaussianImageFilter.html

8.4. Multi-Modality Registration 189

typedef float InternalPixelType;
typedef otb::image< InternalPixelType, Dimension > Inter nallmageType;

The rest of the image registration components are instedt&s illustrated in Section 8.2 with
the use of thénternallmageType

typedef itk::TranslationTransform< double, Dimension > T ransformType;
typedef itk::GradientDescentOptimizer OptimizerType;
typedef itk::LinearlnterpolatelmageFunction<

InternallmageType,

double > InterpolatorType;
typedef itk::ImageRegistrationMethod<

InternallmageType,

InternallmageType > RegistrationType;

The mutual information metric type is instantiated usingithage types.

typedef itk::MutualinformationimageTolmageMetric<
InternallmageType,
InternallmageType > MetricType;

The metric is created using tivew() method and then connected to the registration object.

MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);

The metric requires a number of parameters to be selectgddding the standard deviation of
the Gaussian kernel for the fixed image density estimatestétmelard deviation of the kernel for
the moving image density and the number of samples use towdertipe densities and entropy
values. Details on the concepts behind the computationeofitétric can be found in Section
8.7.4. Experience has shown that a kernel standard deviafi@.4 works well for images
which have been normalized to a mean of zero and unit varialfeawill follow this empirical
rule in this example.

metric->SetFixedimageStandardDeviation(0.4);
metric->SetMovinglmageStandardDeviation(0.4);

The normalization filters are instantiated using the fixed mroving image types as input and
the internal image type as output.

typedef itk::NormalizelmageFilter<
FixedimageType,
InternallmageType

190 Chapter 8. Image Registration

> FixedNormalizeFilterType;

typedef itk::NormalizelmageFilter<
MovinglmageType,
InternallmageType
> MovingNormalizeFilterType;

FixedNormalizeFilterType::Pointer fixedNormalizer =
FixedNormalizeFilterType::New();

MovingNormalizeFilterType::Pointer movingNormalizer =
MovingNormalizeFilterType::New();

The blurring filters are declared using the internal image tys both the input and output types.
In this example, we will set the variance for both blurringgfis to 20.

typedef itk::DiscreteGaussianimageFilter<
InternallmageType,
InternallmageType
> GaussianFilterType;

GaussianFilterType::Pointer fixedSmoother = GaussianFi lterType::New();
GaussianFilterType::Pointer movingSmoother = GaussianF ilterType::New();

fixedSmoother->SetVariance(4.0);

movingSmoother->SetVariance(4.0);

The output of the readers becomes the input to the normializéitters. The output of the
normalization filters is connected as input to the blurritigfs. The input to the registration
method is taken from the blurring filters.

fixedNormalizer->Setinput(fixedimageReader->GetOutp ut());
movingNormalizer->Setinput(movinglmageReader->GetOu tput());
fixedSmoother->Setinput(fixedNormalizer->GetOutput())
movingSmoother->Setinput(movingNormalizer->GetOutpu t0));
registration->SetFixedImage(fixedSmoother->GetOutpu t());
registration->SetMovingilmage(movingSmoother->GetOut put));

We should now define the number of spatial samples to be cenesidh the metric computation.
Note that we were forced to postpone this setting until we dhate the preprocessing of the
images because the number of samples is usually defined astiatirof the total number of

pixels in the fixed image.

The number of spatial samples can usually be as low as 1% tdtdlenumber of pixels in the
fixed image. Increasing the number of samples improves tlb@tmess of the metric from one

8.4. Multi-Modality Registration 191

iteration to another and therefore helps when this metusé in conjunction with optimizers
that rely of the continuity of the metric values. The tradk-of course, is that a larger number
of samples result in longer computation times per everyuatadn of the metric.

It has been demonstrated empirically that the number of Esnipnot a critical parameter for
the registration process. When you start fine tuning your agpstration process, you should
start using high values of number of samples, for examplaerrange of 20% to 50% of the
number of pixels in the fixed image. Once you have succeededjister your images you can
then reduce the number of samples progressively until yalefigood compromise on the time
it takes to compute one evaluation of the Metric. Note théd ot useful to have very fast
evaluations of the Metric if the noise in their values resiritmore iterations being required by
the optimizer to converge.

const unsigned int numberOfPixels = fixedimageRegion.Get NumberOfPixels();

const unsigned int numberOfSamples =
static_cast< unsigned int >(numberOfPixels * 0.01);

metric->SetNumberOfSpatialSamples(numberOfSamples);

Since larger values of mutual information indicate bettatehes than smaller values, we need
to maximize the cost function in this example. By default@radientDescentOptimizer class is

set to minimize the value of the cost-function. It is therefoecessary to modify its default be-

havior by invoking thevaximizeOn() method. Additionally, we need to define the optimizer’s
step size using th&etLearningRate() method.

optimizer->SetLearningRate(150.0);
optimizer->SetNumberOfiterations(300);
optimizer->MaximizeOn();

Note that large values of the learning rate will make therofer unstable. Small values,
on the other hand, may result in the optimizer needing tooynitanations in order to walk
to the extrema of the cost function. The easy way of fine tunimg parameter is to start
with small values, probably in the range {8.0,10.0}. Once the other registration parameters
have been tuned for producing convergence, you may wanvigitrthe learning rate and start
increasing its value until you observe that the optimizatiecomes unstable. The ideal value
for this parameter is the one that results in a minimum nurbgerations while still keeping

a stable path on the parametric space of the optimizatioap kemind that this parameter is a
multiplicative factor applied on the gradient of the Metriherefore, its effect on the optimizer
step length is proportional to the Metric values themselviketrics with large values will
require you to use smaller values for the learning rate irotd maintain a similar optimizer
behavior.

Let's execute this example over two of the images providetkamples/Data

e RamsesROISmall.png

192 Chapter 8. Image Registration

Figure 8.7:A SAR image (fixed image) and an aerial photograph (moving image) are provided as input to
the registration method.

e ADS40RoiSmall.png

The moving image after resampling is presented on the Idé& sf Figure 8.8. The center
and right figures present a checkerboard composite of the éird moving images before and
after registration. Since the real deformation betweerfthmages is not simply a shift, some
registration errors remain, but the left part of the imagesoirrectly registered.

Figure 8.8:Mapped moving image (left) and composition of fixed and moving images before (center) and
after (right) registration.

8.5. Centered Transforms 193

8.5 Centered Transforms

The OTB/ITK image coordinate origin is typically located ame of the image corners (see
section 5.1.4 for details). This results in counter-iriveittransform behavior when rotations
and scaling are involved. Users tend to assume that rotaéiod scaling are performed around
a fixed point at the center of the image. In order to comperfsatthis difference in natural
interpretation, the concept aenterediransforms have been introduced into the toolkit. The
following sections describe the main characteristics ochdwansforms.

8.5.1 Rigid Registration in 2D
The source code for this example can be found in the file
Examples/Registration/ImageRegistration5.cxx

This example illustrates the use of thitk::CenteredRigid2DTransform for performing
rigid registration in . The example code is for the most part identical to that mteskein
Section 8.2. The main difference is the use of the CenteggdRD Transform here instead of
the itk::TranslationTransform

In addition to the headers included in previous examples faHowing header must also be
included.

#include "itkCenteredRigid2DTransform.h"

The transform type is instantiated using the code below. dritg template parameter for this
class is the representation type of the space coordinates.

typedef itk::CenteredRigid2DTransform< double > Transfo rmType;
The transform object is constructed below and passed tethistration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Since we are working with high resolution images and expkestefts are larger than the reso-
lution, we will need to smooth the images in order to avoiddpgmizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanimageFilter<
FixedimageType, FixedimageType > FixedFilterType;

typedef itk::MeanimageFilter<
MovingimageType, MovingimageType > MovingFilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

194 Chapter 8. Image Registration

FixedFilterType::Pointer fixedFilter = FixedFilterType ::New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New();

[

FixedlmageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; // radius along y

fixedFilter->SetRadius(indexFRadius);
MovinglmageType::SizeType indexMRadius;

indexMRadius[0] = 4; // radius along x
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->SetInput(fixedimageReader->GetOutput());
movingFilter->Setinput(movingimageReader->GetOutput 0

Now we can plug the output of the smoothing filters at the irgfibe registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovinglmage(movingFilter->GetOutpu))

In this example, the input images are taken from readers.cttle below updates the readers
in order to ensure that the image parameters (size, origirspacing) are valid when used to
initialize the transform. We intend to use the center of tkedimage as the rotation center and
then use the vector between the fixed image center and thexgnowage center as the initial
translation to be applied after the rotation.

fixedimageReader->Update();
movingimageReader->Update();

The center of rotation is computed using the origin, sizespating of the fixed image.

FixedimageType::Pointer fixedimage = fixedimageReader- >GetOutput();
const SpacingType fixedSpacing = fixedimage->GetSpacing 0;

const OriginType fixedOrigin = fixedimage->GetOrigin();

const RegionType fixedRegion = fixedimage->GetLargestPo ssibleRegion();

const SizeType fixedSize = fixedRegion.GetSize();

8.5. Centered Transforms 195

TransformType::InputPointType centerFixed;

centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixed Size[0] / 2.0;
centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixed Size[l] / 2.0;

The center of the moving image is computed in a similar way.

MovinglmageType::Pointer movinglmage = movinglmageRead er->GetOutput();
const SpacingType movingSpacing = movinglmage->GetSpaci ng();
const OriginType movingOrigin = movingimage->GetOrigin();

const RegionType movingRegion = movinglmage->GetLargest PossibleRegion();
const SizeType movingSize = movingRegion.GetSize();

TransformType::InputPointType centerMoving;

centerMoving[0] = movingOrigin[0] + movingSpacing[0] * mo vingSize[0] / 2.0;
centerMoving[1] = movingOrigin[1] + movingSpacing[1] * mo vingSize[1] / 2.0;

The most straightforward method of initializing the trasrsifi parameters is to configure the
transform and then get its parameters with the meGeiHarameters() . Here we initialize the
transform by passing the center of the fixed image as thaanteénter with theSetCenter()
method. Then the translation is set as the vector relatiagénter of the moving image to the
center of the fixed image. This last vector is passed with tegadSetTranslation()

transform->SetCenter(centerFixed);
transform->SetTranslation(centerMoving - centerFixed) ;

Let’s finally initialize the rotation with a zero angle.
transform->SetAngle(0.0);

Now we pass the current transform’s parameters as thel ip@grameters to be used when the
registration process starts.

registration->Setlnitial TransformParameters(transfo rm->GetParameters());

Keeping in mind that the scale of units in rotation and tratigh is quite different, we take ad-
vantage of the scaling functionality provided by the optiens. We know that the first element
of the parameters array corresponds to the angle that isumehs radians, while the other
parameters correspond to translations that are measutiegl imits of the spacin (pixels in our
case). For this reason we use small factors in the scalesiagsbwith translations and the
coordinates of the rotation center .

196 Chapter 8. Image Registration

typedef OptimizerType::ScalesType OptimizerScalesType ;
OptimizerScalesType optimizerScales(transform->GetNu mberOfParameters());
const double translationScale = 1.0 / 1000.0;

optimizerScales[0] = 1.0;

optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;

optimizer->SetScales(optimizerScales);

Next we set the normal parameters of the optimization methodhis case we are using an
itk::RegularStepGradientDescentOptimizer . Below, we define the optimization param-
eters like the relaxation factor, initial step length, miai step length and number of iterations.
These last two act as stopping criteria for the optimization

double initialStepLength = 0.1;

optimizer->SetRelaxationFactor(0.6);
optimizer->SetMaximumStepLength(initialStepLength);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetNumberOfiterations(200);

Let's execute this example over two of the images providetkamples/Data

e QB_Suburb.png
e QB_SuburbRotated10.png

The second image is the result of intentionally rotatingfitst image by 10 degrees around the
geometrical center of the image. Both images have unitisgamnd are shown in Figure 8.9.
The registration takes 21 iterations and produces thetsesul

[0.176168, 134.515, 103.011, -0.00182313, 0.0717891]

These results are interpreted as

e Angle =0176168 radians
e Center =(134515103011) pixels
e Translation 4—0.001823130.0717891 pixels

http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html

8.5. Centered Transforms 197

Figure 8.9:Fixed and moving images are provided as input to the registration method using the Centered-
Rigid2D transform.

Figure 8.10:Resampled moving image (left). Differences between the fixed and moving images, before
(center) and after (right) registration using the CenteredRigid2D transform.

198 Chapter 8. Image Registration

As expected, these values match the misalignment intailjoimtroduced into the moving
image quite well, since 10 degrees is abod7@532 radians.

Figure 8.10 shows from left to right the resampled movinggmatfter registration, the differ-
ence between fixed and moving images before registratiah tren difference between fixed
and resampled moving image after registration. It can bae &een the last difference image
that the rotational component has been solved but that d seméring misalignment persists.

Let's now consider the case in which rotations and trarsiatiare present in the initial regis-
tration, as in the following pair of images:

e QB_Suburb.png

e QB_SuburbR10X13Y17.png
The second image is the result of intentionally rotatingfitet image by 10 degrees and then
translating it 13 pixels ifxX and 17 pixels irY. Both images have unit-spacing and are shown

in Figure 8.11. In order to accelerate convergence it is eomnt to use a larger step length as
shown here.

optimizer->SetMaximumStepLength(1.0);

The registration now takes 34 iterations and produces fleviong results:

[0.176125, 135.553, 102.159, -11.9102, -15.8045]

These parameters are interpreted as

e Angle =0176125 radians
e Center =(135553 102159 millimeters
e Translation 5{—11.9102 —15.8045 millimeters
These values approximately match the initial misalignmetgntionally introduced into the

moving image, since 10 degrees is aboudf/@532 radians. The horizontal translation is well
resolved while the vertical translation ends up being offbgut one millimeter.

Figure 8.12 shows the output of the registration. The rigistnimage of this figure shows the
difference between the fixed image and the resampled mowiage after registration.

8.5.2 Centered Affine Transform

The source code for this example can be found in the file
Examples/Registration/ImageRegistration9.cxx

8.5. Centered Transforms 199

Figure 8.11:Fixed and moving images provided as input to the registration method using the Centered-
Rigid2D transform.

Figure 8.12:Resampled moving image (left). Differences between the fixed and moving images, before
(center) and after (right) registration with the CenteredRigid2D transform.

200 Chapter 8. Image Registration

This example illustrates the use of thi::AffineTransform for performing registration.
The example code is, for the most part, identical to previmes. The main difference is the
use of the AffineTransform here instead of thie:CenteredRigid2DTransform . We will
focus on the most relevant changes in the current code apdttsiibasic elements already
explained in previous examples.

Let’s start by including the header file of the AffineTransfior
#include "itkAffineTransform.h"
We define then the types of the images to be registered.

const unsigned int Dimension = 2;

typedef float PixelType;
typedef otb::image< PixelType, Dimension > FixedlmageTyp e;
typedef otb::image< PixelType, Dimension > MovinglmageTy pe;

The transform type is instantiated using the code below. t&hmplate parameters of this class
are the representation type of the space coordinates aisgdice dimension.

typedef itk::AffineTransform<
double,
Dimension > TransformType;

The transform object is constructed below and passed tetistration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Since we are working with high resolution images and expkskefts are larger than the reso-
lution, we will need to smooth the images in order to avoidapgmizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanimageFilter<
FixedimageType, FixedlmageType > FixedFilterType;

typedef itk::MeanimageFilter<
MovingimageType, MovingimageType > MovingFilterType;

FixedFilterType::Pointer fixedFilter = FixedFilterType ::New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New(

[

http://www.melaneum.com/OTB/doxygen/classitk_1_1AffineTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html

8.5. Centered Transforms 201

FixedlmageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; /I radius along y

fixedFilter->SetRadius(indexFRadius);
MovingimageType::SizeType indexMRadius;

indexMRadius[0] = 4; /I radius along X
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->Setlnput(fixedimageReader->GetOutput());
movingFilter->Setinput(movinglmageReader->GetOutput 0)

Now we can plug the output of the smoothing filters at the irgfube registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovingimage(movingFilter->GetOutpu))
In this example, we use thik::CenteredTransforminitializer helper class in order to

compute a reasonable value for the initial center of rotagiod the translation. The initializer
is set to use the center of mass of each image as the initi@spmondence correction.

typedef itk::CenteredTransforminitializer<
TransformType,
FixedimageType,
MovinglmageType > TransforminitializerType;

TransforminitializerType::Pointer initializer = Transf orminitializerType::New();
initializer->SetTransform(transform);

initializer->SetFixedimage(fixedimageReader->GetOut put());
initializer->SetMovinglmage(movinglmageReader->GetO utput());

initializer->MomentsOn();
initializer->Initialize Transform();

Now we pass the parameters of the current transform as tied plrameters to be used when
the registration process starts.

registration->Setlnitial TransformParameters(
transform->GetParameters());

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredTransformInitializer.html

202 Chapter 8. Image Registration

Keeping in mind that the scale of units in scaling, rotatiod &anslation are quite different,
we take advantage of the scaling functionality providedhmy aptimizers. We know that the
first N x N elements of the parameters array correspond to the rotau#trix factor, the next

N correspond to the rotation center, and the Mstre the components of the translation to be
applied after multiplication with the matrix is performed.

typedef OptimizerType::ScalesType OptimizerScalesType ;
OptimizerScalesType optimizerScales(transform->GetNu mberOfParameters());
optimizerScales[0] = 1.0;

optimizerScales[1] = 1.0;

optimizerScales[2] = 1.0;

optimizerScales[3] = 1.0;

optimizerScales[4] = translationScale;

optimizerScales[5] = translationScale;

optimizer->SetScales(optimizerScales);

We also set the usual parameters of the optimization mettodhis case we are using an
itk::RegularStepGradientDescentOptimizer . Below, we define the optimization param-
eters like initial step length, minimal step length and nemdif iterations. These last two act as
stopping criteria for the optimization.

optimizer->SetMaximumStepLength(steplength);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfiterations(maxNumberOfiterati ons);

We also set the optimizer to do minimization by calling ktieimizeOn() method.
optimizer->MinimizeOn();

Finally we trigger the execution of the registration mettydcalling theUpdate() method.
The call is placed in &y/catch block in case any exceptions are thrown.

try
{
registration->StartRegistration();
}
catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;

}

http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html

8.5. Centered Transforms 203

Once the optimization converges, we recover the parametensthe registration method. This
is done with theGetLastTransformParameters() method. We can also recover the final
value of the metric with th&etValue() method and the final number of iterations with the
GetCurrentlteration() method.

OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();

const double finalRotationCenterX = transform->GetCente r([0];

const double finalRotationCenterY = transform->GetCente rOr1l;

const double finalTranslationX = finalParameters[4];

const double finalTranslationY = finalParameters[5];

const unsigned int numberOfiterations = optimizer->GetCu rrentlteration();

const double bestValue = optimizer->GetValue();
Let’'s execute this example over two of the images providdtkamples/Data

e QB_Suburb.png

e QB_SuburbR10X13Y17.png
The second image is the result of intentionally rotatingfitet image by 10 degrees and then
translating by(13,17). Both images have unit-spacing and are shown in Figure 8.
execute the code using the following parameters: stephetigd, translation scale= 0.0001 and

maximum number of iterations = 300. With these images andmaters the registration takes
83 iterations and produces

20.2134 [0.983291, -0.173507, 0.174626, 0.983028, -12.18 99, -16.0882]

These results are interpreted as

e |terations = 83
e Final Metric =20.2134
e Center =(134152 104.067) pixels
e Translation 5{—12.1899 —16.0882) pixels
o Affine scales £0.9990240.997875
The second component of the matrix values is usually agsacveith sind. We obtain the ro-

tation through SVD of the affine matrix. The value isQ401 degrees, which is approximately
the intentional misalignment of 1M degrees.

Figure 8.14 shows the output of the registration. The rigbsthimage of this figure shows the
squared magnitude difference between the fixed image andshenpled moving image.

204 Chapter 8. Image Registration

Figure 8.13Fixed and moving images provided as input to the registration method using the AffineTrans-
form.

Figure 8.14:The resampled moving image (left), and the difference between the fixed and moving images
before (center) and after (right) registration with the AffineTransform transform.

8.6. Transforms 205

Point Vector

Covariant
Vectors

Figure 8.15:Geometric representation objects in ITK.

8.6 Transforms

In OTB, we use the Insight Toolkitk::Transform objects encapsulate the mapping of points
and vectors from an input space to an output space. If a ramsé invertible, back transform
methods are also provided. Currently, ITK provides a varaétransforms from simple transla-
tion, rotation and scaling to general affine and kernel fianss. Note that, while in this section
we discuss transforms in the context of registration, fanss are general and can be used for
other applications. Some of the most commonly used tramsfavill be discussed in detail
later. Let's begin by introducing the objects used in ITK fepresenting basic spatial concepts.

8.6.1 Geometrical Representation

ITK implements a consistent geometric representation efgpace. The characteristics of
classes involved in this representation are summarizedliteT8.1. In this regard, ITK takes
full advantage of the capabilities of Object Oriented pemgming and resists the temptation
of using simple arrays dfoat or double in order to represent geometrical objects. The use
of basic arrays would have blurred the important distinctietween the different geometrical
concepts and would have allowed for the innumerable coneéphd programming errors that
result from using a vector where a point is needed or viceavers

Additional uses of thetk::Point , itk::Vector and itk::CovariantVector classes have

been discussed in Chapter 5. Each one of these classes &eliffeently under spatial trans-
formations. It is therefore quite important to keep thegtidiction clear. Figure 8.15 illustrates
the differences between these concepts.

Transform classes provide different methods for mappingheane of the basic space-
representation objects. Points, vectors and covariamnbkeare transformed using the methods
TransformPoint() , TransformVector() andTransformCovariantVector() respectively.

One of the classes that deserve further comments igtithéector . This ITK class tend to
be misinterpreted as a container of elements instead ofragteical object. This is a common
misconception originated by the fact that Computer Sci¢rtnd Software Engineers misuse
the term “Vector”. The actual word “Vector” is relatively yog. It was coined by William

http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

206 Chapter 8. Image Registration

| Class Geometrical concept \

itk::Point Position in space. IMN-dimensional space it is repre
sented by an array dfi numbers associated with space
coordinates.

itk::Vector Relative position between two points. Mdimensional
space itis represented by an arrajNafumbers, each one
associated with the distance along a coordinate axis. Vec-
tors do not have a position in space. A vector is defined
as the subtraction of two points.

itk::CovariantVector Orthogonal direction to &N — 1)-dimensional manifold
in space. For example, irD8it corresponds to the vectar
orthogonal to a surface. This is the appropriate clasg for
representing Gradients of functions. Covariant vectors do
not have a position in space. Covariant vector should|not
be added to Points, nor to Vectors.

Table 8.1:Summary of objects representing geometrical concepts in ITK.

Hamilton in his book Elements of Quaterniohgublished in 1886 (post-mortem)[39]. In the
same text Hamilton coined the termsScalar, “ Versof’ and “Tensof. Although the modern
term of “Tensot is used in Calculus in a different sense of what Hamiltonrediin his book
at the time [26].

A “Vector is, by definition, a mathematical object that embodies thiecept of “direction in
space”. Strictly speaking, a Vector describes the relatignbetween two Points in space, and
captures both their relative distance and orientation.

Computer scientists and software engineers misused thmeviector in order to represent the
concept of an “Indexed Set” [5]. Mechanical Engineers andl Engineers, who deal with the
real world of physical objects will not commit this mistakedawill keep the word Vector’
attached to a geometrical concept. Biologists, on the diaad, will associateVector' to a
“vehicle” that allows them to direct something in a partanutiirection, for example, a virus that
allows them to insert pieces of code into a DNA strand [58].

Textbooks in programming do not help to clarify those coteepd loosely use the ternvéc-
tor” for the purpose of representing an “enumerated set of comgtements”. STL follows this
trend and continue using the wordéctor’' for what it was not supposed to be used [5, 1]. Lin-
ear algebra separates théettor from its notion of geometric reality and makes it an abdtrac
set of numbers with arithmetic operations associated.

For those of you who are looking for th&éctor’ in the Software Engineering sense, please
look at the itk::Array and itk::FixedArray classes that actually provide such functional-
ities. Additionally, theitk::VectorContainer and itk::MapContainer classes may be of
interest too. These container classes are intended forithigs that require to insert and delete
elements, and that may have large numbers of elements.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Array.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html

8.6. Transforms 207

The Insight Toolkit deals with real objects that inhabit fite/sical space. This is particularly
true in the context of the image registration framework. \Wese to give the appropriate name
to the mathematical objects that describe geometricaioakhips in N-Dimensional space. It
is for this reason that we explicitly make clear the disimtbetween Point, Vector and Covari-
antVector, despite the fact that most people would be hapityarsimple use ofouble[3] for
the three concepts and then will proceed to perform all docbonceptually flawed operations
such as

¢ Adding two Points
¢ Dividing a Point by a Scalar
e Adding a Covariant Vector to a Point

¢ Adding a Covariant Vector to a Vector

In order to enforce the correct use of the Geometrical cdsceplTK we organized these
classes in a hierarchy that supports reuse of code and ygtaztmentalize the behavior of the
individual classes. The use of thikk::FixedArray as base class of thék::Point , the
itk::Vector and theitk::CovariantVector was a design decision based on calling things
by their correct name.

An itk::FixedArray is an enumerated collection with a fixed nhumber of elements. can
instantiate a fixed array of letters, or a fixed array of images fixed array of transforms, or a
fixed array of geometrical shapes. Therefore, the FixedPordy implements the functionality
that is necessary to access those enumerated elements.siNopdi®ns can be made at this
point on any other operations required by the elements ofthedArray, except the fact of
having a default constructor.

The itk::Point is a type that represents the spatial coordinates of a sjuatédion. Based on
geometrical concepts we defined the valid operations of thet lelass. In particular we made
sure that noperator+() was defined between Points, and thabperator*(scalar) nor
operator/(scalar) were defined for Points.

In other words, you could do in ITK operations such as:

e \ector = Point - Point
e Point += Vector
e Point -= Vector

¢ Point = BarycentricCombination(Point, Point)
and you cannot (because yshiould not) do operation such as

e Point = Point * Scalar

http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html

208 Chapter 8. Image Registration

e Point = Point + Point

e Point = Point/ Scalar

The itk::Vector is, by Hamilton’s definition, the subtraction between twanp® Therefore
a Vector must satisfy the following basic operations:

e Vector = Point - Point
e Point = Point + Vector
e Point = Point - Vector
e \lector = Vector + Vector

e \ector = Vector - Vector

An itk::Vector object is intended to be instantiated over elements that@tmathematical
operation such as addition, subtraction and multiplicebip scalars.

8.6.2 Transform General Properties

Each transform class typically has several methods fomgeitls parameters. For example,
itk::Euler2DTransform provides methods for specifying the offset, angle, and tiieeero-
tation matrix. However, for use in the registration framekyohe parameters are represented by
a flat Array of doubles to facilitate communication with ggo@ptimizers. In the case of the
Euler2DTransform, the transform is also defined by thredobtisu the first representing the an-
gle, and the last two the offset. The flat array of paramesadgefined usingetParameters()

A description of the parameters and their ordering is doguetkin the sections that follow.

In the context of registration, the transform parametefmdehe search space for optimizers.
That is, the goal of the optimization is to find the set of pagtars defining a transform that
results in the best possible value of an image metric. Theerparameters a transform has, the
longer its computational time will be when used in a regtggramethod since the dimension
of the search space will be equal to the number of transfomanpaters.

Another requirement that the registration framework ingsosen the transform classes is the
computation of their Jacobians. In general, metrics regtiie knowledge of the Jacobian in
order to compute Metric derivatives. The Jacobian is a mattiose element are the partial
derivatives of the output point with respect to the arrayarbneters that defines the transfdrm:

2Note that the termjacobianis also commonly used for the matrix representing the deriestivf output point
coordinates with respect to input point coordinates. Samegtithe term is loosely used to refer to the determinant of
such a matrix. [26]

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

8.6. Transforms 209

Behavior Number of | Parameter Restrictions

Parameters | Ordering
Maps every point tg 0 NA Only defined when the in
itself, every vector to put and output space has the
itself and every co- same number of dimensions.
variant vector to it-
self.

Table 8.2:Characteristics of the identity transform.

opy dp2 0Pm
d d d

J=| P P (8.1)
opL oz 9pm

where{p; } are the transform parameters gnl} are the coordinates of the output point. Within
this framework, the Jacobian is represented byitamArray2D of doubles and is obtained
from the transform by methd@etJacobian() . The Jacobian can be interpreted as a matrix that
indicates for a point in the input space how much its mappim¢he output space will change
as a response to a small variation in one of the transformmpeteas. Note that the values of the
Jacobian matrix depend on the point in the input space. $malcthe Jacobian can be noted
asJ(X), whereX = {x }. The use of transform Jacobians enables the efficient catiputof
metric derivatives. When Jacobians are not available, osetiérivatives have to be computed
using finite difference at a price of2evaluations of the metric value, whevkis the number

of transform parameters.

The following sections describe the main characteristfah® transform classes available in
ITK.

8.6.3 Identity Transform

The identity transformitk::IdentityTransform is mainly used for debugging purposes. It
is provided to methods that require a transform and in cabesewe want to have the certainty
that the transform will have no effect whatsoever in the ontte of the process. It is justNULL
operation. The main characteristics of the identity tramafare summarized in Table 8.2

8.6.4 Translation Transform

The itk:: TranslationTransform is probably the simplest yet one of the most useful trans-
formations. It maps all Points by adding a Vector to them.t®eand covariant vectors remain

http://www.melaneum.com/OTB/doxygen/classitk_1_1Array2D.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1IdentityTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

210 Chapter 8. Image Registration

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Represents a simple Same as the The i-th parame-| Only defined when the in
translation of points input space| ter represents the put and output space has the
in the input space and dimension. | translation in the| same number of dimension
has no effect on vect i-th dimension.
tors or covariant vec;
tors.

o

Table 8.3:Characteristics of the TranslationTransform class.

unchanged under this transformation since they are notiaéed with a particular position
in space. Translation is the best transform to use wherirgiaatregistration method. Before
attempting to solve for rotations or scaling it is importambverlap the anatomical objects in
both images as much as possible. This is done by resolvingahsiational misalignment be-
tween the images. Translations also have the advantagenyf fast to compute and having
parameters that are easy to interpret. The main charditeris the translation transform are
presented in Table 8.3.

8.6.5 Scale Transform

The itk::ScaleTransform represents a simple scaling of the vector space. Diffeiiing
factors can be applied along each dimension. Points argftranmed by multiplying each one of
their coordinates by the corresponding scale factor foditmension. Vectors are transformed in
the same way as points. Covariant vectors, on the other haadransformed differently since
anisotropic scaling does not preserve angles. Covariartbrgeare transformed bgividing
their components by the scale factor of the correspondimgsion. In this way, if a covariant
vector was orthogonal to a vector, this orthogonality willgreserved after the transformation.
The following equations summarize the effect of the trarmafon the basic geometric objects.

Point P = TP) : P, = P-S
Vector Vo= T(V) Vi = Vi-§ (8.2)
CovariantVector C' = T(C) Ci = Gi/S

whereP;, V; andC; are the point, vector and covariant vectdh components whil&; is the
scaling factor along dimensiar-th. The following equation illustrates the effect of the sagli
transform on a B point.

(8.3)

N X,
I
oo Ww
oo
& oo
N < X

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html

8.6. Transforms 211

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Points are transt Same as the The i-th parame-| Only defined when the in
formed by multi-| input space| ter represents the put and output space has the
plying each one of dimension. | scaling in thei-th | same number of dimension
their coordinates by dimension.
the corresponding
scale factor for the
dimension. Vectorg
are transformed as
points. Covariant
vectors are transt
formed by dividing
their components by
the scale factor in
the corresponding
dimension.

o

Table 8.4:Characteristics of the ScaleTransform class.

Scaling appears to be a simple transformation but thereciwelly a number of issues to keep
in mind when using different scale factors along every disiem There are subtle effects—for
example, when computing image derivatives. Since devieatare represented by covariant
vectors, their values are not intuitively modified by scaliransforms.

One of the difficulties with managing scaling transforms iegistration process is that typical
optimizers manage the parameter space as a vector spaceaduition is the basic operation.
Scaling is better treated in the frame of a logarithmic spaleere additions result in regular
multiplicative increments of the scale. Gradient desc@tintizers have trouble updating step
length, since the effect of an additive increment on a seaif diminishes as the factor grows.
In other words, a scale factor variation 0+ €) is quite different from a scale variation of
(5.0+¢).

Registrations involving scale transforms require carefahitoring of the optimizer parameters

in order to keep it progressing at a stable pace. Note thae sfrthe transforms discussed in

following sections, for example, the AffineTransform, héden scaling parameters and are
therefore subject to the same vulnerabilities of the ScaleSform.

In cases involving misalignments with simultaneous tramish, rotation and scaling compo-
nents it may be desirable to solve for these components émimtly. The main characteristics
of the scale transform are presented in Table 8.4.

212 Chapter 8. Image Registration

Behavior Number of | Parameter Restrictions
Parameters | Ordering
Points are transt Same as the The i-th parame-| Only defined when the in

formed by multi-| input space| ter represents theé put and output space has
plying each one of dimension. | scaling in the-th | the same number of dimer

their coordinates by dimension. sions. The difference be-
the corresponding tween this transform and
scale factor for the the ScaleTransform is that
dimension. Vectorg here the scaling factors afe
are transformed as passed as logarithms, in thjs
points. Covariant way their behavior is closer
vectors are transt to the one of a Vector space.

formed by dividing
their components by
the scale factor in
the corresponding
dimension.

Table 8.5:Characteristics of the ScaleLogarithmicTransform class.

8.6.6 Scale Logarithmic Transform

The itk::ScaleLogarithmicTransform is a simple variation of the
itk::ScaleTransform . It is intended to improve the behavior of the scaling parame
ters when they are modified by optimizers. The differencevben this transform and the
ScaleTransform is that the parameter factors are passeddsetogarithms. In this way,
multiplicative variations in the scale become additiveations in the logarithm of the scaling
factors.

8.6.7 Euler2DTransform

itk::Euler2DTransform implements a rigid transformation irb2 It is composed of a plane
rotation and a two-dimensional translation. The rotatoapplied first, followed by the trans-
lation. The following equation illustrates the effect oistiransform on aR point,

X | [cosB —sin® X Tx
e e [T =
where@ is the rotation angle andy, Ty) are the components of the translation.

A challenging aspect of this transformation is the fact traislations and rotations do not form
a vector space and cannot be managed as linear independamtepers. Typical optimizers

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleLogarithmicTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

8.6. Transforms 213

Behavior Number of | Parameter Restrictions
Parameters | Ordering
Represents al2rota- | 3 The first param-| Only defined for two-
tion and a D trans- eter is the angle dimensional input ang
lation. Note that in radians and the output spaces.
the translation com; last two parame-
ponent has no effect ters are the trans-
on the transformation lation in each di-
of vectors and covari mension.
ant vectors.

Table 8.6:Characteristics of the Euler2DTransform class.

make the loose assumption that parameters exist in a vaiztoe and rely on the step length to
be small enough for this assumption to hold approximately.

In addition to the non-linearity of the parameter spacentibet common difficulty found when
using this transform is the difference in units used fortiotes and translations. Rotations are
measured in radians; hence, their values are in the rarger. Translations are measured in
millimeters and their actual values vary depending on thregiermodality being considered. In
practice, translations have values on the order of 10 to T scale difference between the
rotation and translation parameters is undesirable fatignd descent optimizers because they
deviate from the trajectories of descent and make optimizaiower and more unstable. In
order to compensate for these differences, ITK optimizecept an array of scale values that
are used to normalize the parameter space.

Registrations involving angles and translations sholkd talvantage of the scale normalization
functionality in order to obtain the best performance ouhefoptimizers. The main character-
istics of the Euler2DTransform class are presented in Taule

8.6.8 CenteredRigid2DTransform

itk::CenteredRigid2DTransform implements a rigid transformation irD2 The main dif-
ference between this transform and title:Euler2DTransform is that here we can specify
an arbitrary center of rotation, while the Euler2DTransf@lways uses the origin of the coor-
dinate system as the center of rotation. This distinctiaquite important in image registration
since ITK images usually have their origin in the corner & tilnage rather than the middle.
Rotational mis-registrations usually exist, however,a@ations around the center of the image,
or at least as rotations around a point in the middle of théoamniaal structure captured by the
image. Using gradient descent optimizers, it is almost ssfile to solve non-origin rotations
using a transform with origin rotations since the deep bakihe real solution is usually located
across a high ridge in the topography of the cost function.

In practice, the user must supply the center of rotation énitiput space, the angle of rotation

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

214 Chapter 8. Image Registration

Behavior Number of | Parameter Restrictions

Parameters | Ordering
Represents al2ro- | 5 The first parame{ Only defined for two-
tation around a user- ter is the angle in dimensional input and
provided center fol- radians. Second output spaces.
lowed by a D trans- and third are the
lation. center of rota-

tion coordinates
and the last two
parameters are
the translation in
each dimension.

Table 8.7:Characteristics of the CenteredRigid2DTransform class.

and a translation to be applied after the rotation. Withelgrameters, the transform initializes
a rotation matrix and a translation vector that togethefogper the equivalent of translating the
center of rotation to the origin of coordinates, rotatingthg specified angle, translating back
to the center of rotation and finally translating by the useeified vector.

As with the Euler2DTransform, this transform suffers frohe tdifference in units used for
rotations and translations. Rotations are measured immagihence, their values are in the
range[—Tt, 1. The center of rotation and the translations are measuneillimeters, and their
actual values vary depending on the image modality beingidered. Registrations involving
angles and translations should take advantage of the soaieatization functionality of the
optimizers in order to get the best performance out of them.

The following equation illustrates the effect of the trarsi on an input pointx,y) that maps
to the output poin{x,y'),

HEEE R

where® is the rotation angle(Cy,C,) are the coordinates of the rotation center &mgTy)
are the components of the translation. Note that the ceatedmates are subtracted before the
rotation and added back after the rotation. The main feawfrthe CenteredRigid2DTransform
are presented in Table 8.7.

8.6.9 Similarity2DTransform

The itk::Similarity2DTransform can be seen as a rigid transform combined with an
isotropic scaling factor. This transform preserves anddesveen lines. In its 2 im-
plementation, the four parameters of this transformatiomlzine the characteristics of the

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity2DTransform.html

8.6. Transforms 215

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Represents a2 ro- | 4 The first pa-| Only defined for two-
tation, homogeneous rameter is the dimensional input ang
scaling and a scaling factor for| output spaces.
translation. Note that all dimensions,
the translation com; the second is the
ponent has no effect angle in radians
on the transformation and the last
of vectors and covari two parameters
ant vectors. are the transla;

tions in (xy)

respectively.

Table 8.8:Characteristics of the Similarity2DTransform class.

itk::ScaleTransform and itk::Euler2DTransform . In particular, those relating to the

non-linearity of the parameter space and the non-unifgrofithe measurement units. Gradi-
ent descent optimizers should be used with caution on sueameder spaces since the notions
of gradient direction and step length are ill-defined.

The following equation illustrates the effect of the trarsii on an input pointx,y) that maps
to the output poin{x,y'),

X | [A O | cos® —sin® | [x—Cx n T+ Cx (8.6)

Y| |0 A sin@ cosh y—-Cy Ty+Cy '
where is the scale factor§ is the rotation angle(Cy,C,) are the coordinates of the rota-
tion center andTy, Ty) are the components of the translation. Note that the centadnates

are subtracted before the rotation and scaling, and thegdated back afterwards. The main
features of the Similarity2DTransform are presented ind&ts.

A possible approach for controlling optimization in the gr@eter space of this transform is to
dynamically modify the array of scales passed to the opgmiZhe effect produced by the
parameter scaling can be used to steer the walk in the pagaspetce (by giving preference to
some of the parameters over others). For example, perfonme $@rations updating only the
rotation angle, then balance the array of scale factorsarmptimizer and perform another set
of iterations updating only the translations.

8.6.10 QuaternionRigidTransform

The itk::QuaternionRigidTransform class implements a rigid transformation i 3pace.
The rotational part of the transform is represented usingaegnion while the translation is

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransform.html

216 Chapter 8. Image Registration

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Represents al3rotation and| 7 The first four pa-| Only defined for

a 3D translation. The rota rameters defines three-dimensional

tion is specified as a quatef- the quaternion input and output

nion, defined by a set of four and the last three spaces.

numbersy. The relationship parameters the

between quaternion and ro- translation in

tation about vecton by an- each dimension.

gle B is as follows:
g=(nsin(6/2),coq06/2))

Note that if the quaternion
is not of unit length, scaling
will also result.

Table 8.9:Characteristics of the QuaternionRigidTransform class.

represented with a vector. Quaternions components do rmatdovector space and hence raise

the same concerns as tht::Similarity2DTransform when used with gradient descent
optimizers.
The itk::QuaternionRigidTransformGradientDescentOptimiz er was introduced into

the toolkit to address these concerns. This specializeichigr implements a variation of a
gradient descent algorithm adapted for a quaternion sp@bés class insures that after ad-
vancing in any direction on the parameter space, the ragust of transform parameters is
mapped back into the permissible set of parameters. Inipeathis comes down to normaliz-
ing the newly-computed quaternion to make sure that thesfoamation remains rigid and no
scaling is applied. The main characteristics of the QuaiaRigidTransform are presented in
Table 8.9.

The Quaternion rigid transform also accepts a user-defiaatec of rotation. In this way, the
transform can easily be used for registering images wheredtation is mostly relative to the
center of the image instead one of the corners. The coosdiridtthis rotation center are not
subject to optimization. They only participate in the cotgbion of the mappings for Points
and in the computation of the Jacobian. The transformafimnsectors and CovariantVector
are not affected by the selection of the rotation center.

8.6.11 VersorTransform

By definition, aVersoris the rotational part of a Quaternion. It can also be defireedwit-
quaternion[39, 49]. Versors only have three independent componeintse shey are restricted

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransformGradientDescentOptimizer.html

8.6. Transforms 217

Behavior Number of | Parameter Restrictions

Parameters | Ordering
Represents a3 ro- | 3 The three param; Only defined for three-
tation. The rotation eters define the dimensional input and
is specified by a ver; Versor. output spaces.

sor or unit quater
nion. The rotation
is performed around
a user-specified cen
ter of rotation.

Table 8.10:Characteristics of the Versor Transform

to reside in the space of unit-quaternions. The implemiemtatf versors in the toolkit uses a
set of three numbers. These three numbers correspond tosthtafee components of a quater-
nion. The fourth component of the quaternion is computeerivatlly such that the quaternion
is of unit length. The main characteristics of thig::VersorTransform are presented in
Table 8.10.

This transform exclusively represents rotations [3t is intended to rapidly solve the rota-
tional component of a more general misalignment. The effayief this transform comes from
using a parameter space of reduced dimensionality. Veeserthe best possible representa-
tion for rotations in ® space. Sequences of versors allow the creation of smodaitiaml
trajectories; for this reason, they behave stably undemigdtion methods.

The space formed by versor parameters is not a vector sptareda®d gradient descent algo-
rithms are not appropriate for exploring this parametecspén optimizer specialized for the
versor space is available in the toolkit under the namika¥ersorTransformOptimizer
This optimizer implements versor derivatives as origindifined by Hamilton [39].

The center of rotation can be specified by the user witlsét@enter() method. The centeris
not part of the parameters to be optimized, therefore it nesrthe same during an optimization
process. Its value is used during the computations forfivaméng Points and when computing
the Jacobian.

8.6.12 \VersorRigid3DTransform

The itk::VersorRigid3DTransform implements a rigid transformation irb3space. Itis a
variant of the itk::QuaternionRigidTransform and the itk::VersorTransform . Itcan
be seen as &k::VersorTransform plus a translation defined by a vector. The advantage of

this class with respect to the QuaternionRigidTransforthag it exposes only six parameters,
three for the versor components and three for the translticomponents. This reduces the
search space for the optimizer to six dimensions insteadthefseven dimensional used by
the QuaternionRigidTransform. This transform also alldhes users to set a specific center

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html

218 Chapter 8. Image Registration

Behavior Number of | Parameter Restrictions
Parameters | Ordering
Represents a3rota- | 6 The first three| Only defined for three-
tion and a ® trans- parameters define dimensional input ang
lation. The rotation the versor and output spaces.
is specified by a ver; the last three
sor or unit quater parameters the
nion, while the trans- translation in
lation is represented each dimension.
by a vector. Users
can specify the coort
dinates of the center
of rotation.

Table 8.11:Characteristics of the VersorRigid3DTransform class.

of rotation. The center coordinates are not modified duridptimization performed in a
registration process. The main features of this transfaersammarized in Table 8.11. This
transform is probably the best option to use when dealiny vigid transformations in3.

Given that the space of Versors is not a Vector space, typicatlient descent opti-
mizers are not well suited for exploring the parametric spa€ this transform. The
itk::VersorRigid3DTranformOptimizer has been introduced in the ITK toolkit with the
purpose of providing an optimizer that is aware of the Vesgace properties on the rotational
part of this transform, as well as the Vector space propediethe translational part of the
transform.

8.6.13 Euler3DTransform

The itk::Euler3DTransform implements a rigid transformation irb3space. It can be seen
as a rotation followed by a translation. This class exposepaameters, three for the Euler
angles that represent the rotation and three for the trémstd components. This transform
also allows the users to set a specific center of rotation.c€hter coordinates are not modified
during the optimization performed in a registration pracé&he main features of this transform
are summarized in Table 8.12.

The fact that the three rotational parameters are nonflenedido not behave like Vector spaces
must be taken into account when selecting an optimizer tdwidth this transform and when
fine tuning the parameters of such optimizer. It is stronggommended to use this transform
by introducing very small variations on the rotational caments. A small rotation will be in
the range of 1 degree, which in radians is approximate)yl@45.

You should not expect this transform to be able to comperfeatiarge rotations just by be-

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTranformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler3DTransform.html

8.6. Transforms 219
Behavior Number of | Parameter Restrictions
Parameters | Ordering
Represents a rigid ro- 6 The first three| Only defined for three-
tation in D space. parameters are dimensional input and

That is, a rotation fol-
lowed by a ® trans-
lation. The rotation is
specified by three an
gles representing ro
tations to be applied
around the X, Y and

the rotation an-
gles around X, Y
and Z axis, and
the last three pa

rameters are the

translations along
each dimension.

output spaces.

Z axis one after an;
other. The translatiorn
partis represented b
a Vector. Users can
also specify the coort
dinates of the center
of rotation.

<

Table 8.12:Characteristics of the Euler3DTransform class.

ing driven with the optimizer. In practice you must provideeasonable initialization of the
transform angles and only need to correct for residualimstatin the order of 10 or 20 degrees.

8.6.14 Similarity3DTransform

The itk::Similarity3DTransform implements a similarity transformation irb3space. It
can be seen as an homogeneous scaling followeditky \éersorRigid3DTransform . This
class exposes seven parameters, one for the scaling fdwcem,for the versor components and
three for the translational components. This transforro albws the users to set a specific
center of rotation. The center coordinates are not modifigthd the optimization performed
in a registration process. Both the rotation and scalingaijmns are performed with respect to
the center of rotation. The main features of this transforenrsammarized in Table 8.13.

The fact that the scaling and rotational spaces are noafliaed do not behave like Vector
spaces must be taken into account when selecting an optitninerk with this transform and
when fine tuning the parameters of such optimizer.

8.6.15 Rigid3DPerspectiveTransform

The itk::Rigid3DPerspectiveTransform implements a rigid transformation irD3space
followed by a perspective projection. This transform ieirded to be used irnC8 2D registra-

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Rigid3DPerspectiveTransform.html

220 Chapter 8. Image Registration
Behavior Number of | Parameter Restrictions
Parameters | Ordering
Represents a3 ro- | 7 The first parame{ Only defined for three-
tation, a » trans- ter is the scaling dimensional input and

lation and homoge
neous scaling. The
scaling factor is spect
ified by a scalar, the

factor, the next

three parameters

define the versor
and the last three

output spaces.

rotation is specified
by a versor, and the
translation is repre;
sented by a vector.
Users can also speg
ify the coordinates of
the center of rotation
that is the same cen
ter used for scaling.

parameters the
translation in
each dimension.

Table 8.13:Characteristics of the Similarity3DTransform class.

tion problems where a 3D object is projected onto a 2D plahés i§ the case of Fluoroscopic
images used for image guided intervention, and it is alsoctts® for classical radiography.
Users must provide a value for the focal distance to be usgdgitne computation of the per-
spective transform. This transform also allows users tassgiecific center of rotation. The
center coordinates are not modified during the optimizgtieniormed in a registration process.
The main features of this transform are summarized in Taldlé. 8This transform is also used
when creating Digitally Reconstructed Radiographs (DRRS)

The strategies for optimizing the parameters of this tramsfare the same ones used for op-
timizing the VersorRigid3DTransform. In particular, yoarcuse the same VersorRigid3D-
TranformOptimizer in order to optimize the parameters &f thass.

8.6.16 AffineTransform

The itk::AffineTransform is one of the most popular transformations used for images-eg
tration. Its main advantage comes from the fact that it iseggnted as a linear transformation.
The main features of this transform are presented in Tal 8.

The set of AffineTransform coefficients can actually be repn¢ed in a vector space of dimen-
sion(N+ 1) x N. This makes it possible for optimizers to be used appraoglsiatn this search
space. However, the high dimensionality of the search splaodmplies a high computational
complexity of cost-function derivatives. The best compis®rin the reduction of this com-
putational time is to use the transform’s Jacobian in comtimn with the image gradient for

http://www.melaneum.com/OTB/doxygen/classitk_1_1AffineTransform.html

8.6. Transforms

221

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Represents a rigid 6 The first three| Only defined for three-

3D transformation parameters define dimensional input ang

followed by a per- the Versor and two-dimensional outpu

spective projection the last three spaces. This is one of the
The rotation is spec parameters the few transforms where the
ified by a \ersor, Translation in| input space has a different

while the translation
is represented by a
Vector. Users carn
specify the coordi-
nates of the center of
rotation. They must
specifically a focal
distance to be used
for the perspective
projection. The
rotation center ang
the focal distance
parameters are naqt
modified during the
optimization process

each dimension.

dimension from the output
space.

Table 8.14Characteristics of the Rigid3DPerspectiveTransform class.

Behavior

Number of
Parameters

Parameter
Ordering

Restrictions

Represents an affing
transform composed
of rotation, scaling,
shearing and translg
tion. The transform
is specified by &\ x
N matrix and a\ x 1
vector whereN is the
space dimension.

(N+1)xN

The first N x N
parameters defing
the matrix in
column-major

order (where
the column in-
dex varies the
fastest). The las
N parameters

define the trans:

lations for each
dimension.

—

Only defined when the inpu
2 and output space have th
same dimension.

Table 8.15:Characteristics of the AffineTransform class.

222 Chapter 8. Image Registration

computing the cost-function derivatives.

The coefficients of thé&l x N matrix can represent rotations, anisotropic scaling aedshg.
These coefficients are usually of a very different dynamiggeacompared to the translation
coefficients. Coefficients in the matrix tend to be in the &gl : 1], but are not restricted to
this interval. Translation coefficients, on the other harath be on the order of 10 to 100, and
are basically related to the image size and pixel spacing.

This difference in scale makes it necessary to take advamfite functionality offered by the
optimizers for rescaling the parameter space. This isqudatily relevant for optimizers based
on gradient descent approaches. This transform lets thiesesan arbitrary center of rotation.
The coordinates of the rotation center do not make part opttrameters array passed to the
optimizer. Equation 8.7 illustrates the effect of applythg AffineTransform in a point in3
space.

X Moo Mo1 Moz x—Cx Tx+Cx
Y |=| Mwo M M || y=-C |+ | Ty+GC (8.7)
r4 Mz M21 Ma z-C, T,+C;

A registration based on the affine transform may be more wfeeahen applied after simpler
transformations have been used to remove the major comtmoemisalignment. Otherwise
it will incur an overwhelming computational cost. For exdempsing an affine transform, the
first set of optimization iterations would typically focus cemoving large translations. This
task could instead be accomplished by a translation tremsiio a parameter space of sike
instead of théN + 1) x N associated with the affine transform.

Tracking the evolution of a registration process that uséiséVransforms can be challenging,
since it is difficult to represent the coefficients in a meghihway. A simple printout of the
transform coefficients generally does not offer a cleaupedf the current behavior and trend
of the optimization. A better implementation uses the afframsform to deform wire-frame
cube which is shown in alBvisualization display.

8.6.17 BSplineDeformableTransform

The itk::BSplineDeformableTransform is designed to be used for solving deformable reg-
istration problems. This transform is equivalent to getienaa deformation field where a de-
formation vector is assigned to every point in space. Therd®tion vectors are computed
using BSpline interpolation from the deformation valuegoints located in a coarse grid, that
is usually referred to as the BSpline grid.

The BSplineDeformableTransform is not flexible enough fmraunting for large rotations or
shearing, or scaling differences. In order to compensatehie limitation, it provides the
functionality of being composed with an arbitrary trangfiorThis transform is known as the
Bulktransform and it is applied to points before they are mappiéutive displacement field.

This transform do not provide functionalities for mappingctors nor CovariantVectors, only

http://www.melaneum.com/OTB/doxygen/classitk_1_1BSplineDeformableTransform.html

8.6. Transforms 223

Behavior Number of | Parameter Restrictions
Parameters | Ordering

Represents a freeM xN Where M is the | Only defined when the in

from deformation number of nodes put and output space have

by providing a de- in the BSpline| the same dimension. Thi

formation field from grid andN is the | transform has the advantage

the interpolation of dimension of the| of allowing to compute de

deformations in & space. formable registration. It als

coarse grid. has the disadvantage of hay-
ing a very high dimensiona|
parametric space, and therg-
fore requiring long compu
tation times.

Table 8.16:Characteristics of the BSplineDeformableTransform class.

Points can be mapped. The reason is that the variations oferwender a deformable transform
actually depend on the location of the vector in space. Ierotfords, Vector only make sense
as the relative position between two points.

The BSplineDeformableTransform has a very large numbeacdmeters and therefore is well
suited for theitk::LBFGSOptimizer and itk::LBFGSBOptimizer . The use of this transform
for was proposed in the following papers [77, 63, 64].

8.6.18 KernelTransforms

Kernel Transforms are a set of Transforms that are alsoldeifar performing deformable
registration. These transforms compute on the fly the digpteents corresponding to a de-
formation field. The displacement values corresponding/&myepoint in space are computed
by interpolation from the vectors defined by a setSafurce Landmarkand a set offarget
Landmarks

Several variations of these transforms are available irtdbkit. They differ on the type of

interpolation kernel that is used when computing the detion in a particular point of space.
Note that these transforms are computationally expensidetzat their numerical complexity
is proportional to the number of landmarks and the spacertiion.

The following is the list of Transforms based on the Kernafigform.

o itk::ElasticBodySplineKernelTransform
o itk::ElasticBodyReciprocalSplineKernelTransform

e itk:: ThinPlateSplineKernelTransform

http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSBOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ElasticBodySplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ElasticBodyReciprocalSplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThinPlateSplineKernelTransform.html

224 Chapter 8. Image Registration

e itk::ThinPlateR2LogRSplineKernelTransform

o itk::VolumeSplineKernelTransform

Details about the mathematical background of these tremsfan be found in the paper by
Daviset. al[20] and the papers by Rokt. al[75, 76].

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThinPlateR2LogRSplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VolumeSplineKernelTransform.html

8.7. Metrics 225

8.7 Metrics

In OTB, itk::lmageTolmageMetric objects quantitatively measure how well the transformed
moving image fits the fixed image by comparing the gray-scabnsity of the images. These
metrics are very flexible and can work with any transform éeiipolation method and do not
require reduction of the gray-scale images to sparse egttéformation such as edges.

The metric component is perhaps the most critical elemetiteofegistration framework. The

selection of which metric to use is highly dependent on tigésteation problem to be solved.

For example, some metrics have a large capture range whiesatequire initialization close to

the optimal position. In addition, some metrics are onlyahle for comparing images obtained
from the same type of sensor, while others can handle metis@ comparisons. Unfortunately,
there are no clear-cut rules as to how to choose a metric.

The basic inputs to a metric are: the fixed and moving imagganaform and an interpolator.
The methodGetvalug() can be used to evaluate the quantitative criterion at thesfinam
parameters specified in the argument. Typically, the msgimples points within a defined
region of the fixed image. For each point, the correspondiogjmg image position is computed
using the transform with the specified parameters, themtieegolator is used to compute the
moving image intensity at the mapped position.

The metrics also support region based evaluation. BetFixedimageMask() and
SetMovingimageMask() methods may be used to restrict evaluation of the metricinvidh
specified region. The masks may be of any type derived fitkn$patialObject

Besides the measure value, gradient-based optimizatioenses also require derivatives of
the measure with respect to each transform parameter. TtideSetDerivatives() and
GetValueAndDerivatives() can be used to obtain the gradient information.

The following is the list of metrics currently available inr®:
e Mean squares
itk::MeanSquaresimageTolmageMetric

e Normalized correlation
itk::NormalizedCorrelationimageTolmageMetric

e Mean reciprocal squared difference
itk::MeanReciprocalSquareDifferencelmageTolmageMetr ic

e Mutual information by Viola and Wells
itk::MutuallnformationimageTolmageMetric

e Mutual information by Mattes
itk::MattesMutuallnformationimageTolmageMetric

e Kullback Liebler distance metric by Kullback and Liebler
itk::KullbackLeiblerCompareHistogramimageTolmageMet ric

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SpatialObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

226 Chapter 8. Image Registration

Normalized mutual information
itk::NormalizedMutuallnformationHistogramimageTolma geMetric

e Mean squares histogram
itk::MeanSquaresHistogramimageTolmageMetric

e Correlation coefficient histogram
itk::CorrelationCoefficientHistogramimageTolmageMet ric

e Cardinality Match metric
itk::MatchCardinalitylmageTolmageMetric

e Kappa Statistics metric
itk::KappaStatisticimageTolmageMetric

e Gradient Difference metric
itk::GradientDifferencelmageTolmageMetric

In the following sections, we describe each metric type itaitleFor ease of notation, we will
refer to the fixed imagé (X) and transformed moving imageo T (X)) as image#\ andB.

8.7.1 Mean Squares Metric

The itk:MeanSquaresimageTolmageMetric computes the mean squared pixel-wise differ-
ence in intensity between imageandB over a user defined region:

N
MSAB)= 5 (A B 9

A is the i-th pixel of Image A
B; is the i-th pixel of Image B
N is the number of pixels considered

The optimal value of the metric is zero. Poor matches betvireagesA andB result in large
values of the metric. This metric is simple to compute andahiasatively large capture radius.

This metric relies on the assumption that intensity reprtisg the same homologous point
must be the same in both images. Hence, its use is restrizietages of the same modality.
Additionally, any linear changes in the intensity resulaipoor match value.

Exploring a Metric

Getting familiar with the characteristics of the Metric asost function is fundamental in order
to find the best way of setting up an optimization processulilatise this metric for solving a
registration problem.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KappaStatisticImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresImageToImageMetric.html

8.7. Metrics 227

8.7.2 Normalized Correlation Metric

The itk::NormalizedCorrelationimageTolmageMetric computes pixel-wise cross-
correlation and normalizes it by the square root of the artetation of the images:

SN, (A -Bi)
\/ S, A2 YN B?

A is the i-th pixel of Image A
B; is the i-th pixel of Image B
N is the number of pixels considered

NC(A,B) = —1x

(8.9)

Note the—1 factor in the metric computation. This factor is used to enlde metric be optimal
when its minimum is reached. The optimal value of the mesritbén minus one. Misalignment
between the images results in small measure values. Thd thie metric is limited to images
obtained using the same imaging modality. The metric isrisi¢ge to multiplicative factors
— illumination changes — between the two images. This metaduces a cost function with
sharp peaks and well defined minima. On the other hand, it Felatavely small capture radius.

8.7.3 Mean Reciprocal Square Differences

The itk::MeanReciprocalSquareDifferencelmageTolmageMetr ic computes pixel-wise
differences and adds them after passing them through slhafied functioqﬁ:

N
1
PIAB =Y ——— (8.10)
i; 14 (A;ZBQZ

A is the i-th pixel of Image A
B; is the i-th pixel of Image B

N is the number of pixels considered
A controls the capture radius

The optimal value iN and poor matches results in small measure values. The thiastcs
of this metric have been studied by Penney and Holden [4D][69

This image metric has the advantage of producing poor valires few pixels are considered.
This makes it consistent when its computation is subjech¢osize of the overlap region be-
tween the images. The capture radius of the metric can béateguvith the parameter. The
profile of this metric is very peaky. The sharp peaks of therimbelp to measure spatial mis-
alignment with high precision. Note that the notion of captradius is used here in terms of
the intensity domain, not the spatial domain. In that regahould be given in intensity units
and be associated with the differences in intensity thdtméke drop the metric by 50%.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html

228 Chapter 8. Image Registration

The metric is limited to images of the same image modalitye Tt that its derivative is large
at the central peak is a problem for some optimizers thataelyhe derivative to decrease as
the extrema are reached. This metric is also sensitive éatiohanges in intensity.

8.7.4 Mutual Information Metric

The itk::MutuallnformationimageTolmageMetric computes the mutual information be-
tween imageA and imageB. Mutual information (MI) measures how much information one
random variable (image intensity in one image) tells abootlzer random variable (image in-
tensity in the other image). The major advantage of usingdthat the actual form of the
dependency does not have to be specified. Therefore, commapging between two images
can be modeled. This flexibility makes MI well suited as aeri@in of multi-modality registra-
tion [71].

Mutual information is defined in terms of entropy. Let
H(A) = —/ pa(a)logpa(a)da (8.11)

be the entropy of random variab¥¢ H(B) the entropy of random variab®and

H(AB) = [pra(a.b)logpas(a.b) dadb (8.12)
be the joint entropy oA andB. If AandB are independent, then

Pas(a b) = pa(a)ps(b) (8.13)

and
H(A,B) =H(A)+H(B). (8.14)

However, if there is any dependency, then
H(A,B) <H(A)+H(B). (8.15)
The difference is called Mutual Information (A, B)

I(A,B) =H(A) +H(B) —H(A B) (8.16)

Parzen Windowing

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html

8.7. Metrics 229

In a typical registration problem, direct ac- Sigma
cess to the marginal and joint probability —_
densities is not available and hence the den-

sities must be estimated from the image data. ’HHHH
Parzen windows (also known as kernel den- Gray levels

sity estimators) can be used for this purpose.
In this scheme, the densities are constructed
by taking intensity sampleSfrom the image
and super-positioning kernel functiohy-)
centered on the elements®és illustrated in
Figure 8.16:

A variety of functions can be used as the
smoothing kernel with the requirement that
they are smooth, symmetric, have zero medaigure 8.16: In Parzen windowing, a continuous
and integrate to one. For example, boxcatfensity function is constructed by superimposing ker-
Gaussian and B-spline functions are suitabfel functions (Gaussian function in this case) cen-
candidates. A smoothing parameter is usegted on the intensity samples obtained from the im-

to scale the kernel function. The larger thege.

smoothing parameter, the wider the kernel

function used and hence the smoother the density estinfatee parameter is too large, fea-
tures such as modes in the density will get smoothed out. ®ottier hand, if the smoothing
parameter is too small, the resulting density may be tooyndike estimation is given by the
following equation.

p(a) ~ P*(a) = % ZSK (a—sj) (8.17)
sj€

Choosing the optimal smoothing parameter is a difficultaiest®e problem and beyond the scope
of this software guide. Typically, the optimal value of tmeaothing parameter will depend on
the data and the number of samples used.

Viola and Wells Implementation

OTB, through ITK, has multiple implementations of the mutinéormation metric. One of the
most commonly used isitk::MutuallnformationimageTolmageMetric and follows the
method specified by Viola and Wells in [89].

In this implementation, two separate intensity sam@esdR are drawn from the image: the
first to compute the density, and the second to approximatertropy as a sample mean:

H(A) = % ZRIogP*(rj). (8.18)

Gaussian density is used as a smoothing kernel, where thdasthdeviationo acts as the

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html

230 Chapter 8. Image Registration

smoothing parameter.

The number of spatial samples used for computation is definging the
SetNumberOfSpatialSamples() method. Typical values range from 50 to 100. Note
that computation involves aN x N loop and hence, the computation burden becomes very
expensive when a large number of samples is used.

The quality of the density estimates depends on the choidheostandard deviation of the
Gaussian kernel. The optimal choice will depend on the camtithe images. In our experience
with the toolkit, we have found that a standard deviation @f Works well for images that

have been normalized to have a mean of zero and standardidevid 1.0. The standard

deviation of the fixed image and moving image kernel can beseparately using methods
SetFixedImageStandardDeviation() andSetMovinglmageStandardDeviation()

Mattes et al. Implementation

Another form of mutual information metric available in ITK olfows the
method specified by Mattes et al. in [63] and is implemented the
itk::MattesMutuallnformationlmageTolmageMetric class.

In this implementation, only one set of intensity sampledresvn from the image. Using this

set, the marginal and joint probability density functio® is evaluated at discrete positions
or bins uniformly spread within the dynamic range of the iemg Entropy values are then
computed by summing over the bins.

The number of spatial samples used is set using mesaiddimberOfSpatialSamples() . The
number of bins used to compute the entropy values is s&etivumberOfHistogramBins()

Since the fixed image PDF does not contribute to the metrivateres, it does not need to be
smooth. Hence, a zero order (boxcar) B-spline kernel is fmedomputing the PDF. On the
other hand, to ensure smoothness, a third order B-splimeekisrused to compute the moving
image intensity PDF. The advantage of using a B-spline kewer a Gaussian kernel is that the
B-spline kernel has a finite support region. This is componatly attractive, as each intensity
sample only affects a small number of bins and hence doegqoire a\ x N loop to compute
the metric value.

During the PDF calculations, the image intensity valuediaearly scaled to have a minimum
of zero and maximum of one. This rescaling means that a fixsglide kernel bandwidth of
one can be used to handle image data with arbitrary magrétadelynamic range.

8.7.5 Kullback-Leibler distance metric

The itk::KullbackLeiblerCompareHistogramimageTolmageMet ric is yet another infor-
mation based metric. Kullback-Leibler distance measunesré¢lative entropy between two
discrete probability distributions. The distributiong abtained from the histograms of the two
input imagesA andB.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

8.7. Metrics 231

The Kullback-Liebler distance between two histogramsygigiby

Pa(i)
sz x log oo(0) (8.19)

The distance is always non-negative and is zero only if treedistributions are the same. Note
that the distance is not symmetric. In other wordk(A, B) # KL(B,A). Nevertheless, if the
distributions are not too dissimilar, the difference betwkL (A, B) andKL(B,A) is small.

The implementation in ITK is based on [16].

8.7.6 Normalized Mutual Information Metric

Given two imagesA andB, the normalized mutual information may be computed as

I(A/B) H(A)+H(B)
H(AB) H(AB)

NMI(A,B) =1+ (8.20)
where the entropy of the imaged,(A), H(B), the mutual information| (A,B) and the joint
entropyH (A, B) are computed as mentioned in 8.7.4. Details of the impleatient may be
found in the [38].

8.7.7 Mean Squares Histogram

The itk:MeanSquaresHistogramimageTolmageMetric is an alternative implementation
of the Mean Squares Metric. In this implementation the jbiistogram of the fixed and the
mapped moving image is built first. The user selects the numbbins to use in this joint
histogram. Once the joint histogram is computed, the biasvaited with an iterator. Given
that each bin is associated to a pair of intensities of thraféfixed intensity, moving intensity,
along with the number of pixels pairs in the images that felihis bin, it is then possible to
compute the sum of square distances between the interdfitieth images at the quantization
levels defined by the joint histogram bins.

This metric can be represented with Equation 8.21

MSH:ZZH(f,m)(f—m)Z (8.21)

whereH (f,m) is the count on the joint histogram bin identified with fixedage intensityf
and moving image intensity.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresHistogramImageToImageMetric.html

232 Chapter 8. Image Registration

8.7.8 Correlation Coefficient Histogram

The itk::CorrelationCoefficientHistogramimageTolmageMet ric computes the cross

correlation coefficient between the intensities in the fixaége and the intensities on the
mapped moving image. This metric is intended to be used igénaf the same modality

where the relationship between the intensities of the firebie and the intensities on the mov-
ing images is given by a linear equation.

The correlation coefficient is computed from the Joint hgston as

_ S¢Ym H(f,m) (f-m— f.-m)
YeH() ((F=1)2) - TmH(m) ((m—m)?)

WhereH (f,m) is the joint histogram count for the bin identified with thesfikimage intensity

f and the moving image intensity. The valuesf andm are the mean values of the fixed and
moving images respectivelid (f) andH(m) are the histogram counts of the fixed and moving
images respectively. The optimal value of the correlatiogefiicient is 1, which would indicate

a perfect straight line in the histogram.

(8.22)

8.7.9 Cardinality Match Metric

The itk::MatchCardinalitylmageTolmageMetric computes cardinality of the set of pixels
that match exactly between the moving and fixed images. Ierotords, it computes the
number of pixel matches and mismatches between the two Bnddes match is designed for
label maps. All pixel mismatches are considered equal venetiey are between label 1 and
label 2 or between label 1 and label 500. In other words, thgnihade of an individual label
mismatch is not relevant, or the occurrence of a label mismiatimportant.

The spatial correspondence between the fixed and moving esnag established us-
ing a itk:Transform using the SetTransform() method and an interpolator using
Setinterpolator() . Given that we are matching pixels with labels, it is advisab use
Nearest Neighbor interpolation.

8.7.10 Kappa Statistics Metric

The itk::KappaStatisticlmage TolmageMetric computes spatial intersection of two binary
images. The metric here is designed for matching pixels mimages with the same exact
value, which may be set usir@ptForegroundValue() . Given two image® and B, thek
coefficient is computed as

_ AN
A8

(8.23)

http://www.melaneum.com/OTB/doxygen/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KappaStatisticImageToImageMetric.html

8.8. Optimizers 233

where|A| is the number of foreground pixels in imade This computes the fraction of area
in the two images that is common to both the images. In the atatipn of the metric, only
foreground pixels are considered.

8.7.11 Gradient Difference Metric

This itk::GradientDifferencelmageTolmageMetric metric evaluates the difference in the
derivatives of the moving and fixed images. The derivativespassed through a functi%
and then they are added. The purpose of this metric is to flmsegistration on the edges
of structures in the images. In this way the borders exegelainfluence on the result of the
registration than do the inside of the homogeneous reginrisoimage.

8.8 Optimizers

Optimization algorithms are encapsulatedt&sOptimizer objects within OTB. Optimizers
are generic and can be used for applications other thantnagps. Within the registration
framework, subclasses oftk::SingleValuedNonLinearOptimizer are used to optimize
the metric criterion with respect to the transform paramsete

The basic input to an optimizer is a cost function object. e ttontext of registra-
tion, itk:lmageTolmageMetric classes provides this functionality. The initial param-
eters are set usin§etlnitialPosition() and the optimization algorithm is invoked by
StartOptimization() . Once the optimization has finished, the final parametersbeanb-
tained usindetCurrentPosition()

Some optimizers also allow rescaling of their individuatgraeters. This is convenient for
normalizing parameters spaces where some parameters iff@vend dynamic ranges. For
example, the first parameter dtk::Euler2DTransform represents an angle while the last
two parameters represent translations. A unit change iledrag a much greater impact on an
image than a unit change in translation. This difference@lesappears as long narrow valleys
in the search space making the optimization problem mofeuwlif Rescaling the translation
parameters can help to fix this problem. Scales are repesbastanitk::Array of doubles
and set defined usirgptScales()

There are two main types of optimizers in OTB. In the first type find optimizers that are
suitable for dealing with cost functions that return a singhlue. These are indeed the most
common type of cost functions, and are knowrSaggle Valuedunctions, therefore the corre-
sponding optimizers are known 8ingle Valuedptimizers. The second type of optimizers are
those suitable for managing cost functions that returniplaltvalues at each evaluation. These
cost functions are common in model-fitting problems and am@n asMulti Valuedor Multi-
variatefunctions. The corresponding optimizers are thereforeddlultipleValuedoptimizers

in OTB.

The itk::SingleValuedNonLinearOptimizer is the base class for the first type of optimiz-

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Optimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SingleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Array.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SingleValuedNonLinearOptimizer.html

Image Registration

Chapter 8.

‘ : itk::CostFunction |
a

‘ itk::NonLinearOptimizer

]

‘ itk::SingleValuedCostFunction ‘<— --- { itk::SingleValuedNonLinearOptimizer ‘ ‘ itk::MultipleValuedNonLinearOptimizer)— -- >‘ \tk::Multlple\/a\uedCostFunctlor{

t
| t

itk::MultipleValuedNonLinearVnlOptimizer ‘
‘ itk::SPSAOptimizer

‘ itk::0nePlusOneEvolutionaryOptimizer

‘ itk::SingleValuedNonLinearVnlOptimizer ‘ 1\

itk::RegularStepGradientDescentBaseOptimizer

itk::AmoebaOptimizer
P VxLivnl

234

vnl_levenberg_marquardt

itk::FRPROptimizer

itk::ConjugateGradientOptimizer

‘ itk::LevenbergMarquardtOptimizer ‘
itk::PowellOptimizer
R E
I
}—L@
I
|

vnl_amoeba

I
I
I
I
I
O vnl_conjugate_gradient |
itk:LBFGSOptimizer | |
¢ rovnl_lbgs i

\ 1

itk::VersorRigid3DTransformOptimizer ‘ ‘ itk::QuaternionRigid TransformGradientDescentOptimizer

itk::RegularStepGradientDescentOptimizer ‘

NN

‘ itk::GradientDescentOptimizer ‘

itk::VersorTransformOptimizer

Figure 8.17:Class diagram of the optimizers hierarchy.

8.8. Optimizers 235

ers while the itk::MultipleValuedNonLinearOptimizer is the base class for the second
type of optimizers.

The types of single valued optimizer currently availabl©ifB are:

e Amoeba Nelder-Meade downhill simplex. This optimizer is actyathplemented in the
vxlivnl numerics toolkit. The ITK clasgk::AmoebaOptimizer is merely an adaptor
class.

e Conjugate Gradient: Fletcher-Reeves form of the conjugate gradient with oheuit
preconditioning (itk::ConjugateGradientOptimizer). It is also an adaptor to an
optimizer invnl .

e Gradient Descent Advances parameters in the direction of the gradient witerestep
size is governed by a learning ratik(:GradientDescentOptimizer).

e Quaternion Rigid Transform Gradient Descent A specialized version of GradientDe-
scentOptimizer for QuaternionRigidTransform parametefsere the parameters repre-
senting the quaternion are normalized to a magnitude of beach iteration to represent
a pure rotation (tk::QuaternionRigidTransformGradientDescent).

e LBFGS: Limited memory Broyden, Fletcher, Goldfarb and Shannonimization. It is
an adaptor to an optimizer iml (itk::LBFGSOptimizer).

e LBFGSB: A modified version of the LBFGS optimizer that allows to sfpebounds for
the parameters in the search space. It is an adaptor to aningtinnetlib . Details on
this optimizer can be found in [11, 12]tk::LBFGSBOptimizer).

e One Plus One Evolutionary. Strategy that simulates the biological evolution of a get o
samples in the search spad:(OnePlusOneEvolutionaryOptimizer.). Details on
this optimizer can be found in [83].

e Regular Step Gradient Descent Advances parameters in the direction of
the gradient where a bipartition scheme is used to compuée dstep size (
itk::RegularStepGradientDescentOptimizer).

e Powell Optimizer: Powell optimization method. For an N-dimensional paranspace,
each iteration minimizes(maximizes) the function in N t{aily orthogonal) directions.
This optimizer is described in [72].itk::PowellOptimizer).

e SPSA Optimizer. Simultaneous Perturbation Stochastic Approximation Hddt
This optimizer is described irhttp://www.jhuapl.edu/SPSA and in [81]. (
itk:: SPSAOptimizer).

e Versor Transform Optimizer : A specialized version of the RegularStepGradientDes-
centOptimizer for VersorTransform parameters, where threeat rotation is composed
with the gradient rotation to produce the new rotation vertdollows the definition of
versor gradients defined by Hamilton [39}k(:VersorTransformOptimizer).

http://www.melaneum.com/OTB/doxygen/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1AmoebaOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConjugateGradientOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransformGradientDescent.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSBOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1OnePlusOneEvolutionaryOptimizer..html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PowellOptimizer.html
http://www.jhuapl.edu/SPSA
http://www.melaneum.com/OTB/doxygen/classitk_1_1SPSAOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransformOptimizer.html

236 Chapter 8. Image Registration

e Versor Rigid3D Transform Optimizer : A specialized version of the RegularStepGra-
dientDescentOptimizer for VersorRigid3DTransform pagtens, where the current ro-
tation is composed with the gradient rotation to produceniw rotation versor. The
translational part of the transform parameters are updasedsually done in a vector
space. (tk::VersorRigid3DTransformOptimizer).

A parallel hierarchy exists for optimizing multiple-vallieost functions. The base optimizer in
this branch of the hierarchy is thig::MultipleValuedNonLinearOptimizer whose only
current derived class is:

e Levenberg Marquardt: Non-linear least squares minimization. Adapted to anmoigtr
invnl (itk::LevenbergMarquardtOptimizer). This optimizer is described in [72].

Figure 8.17 illustrates the full class hierarchy of optierin OTB. Optimizers in the lower
right corner are adaptor classes to optimizers existingnénvtliivnl numerics toolkit. The
optimizers interact with thétk::CostFunction class. In the registration framework this cost
function is reimplemented in the form of ImageTolmageMetri

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LevenbergMarquardtOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CostFunction.html

CHAPTER

NINE

Disparity Map Estimation

This chapter introduces the tools available in OTB for thinestion of geometric disparities
between images.

9.1 Disparity Maps

The problem we want to deal with is the one of the automatipatisy map estimation of
images acquired with different sensors. By different ses)sse mean sensors which produce
images with different radiometric properties, that is,sm#s which measure different physical
magnitudes: optical sensors operating in different spebtinds, radar and optical sensors, etc.

For this kind of image pairs, the classical approach of fingetation [54, 30], can not
always be used to provide the required accuracy, since itisagty measure (the correla-
tion coefficient) can only measure similarities up to an affrmnsformation of the radiometries.

There are two main questions which can be asked about whatwetwdo:

1. Can we define what the similarity is between, for instaaagadar and an optical image?

2. What doedine registrationmean in the case where the geometric distortions are so big
and the source of information can be located in differentgda(for instance, the same
edge can be produced by the edge of the roof of a building irpticad image and by the
wall-ground bounce in a radar image)?

We can answer by saying that the images of the same objedhetithy different sensors are
two different representations of the same reality. For #iraes spatial location, we have two
different measures. Both informations come from the samecsoand thus they have a lot of
common information. This relationship may not be perfeat,ibcan be evaluated in a relative
way: different geometrical distortions are compared amddhe leading to the strongest link

238 Chapter 9. Disparity Map Estimation

between the two measures is kept.

When working with images acquired with the same (type of) seose can use a very effective
approach. Since a correlation coefficient measure is r@ngsfast for similar images, one can
afford to apply it in every pixel of one image in order to séwsfar the corresponding HP in the
other image. One can thus build a deformation grid (a sammfrthe deformation map). If
the sampling step of this grid is short enough, the intetpmiausing an analytical model is not
needed and high frequency deformations can be estimatedofithined grid can be used as a
re-sampling grid and thus obtain the registered images.

No doubt, this approach, combined with image interpolatemhniques (in order to estimate
sub-pixel deformations) and multi-resolution strategdlews for obtaining the best perfor-
mances in terms of deformation estimation, and hence foadb@matic image registration.

Unfortunately, in the multi-sensor case, the correlatioafficient can not be used. We will
thus try to find similarity measures which can be applied erthulti-sensor case with the same
approach as the correlation coefficient.

We start by giving several definitions which allow for therfalization of the image registration
problem. First of all, we define the master image and the siaage:

Definition 1 Master image: image to which other images will be registeiitzigeometry is
considered as the reference.

Definition 2 Slave image: image to be geometrically transformed in otddre registered to
the master image.

Two main concepts are the onesifilarity measureind the one ofeometric transformatian

Definition 3 Let | and J be two images and let ¢ a similarity criterion, wd samilarity mea-
sure any scalar, strictly positive function

S(1,9) = (1,3,0). (9.1)
& has an absolute maximum when the two images | and J are idéimi¢he sense of the

criterion c.

Definition 4 A geometric transformation T is an operator which, appliedte coordinates
(x,y) of a point in the slave image, gives the coordindie) of its HP in the master image:

()+(3)

9.1. Disparity Maps 239

Finally we introduce a definition for the image registratfpblem:
Definition 5 Registration problem:

1. determine a geometric transformation T which maximizesimilarity between a master
image | and the result of the transformatiorT:

Arngax(S;(I,T 0J)); (9.3)

2. re-sampling of J by applying T.

9.1.1 Geometric deformation modeling

The geometric transformation of definition 4 is used for theection of the existing deforma-
tion between the two images to be registered. This defoamatbntains informations which
are linked to the observed scene and the acquisition conditiThey can be classified into 3
classes depending on their physical source:

1. deformations linked to the mean attitude of the sensaid@nce angle, presence or ab-
sence of yaw steering, etc.);

2. deformations linked to a stereo vision (mainly due to tipography);

3. deformations linked to attitude evolution during the @sidion (vibrations which are
mainly present in push-broom sensors).

These deformations are characterized by their spatialfnecjes and intensities which are
summarized in table 9.1.

Depending on the type of deformation to be corrected, itsehadl be different. For example,
if the only deformation to be corrected is the one introdubgdhe mean attitude, a physical
model for the acquisition geometry (independent of the ienegntents) will be enough. If
the sensor is not well known, this deformation can be appnaiéd by a simple analytical
model. When the deformations to be modeled are high frequearalytical (parametric)
models are not suitable for a fine registration. In this case,has to use a fine sampling of the

Intensity | Spatial Frequency
Mean Attitude Strong Low
Stereo Medium | High and Medium
Attitude evolution Low Low to Medium

Table 9.1: Characterization of the geometric deformatmmees

240 Chapter 9. Disparity Map Estimation

deformation, that means the use of deformation grids. Theds give, for a set of pixels of
the master image, their location in the slave image.

The following points summarize the problem of the defororatinodeling:

1. An analytical model is just an approximation of the defation. It is often obtained as
follows:

(a) Directly from a physical model without using any imagetemt information.

(b) By estimation of the parameters of an a priori model (pofyial, affine, etc.).
These parameters can be estimated:

i. Either by solving the equations obtained by taking HP. FRecan be manually
or automatically extracted.

ii. Or by maximization of a global similarity measure.

2. A deformation grid is a sampling of the deformation map.

The last point implies that the sampling period of the gridstripe short enough in order to
account for high frequency deformations (Shannon thear@hgourse, if the deformations are
non stationary (it is usually the case of topographic de&dioms), the sampling can be irregular.

As a conclusion, we can say that definition 5 poses the ragjmtrproblem as an optimization
problem. This optimization can be either global or localhnat similarity measure which can
also be either local or global. All this is synthesized inés®h.2.

The ideal approach would consist in a registration whicbéally optimized, both in similarity
and deformation, in order to have the best registrationityudihis is the case when deforma-
tion grids with dense sampling are used. Unfortunately tlise is the most computationally
heavy and one often uses either a low sampling rate of the gridhe evaluation of the
similarity in a small set of pixels for the estimation of anaduical model. Both of these

Geometric model | Similarity measure| Optimization of the
deformation
Physical model None Global
Analytical model Local Global
with a priori HP
Analytical model Global Global
without a priori HP
Grid Local Local

Table 9.2: Approaches to image registration

9.1. Disparity Maps 241

Candidate points

Estimation window

Search window

Similarity estimation

Similarity optimization

Optimum

DDy

Reference Image Secondary Image

Figure 9.1: Estimation of the correlation surface.

choices lead to local registration errors which, dependingthe topography, can amount
several pixels.

Even if this registration accuracy can be enough in manyiegpdns, (ortho-registration, im-
port into a GIS, etc.), it is not acceptable in the case of fiegimn, multi-channel segmentation
or change detection [86]. This is why we will focus on the peob of deformation estimation
using dense grids.

9.1.2 Similarity measures

The fine modeling of the geometric deformation we are lookarqneeds for the estimation of
the coordinates of nearly every pixel in the master imageéthe slave image. In the classical
mono-sensor case where we use the correlation coefficieptaeeed as follows.

The geometric deformation is modeled by local rigid displaents. One wants to estimate the
coordinates of each pixel of the master image inside theestaage. This can be represented
by a displacement vector associated to every pixel of thetenamage. Each of the two
components (lines and columns) of this vector field will bkecbdeformation grid.

We use a small window taken in the master image and we tesirtiilarsty for every possible
shift within an exploration area inside the slave image (Bgi1).

That means that for each position we compute the correlatiefficient. The result is a corre-
lation surface whose maximum gives the most likely locatt digtween both images:

242 Chapter 9. Disparity Map Estimation

Pr1,a (AX7 Ay) =
1 Syy(1(%y) —m) (I(X+ A%,y +Ay) —my) (9.4)
N 010y '

In this expressionN is the number of pixels of the analysis windomy and m; are the
estimated mean values inside the analysis window of reispgctmagel and imagel andg,
andaj are their standard deviations.

Quality criteria can be applied to the estimated maximunrdéento give a confidence factor to
the estimated shift: width of the peak, maximum value, etth-Bixel shifts can be measured
by applying fractional shifts to the sliding window. Thische done by image interpolation.

The interesting parameters of the procedure are:

e The size of the exploration area: it determines the comiomaltload of the algorithm
(we want to reduce it), but it has to be large enough in ordeotee with large deforma-
tions.

e The size of the sliding window: the robustness of the cotimiacoefficient estimation
increases with the window size, but the hypothesis of laga shifts may not be valid
for large windows.

The correlation coefficient cannot be used with originalygexel images in the multi-sensor
case. It could be used on extracted features (edges, eticthgfeature extraction can introduce
localization errors. Also, when the images come from sengsing very different modalities,

it can be difficult to find similar features in both images. Ihistcase, one can try to find the
similarity at the pixel level, but with other similarity mgares and apply the same approach as
we have just described.

The concept of similarity measure has been presented initiwiir8. The difficulty of the
procedure lies in finding the functiohwhich properly represents the criterionWe also need
that f be easily and robustly estimated with small windows. Werekteere what we proposed
in [43].

9.1.3 The correlation coefficient

We remind here the computation of the correlation coefficietween two image windowls
andJ. The coordinates of the pixels inside the windows are remtesl by(x,y):

9.2. Disparity Map Estimation Framework 243

1 2xy(Hxy) —m)(I(xy) —my).

9.5
N 010y (9:5)

p(1,3) =
In order to qualitatively characterize the different samity measures we propose the following
experiment. We take two images which are perfectly registand we extract a small window
of sizeN x M from each of the images (this size is set to 30101 for this experiment). For
the master image, the window will be centered on coordinaieso) (the center of the image)
and for the slave image, it will be centered on coordingxgs- Ax,Yp). With different values
of Ax (from -10 pixels to 10 pixels in our experiments), we obtamnestimate op(l,J) as a
function of Ax, which we write ap(Ax) for short. The obtained curve should have a maximum
for Ax = 0, since the images are perfectly registered. We would &edd have an absolute
maximum with a high value and with a sharp peak, in order teetegood precision for the
shift estimate.

9.2 Disparity Map Estimation Framework

Taking figure 9.1 as a starting point, we can generalize theoagh by letting the user choose:

e the similarity measure;

¢ the geometric transform to be estimated (see definition 4);
In order to do this, we will use the ITK registration framewdocally on a set of nodes. Once
the disparity is estimated on a set of nodes, we will use iteioegate a deformation field: the
dense, regular vector field which gives the translation tafygied to a pixel of the secondary
image to be positioned on its homologous point of the mastage.

9.3 Simple Disparity Map Estimation

The source code for this example can be found in the file

Examples/DisparityMap/SimpleDisparityMapEstimationE xample.cxx
This example demonstrates the use of tbi::DisparityMapEstimationMethod , along
with the otb::NearestPointDeformationFieldGenerator . The first filter performs defor-

mation estimation according to a given transform, usingesidied ITK registration framework.
It takes as input a possibly non regular point set and pralagmint set with associated point
data representing the deformation.

The second filter generates a deformation field by using seasgghbor interpolation on the
deformation values from the point set. More advanced metfmddeformation field interpola-
tion are also available.

http://www.melaneum.com/OTB/doxygen/classotb_1_1DisparityMapEstimationMethod.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html

244 Chapter 9. Disparity Map Estimation

The first step toward the use of these filters is to include thpgr header files.

#include "otbDisparityMapEstimationMethod.h"

#include "itkTranslationTransform.h"

#include "itkNormalizedCorrelationimageTolmageMetric .h"
#include "itkWindowedSincInterpolatelmageFunction.h"

#include "itkZeroFluxNeumannBoundaryCondition.h"

#include "itkGradientDescentOptimizer.h"

#include "otbNearestPointDeformationFieldGenerator.h "
#include "itkWarplmageFilter.h"

Then we must decide what pixel type to use for the image. Wesdhto do all the computation
in floating point precision and rescale the results betweand255 in order to export PNG
images.

typedef double PixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimensi®tease note that the
oth::NearestPointDeformationFieldGenerator generates aoth::Vectorimage to rep-
resent the deformation field in both image directions.

typedef otb::Image<PixelType,Dimension> ImageType;
typedef oth::Image<OutputPixelType,Dimension> Outputl mageType;

The next step is to define the transform we have chosen to ntledaleformation. In this
example the deformation is modeled aglaTranslationTransform

typedef itk:: TranslationTransform<double,Dimension> T ransformType;
typedef TransformType::ParametersType ParametersType;

Then we define the metric we will use to evaluate the local stegfion be-
tween the fixed and the moving image. In this example we clibosiee
itk::NormalizedCorrelationimageTolmageMetric

typedef itk::NormalizedCorrelationimageTolmageMetric <ImageType,
ImageType> MetricType;

Disparity map estimation implies evaluation of the movingage at non-grid po-
sition. Therefore, an interpolator is needed. In this edamwe choosed the
itk::WindowedSincInterpolatelmageFunction

http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1WindowedSincInterpolateImageFunction.html

9.3. Simple Disparity Map Estimation 245

typedef itk::Function::HammingWindowFunction<3> Windo wFunctionType;

typedef itk::ZeroFluxNeumannBoundaryCondition<imageT ype> ConditionType;

typedef itk::WindowedSincInterpolatelmageFunction<im ageType,3,
WindowFunctionType,ConditionType ,double> Interpolato rType;

To perform local registration, an optimizer is needed. Iis texample we choosed the
itk::GradientDescentOptimizer

typedef itk::GradientDescentOptimizer OptimizerType;

Now we will define the point set to represent the point wherestmpute local disparity.

typedef itk::PointSet<ParametersType,Dimension> Point SetType;

Now we define the disparity map estimation filter.

typedef oth::DisparityMapEstimationMethod<ImageType,
ImageType,PointSetType> DMEstimationType;
typedef DMEstimationType::SizeType SizeType;

The input image reader also has to be defined.

typedef otb::imageFileReader<imageType> ReaderType;

Two readers are instantiated : one for the fixed image, andavribe moving image.

ReaderType::Pointer fixedReader = ReaderType::New();
ReaderType::Pointer movingReader = ReaderType::New();

fixedReader->SetFileName(argv[1]);
movingReader->SetFileName(argv[2]);
fixedReader->Update();
movingReader->Update();

We will the create a regular point set where to compute thal ldisparity.

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html

246 Chapter 9. Disparity Map Estimation

SizeType fixedSize =

fixedReader->GetOutput()->GetLargestPossibleRegion().GetSize();
unsigned int NumberOfXNodes = (fixedSize[0]-2*atoi(argv [71)-1)
/atoi(argv[5));
unsigned int NumberOfYNodes = (fixedSize[1]-2*atoi(argv [7D-1)
/atoi(argv[6]);

ImageType::IndexType firstNodelndex;
firstNodelndex[0] = atoi(argv[7]);
firstNodelndex[1] = atoi(argv[7]);

PointSetType::Pointer nodes = PointSetType::New();
unsigned int nodeCounter = 0;

for(unsigned int x=0; x<NumberOfXNodes; x++)
for(unsigned int y=0; y<NumberOfYNodes; y++)

PointType p;

p[0] = firstNodelndex[0]+x*atoi(argv(5]);

p[1] = firstNodelndex[1]+y*atoi(argv[6]);
nodes->SetPoint(nodeCounter++,p);

1
We build the transform, interpolator, metric and optimiiarthe disparity map estimation filter.

TransformType::Pointer transform = TransformType::New();

OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->MinimizeOn();

optimizer->SetLearningRate(atof(argv[9]));
optimizer->SetNumberOfiterations(atoi(argv[10]));

InterpolatorType::Pointer interpolator = InterpolatorT ype::New();

MetricType::Pointer metric = MetricType::New();
metric->SetSubtractMean(true);

We then set up the disparity map estimation filter. This filkdr perform a local registration at
each point of the given point set using the ITK registratinfework. It will produce a point
set whose point data reflects the disparity locally arouedagsociated point.

Point data will contains the following data :

1. The final metric value found in the registration process,

9.3. Simple Disparity Map Estimation 247

2. the deformation value in the first image direction,
3. the deformation value in the second image direction,

4. the final parameters of the transform.

Please note that in the case ofita:TranslationTransform , the deformation values and
the transform parameters are the same.

DMEstimationType::Pointer dmestimator = DMEstimationTy pe::New();

dmestimator->SetTransform(transform);
dmestimator->SetOptimizer(optimizer);
dmestimator->Setinterpolator(interpolator);
dmestimator->SetMetric(metric);

SizeType windowSize, explorationSize;
explorationSize.Fill(atoi(argv[7]));
windowSize.Fill(atoi(argv[8]));

dmestimator->SetWinSize(windowSize);
dmestimator->SetExploSize(explorationSize);

The initial transform parameters can be set via 8SstintialTransformParameters()
method. In our case, we simply fill the parameter array withvalues.

DMEstimationType::ParametersType
initialParameters(transform->GetNumberOfParameters())

initialParameters[0] = 0.0;

initialParameters[1] = 0.0;

dmestimator->Setlnitial TransformParameters(initialP arameters);

Now we can set the input for the deformation field estimatitterfi Fixed image can be set
using theSetFixedimage() = method, moving image can be set using SetMovingimage()
and input point set can be set using SetPointSet() method.

dmestimator->SetFixedimage(fixedReader->GetOutput());
dmestimator->SetMovingImage(movingReader->GetOutput 0);
dmestimator->SetPointSet(nodes);

Once the estimation has been performed bydtheDisparityMapEstimationMethod , one
can generate the associated deformation field (that meamsdtion in first and second image
direction). It will be represented asab::Vectorimage

http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DisparityMapEstimationMethod.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

248 Chapter 9. Disparity Map Estimation

typedef otb::Vectorimage<PixelType,Dimension> Deforma tionFieldType;
For the deformation field estimation, we will use the
oth::NearestPointDeformationFieldGenerator . This filter will perform a nearest

neighbor interpolation on the deformation values in thenpsét data.

typedef oth::NearestPointDeformationFieldGenerator<P ointSetType,
DeformationFieldType> GeneratorType;

The disparity map estimation filter is instanciated.

GeneratorType::Pointer generator = GeneratorType::New();

We must then specify the input point set using SedPointSet() method.

generator->SetPointSet(dmestimator->GetOutput());

One must also specify the origin, size and spacing of theubatgformation field.

generator->SetOutputOrigin(fixedReader->GetOutput() ->GetOrigin());

generator->SetOutputSpacing(fixedReader->GetOutput()->GetSpacing());

generator->SetOutputSize(fixedReader->GetOutput()
->GetLargestPossibleRegion().GetSize());

The local registration process can lead to wrong deformatadues and transform parameters.
To Select only points in point set for which the registratppocess was succesful, one can set
a threshold on the final metric value : points for which thechlte final metric value is below
this threshold will be discarded. This threshold can be st the SetMetricThreshold()

method.

generator->SetMetricThreshold(atof(argv[11]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html

9.3. Simple Disparity Map Estimation 249

The following classes provide similar functionality:

o oth::NNearestPointsLinearInterpolateDeformationFiel dGenerator

oth::BSplinesinterpolateDeformationFieldGenerator

oth::NearestTransformDeformationFieldGenerator

oth::NNearestTransformsLinearInterpolateDeformation FieldGenerator

oth::BSplinesinterpolateTransformDeformationFieldGe nerator

Now we can warp our fixed image according to the estimatedroheafion field. This will be
performed by theitk::WarplmageFilter . First, we define this filter.

typedef itk::WarplmageFilter<imageType,ImageType,
DeformationFieldType> ImageWarperType;

Then we instantiate it.
ImageWarperType::Pointer warper = ImageWarperType::New 0;

We set the input image to warp using Betlnput() method, and the deformation field using
the SetDeformationField() method.

warper->Setinput(movingReader->GetOutput());
warper->SetDeformationField(generator->GetOutput()) ;
warper->SetOutputOrigin(fixedReader->GetOutput()->G etOrigin());
warper->SetOutputSpacing(fixedReader->GetOutput()-> GetSpacing());

In order to write the result to a PNG file, we will rescale it opraper range.

typedef itk::RescalelntensitylmageFilter<imageType,
OutputimageType> RescalerType;

RescalerType::Pointer outputRescaler = RescalerType::N ew();
outputRescaler->Setlnput(warper->GetOutput());
outputRescaler->SetOutputMaximum(255);
outputRescaler->SetOutputMinimum(0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1NNearestPointsLinearInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BSplinesInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestTransformDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NNearestTransformsLinearInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BSplinesInterpolateTransformDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1WarpImageFilter.html

250 Chapter 9. Disparity Map Estimation

We can now write the image to a file. The filters are executedinking theUpdate() method.

typedef oth::ImageFileWriter<OutputimageType> WriterT ype;

WriterType::Pointer outputWriter = WriterType::New();
outputWriter->Setlnput(outputRescaler->GetOutput())
outputWriter->SetFileName(argv(4]);
outputWriter->Update();

We also want to write the deformation field along the first i@ to a file. To achieve this we
will use the otb::MultiToMonoChannelExtractROI filter.

typedef otb::MultiToMonoChannelExtractROI<PixelType,
PixelType> ChannelExtractionFilterType;

ChannelExtractionFilterType::Pointer channelExtracto r
= ChannelExtractionFilterType::New();

channelExtractor->Setlnput(generator->GetOutput());
channelExtractor->SetChannel(1);

RescalerType::Pointer fieldRescaler = RescalerType::Ne w();
fieldRescaler->Setlnput(channelExtractor->GetOutput 0);
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);

WriterType::Pointer fieldWriter = WriterType::New();
fieldWriter->Setinput(fieldRescaler->GetOutput());
fieldWriter->SetFileName(argv(3]);
fieldWriter->Update();

Figure 9.2 shows the result of applying disparity map edionaon a regular point set, followed
by deformation field estimation and fixed image resamplinguoitkonos image. The moving
image is the fixed image warped with a sinusoidal deformatiithh a 3-pixels amplitude and a
170-pixels period. Please note that there are more effisiap$ to interpolate the deformation
field than nearest neighbor, including BSplines fitting.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html

9.3. Simple Disparity Map Estimation 251

Figure 9.2:From left to right and top to bottom: fixed input image, moving image with a sinusoid deforma-
tion, estimated deformation field in the horizontal direction, resampled moving image.

CHAPTER

TEN

Ortho-registration

Bundle-block

¢ Homologous
Adjustment ’

Points ’
Sensor N Map Pro-
'_ '_
Input Series Geographic Geometry Cartographic Geometry

DEM

Figure 10.11mage Ortho-registration Procedure.

This chapter introduces the functionnalities availabl®iB for image ortho-registration. We
define ortho-registration as the procedure allowing todfiGmm an image in sensor geometry
to a geographic or cartographic projection.

Figure 10.1 shows a synoptic view of the different stepslireain a classical ortho-registration
processing chain able to deal with image series. These atefike following:

e Sensor modelling: the geometric sensor model allows toeximage coordinates (line,
column) into geographic coordinates (latitude, longidu@derigorous modelling needs a
digital elevation model (DEM) in order to take into accoume terrain topography.

254 Chapter 10. Ortho-registration

e Bundle-block adjustment: in the case of image series, tloeng&ic models and their
parameters can be refined by using homologous points bettheeamages. This is an
optional step and not currently implemented in OTB.

e Map projection: this step allows to go from geographic camates to some specific
cartographic projection as Lambert, Mercator or UTM.

10.1 Sensor Models

A sensor model is a set of equations giving the relationskipveen image pixe{l,c) co-
ordinates and groun@X,Y) coordinates for every pixel in the image. Typically, the grd
coordinates are given in a geographic projection (latitlmiggitude). The sensor model can be
expressed either from image to ground — forward model — an fgoound to image — inverse
model. This can be written as follows:

Forward
X = fy(l,¢,h,8) Y = fy(l,c,h,8)

Inverse
l=g(X,Y,h,8) c=gc(X,Y,h,0)

Where 8 is the set of parameters which describe the sensor and thés#icm geometry
(platform altitude, viewing angle, focal length for opficensors, doppler centroid for SAR
images, etc.).

In OTB, sensor models are implemented is:Transform s (see section 8.6 for details),
which are the appropiate way to express coordinate changdé® base class for sensor
models is oth::SensorModelBase from which the classesth::InverseSensorModel and
oth::ForwardSensorModel inherit.

As one may note from the model equations, the height of thergtoh, must be known.
Usually, that means that a Digital Elevation Model, DEM, Wi used.

10.1.1 Types of Sensor Models

There exist two main types of sensor models. On one hand, we tha so-callegbhysical

models which are rigorous, complex, eventually highly non-lineguations of the sensor
geometry. As such, they are difficult to inverse (obtain tineeise model from the forward
one and vice-versa). They have the significant advantagewhdy parameters with physical
meaning (angles, distances, etc.). They are specific of ®atdor, which means that a library

http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SensorModelBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1InverseSensorModel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ForwardSensorModel.html

10.1. Sensor Models 255

of models is required in the software. A library which has ®updated every time a new
sensor is available.

On the other hand, we have general analytical models, whpgroaimate the physical
models. These models can take the form of polynomials avgati polynomials, the so-called
rational polynomial functions or Rational Polynomial Cii@énts, RPC, also known dapid
Positioning Capability Since they are approximations, they are less accuratethlegrhysical
models. However, the achieved accuracy is usually highhéncase of Rliades, RPC models
have errors lower than 0.02 pixels with respect to the playsimdel. Since these models have
a standard form they are easier to use and implement. Howtinsr have the drawback of
having parameters (coefficients, actually) without phgisiaeaning.

OTB, through the use of the OSSIM libraryhtp://www.ossim.org — offers models for
most of current sensors either through a physical or an &calapproach. This is transparent
for the user, since the geometrical model for a given imagesiaintiated using the information
stored in its meta-data.

10.1.2 Using Sensor Models

The transformation of an image in sensor geometry to gebgrggometry can be done using
the following steps.

1. Read image meta-data and instantiate the model with tea giarameters.
2. Define the ROI in ground coordinates (this is your outpueparray)
3. lterate through the pixels of coordinate§Y):

(a) Gethfromthe DEM
(b) Compute(c,) = G(X,Y,h,6)
(c) Interpolate pixel values ffc,) are not grid coordinates.

Actually, in OTB, you don't have to manually instantiate 8ensor model which is appropriate
to your image. That is, you don’t have to manually choose aT&@ a Quickbird sensor
model. This task is automatically performed by tht::ImageFileReader class in a sim-
ilar way as the image format recognition is done. The appatpisensor model will then be
included in the image meta-data, so you can access it wheledee

The source code for this example can be found in the file
Examples/Projections/SensorModelExample.cxx

This example illustrates how to use the sensor model read intage meta-data in order to
perform ortho-rectification. This is a very basic, stepsbgp example, so you understand the

http://www.ossim.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

256 Chapter 10. Ortho-registration

different components involved in the process. When perfogmeal ortho-rectifications, you
can use the example presented in section 10.3.

We will start by including the header file for the inverse semaodel.

#include "otblnverseSensorModel.h"

As explained before, the first thing to do is to create the@em®del in order to transform the
ground coordinates in sensor geometry coordinates. Thetgemodel will automatically be
created by the image file reader. So we begin by declaring/piestfor the input image and the
image reader.

typedef otb::lmage<unsigned int, 2> ImageType;
typedef oth::ImageFileReader<imageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

reader->SetFileName(argv[1]);

ImageType::Pointer inputimage=reader->GetOutput();

We have just instantiated the reader and set the file nam#hdiuhage data and meta-data has
not yet been accessed by it. Since we need the creation oétis®rsmodel and all the image
information (size, spacing, etc.), but we do not want to r@dpixel data — it could be huge —
we just ask the reader to generate the output informatiodetee

reader->GenerateOutputinformation();

std::cout << "Original input imagine spacing: "<<
reader->GetOutput()->GetSpacing() << std::endl;

We can now instantiate the sensor model — an inverse ones giaovant to convert ground
coordinates to sensor geometry. Note that the choice ofgbeific model (SPOTS5, Ikonos,
etc.) is done by the reader and we only need to instantiateeriganodel.

typedef oth::InverseSensorModel<double> ModelType;
ModelType::Pointer ~ model= ModelType::New();

The model is parameterized by passing to itkbgword listcontaining the needed information.

model->SetimageGeometry(reader->GetOutput()->Getima geKeywordlist());

10.1. Sensor Models 257

Since we can not be sure that the image we read actually hasrsedel information, we
must check for the model validity.

if(lmodel)
{

std::cerr << "Unable to create a model" << std::endl;
return 1;

}

The types for the input and output coordinate points can bedezlared. The same is done for
the index types.

ModelType::OutputPointType inputPoint;
typedef itk::Point <double, 2> PointType;
PointType outputPoint;

ImageType::IndexType currentindex;
ImageType::IndexType currentindexBis;
ImageType::IndexType pixelindexBis;

We will now create the output image over which we will iterateorder to transform ground
coordinates to sensor coordinates and get the correspppiiel values.

ImageType::Pointer outputimage = ImageType::New();
ImageType::PixelType pixelValue;

ImageType::IndexType start;

start[0]=0;

start[1]=0;

ImageType::SizeType size;

size[0]=atoi(argv[5]);
size[1]=atoi(argv[6]);

The spacing in y direction is negative since origin is theargeft corner.

ImageType::SpacingType spacing;

258 Chapter 10. Ortho-registration

spacing[0]=0.00001,;
spacing[1]=-0.00001;

ImageType::PointType origin;
origin[0]=strtod(argv[3], NULL); INongitude
origin[1]=strtod(argv[4], NULL); INattitude

ImageType::RegionType region;

region.SetSize(size);
region.Setindex(start);

outputimage->SetOrigin(origin);
outputimage->SetRegions(region);
outputimage->SetSpacing(spacing);
outputimage->Allocate();

We will now instantiate an extractor filter in order to getinmpegions by manual tiling.

typedef itk::ExtractimageFilter<imageType,ImageType> ExtractType;
ExtractType::Pointer extract=ExtractType::New();

Since the transformed coordinates in sensor geometry ntdyeriateger ones, we will need an
interpolator to retrieve the pixel values (note that theumses that the input image was correctly
sampled by the acquisition system).

typedef itk::LinearInterpolatelmageFunction<ImageTyp e, double>
InterpolatorType;
InterpolatorType::Pointer interpolator=InterpolatorT ype::New();

We proceed now to create the image writer. We will also useiemplugged to the output of
the extractor filter which will write the temporary extragteegions. This is just for monitoring
the process.

typedef otb::iImage<unsigned char, 2> CharlmageType;

typedef oth::ImageFileWriter<CharlmageType> CharWrite IType;

typedef otb::ImageFileWriter<imageType> WriterType;

WriterType::Pointer extractorWriter=WriterType::New();
CharWriterType::Pointer writer=CharWriterType::New() ;
extractorWriter->SetFileName("image_temp.jpeg");
extractorWriter->SetInput(extract->GetOutput());

10.1. Sensor Models 259

Since the output pixel type and the input pixel type are diifé, we will need to rescale the
intensity values before writing them to a file.

typedef itk::RescalelntensitylmageFilter<imageType,C harimageType>
RescalerType;
RescalerType::Pointer rescaler=RescalerType::New();

rescaler->SetOutputMinimum(10);
rescaler->SetOutputMaximum(255);

The tricky part starts here. Note that this example is ontgrided for pedagogic purposes
and that you do not need to proceed as this. See the exammetiars10.3 in order to code
ortho-rectification chains in a very simple way.

You want to go on? OK. You have been warned.

We will start by declaring an image region iterator and somm@/enience variables.

typedef itk::ImageRegionlteratorWithindex<imageType> [teratorType;

unsigned int NumberOfStreamDivisions;
if (atoi(argv[7])==0)

NumberOfStreamDivisions=10;
1
else
{
NumberOfStreamDivisions=atoi(argv[7]);

}

unsigned int count=0;

unsigned int It, j, k;

int max_x, max_y, min_x, min_y;
ImageType::IndexType iterationRegionStart;
ImageType::SizeType iteratorRegionSize;
ImageType::RegionType iteratorRegion;

The loop starts here.

for(count=0;count<NumberOfStreamDivisions;count++)

{
iteratorRegionSize[0]=atoi(argv[5]);

260 Chapter 10. Ortho-registration

if (count==NumberOfStreamDivisions-1)
{
iteratorRegionSize[1]=(atoi(argv[6]))-((int)(((atoi (argv[6]))/
NumberOfStreamDivisions)+0.5))*(count);
iterationRegionStart[1]=(atoi(argv[5]))-(iteratorRe gionSize[1]);
}

else
{
iteratorRegionSize[1]=(int)(((atoi(argv[6]))/

NumberOfStreamDivisions)+0.5);

iterationRegionStart[1]=count*iteratorRegionSize[1]
}

iterationRegionStart[0]=0;

iteratorRegion.SetSize(iteratorRegionSize);

iteratorRegion.SetIndex(iterationRegionStart);

We create an array for storing the pixel indexes.

unsigned int pixellndexArrayDimension=iteratorRegionS ize[O]*iteratorRegionSize[1]*2;
int *pixellndexArray=new int[pixelindexArrayDimension I
int *currentindexArray=new int[pixellndexArrayDimensi onj;

We create an iterator for each piece of the image, and weétexar them.

IteratorType outputlt(outputimage, iteratorRegion);
[t=0;
for (outputlt.GoToBegin(); loutputlt.ISAtEnd(); ++outp utlt)
{
We get the current index.
currentindex=outputlt.GetIndex();

We transform the index to physical coordinates.

outputimage->TransformindexToPhysicalPoint(currentl ndex, outputPoint);

We use the sensor model to get the pixel coordinates in the infpage and we transform this
coodinates to an index. Then we store the index in the arrate tthat thelransformPoint()
method of the model has been overloaded so that it can be uged 8D point when the height
of the ground point is known (DEM availability).

10.1. Sensor Models 261

inputPoint = model->TransformPoint(outputPoint);

pixelindexArray[lt]=static_cast<int>(inputPoint[0]) ;

pixelindexArray[lt+1]=static_cast<int>(inputPoint[1)
currentindexArray[lt]=static_cast<int>(currentindex [on;
currentindexArray|[lt+1]=static_cast<int>(currentind ex[1]);
It=1t+2;

}

By this point, we have stored all the indexes we need for thegof image we are processing.
Now we can compute the bounds of the area in the input imagee® to extract.

max_x=pixellndexArray[0];
min_x=pixellndexArray[0];
max_y=pixellndexArray[1];
min_y=pixellndexArray[1];

for (j=0;j<It;j++)
{

if({%2==0 && pixellndexArray[jj>max_x){max_x=pixellnd exArray[j;}
if(j%2==0 && pixellndexArray[jl<min_x){min_x=pixelind exArray[;}
if(1%2!=0 && pixellndexArray[j]>max_y){max_y=pixellind exArray[j];}
if(j%2!=0 && pixelindexArray[j]<min_y){min_y=pixelind exArray[];}
1

We can now set the parameters for the extractor using abitttf margin in order to cope with
irregular geometric distortions which could be due to tappdy, for instance.

ImageType::RegionType extractRegion;
ImageType::IndexType extractStart;

if (min_x<10 && min_y<10)
{
extractStart[0]=0;
extractStart[1]=0;

}

262 Chapter 10. Ortho-registration

else

{
extractStart[0]=min_x-10;
extractStart[1]=min_y-10;
}

ImageType::SizeType extractSize;

extractSize[0]=(max_x-min_x)+20;
extractSize[1]=(max_y-min_y)+20;
extractRegion.SetSize(extractSize);
extractRegion.SetIndex(extractStart);

extract->SetExtractionRegion(extractRegion);
extract->Setlnput(reader->GetOutput());
extractorWriter->Update();

We give the input image to the interpolator and we loop thiotige index array in order to
get the corresponding pixel values. Note that for every fpemcheck whether it is inside the
extracted region.

interpolator->Setinputimage(extract->GetOutput());

for (k=0; k<It/2; k++)
{
pixelindexBis[0]=pixelindexArray[2*K];
pixellndexBis[1]= pixellndexArray[2*k+1];
currentindexBis[0]= currentindexArray[2*K];
currentindexBis[1]= currentindexArray[2*k+1];

if (interpolator->IsinsideBuffer(pixelindexBis))

{
pixelValue=int (interpolator->EvaluateAtindex(pixell ndexBis));
}
else
{
pixelValue=0;
}

outputimage->SetPixel(currentindexBis,pixelValue);

}

delete pixellndexArray;
delete currentindexArray;

}

10.2. Map Projections 263

So we are done. We can now write the output image to a file aifopning the intensity
rescaling.

writer->SetFileName(argv[2]);
rescaler->Setinput(outputimage);

writer->SetInput(rescaler->GetOutput());
writer->Update();

10.1.3 Limits of the Approach

As you may understand by now, accurate geo-referencingsnaedurate DEM and also
accurate sensor models and parameters. In the case wheraveisdveral images acquired
over the same area by different sensors or different getv@infigurations, geo-referencing
(geographical coordinates) or ortho-rectification (cgraphic coordinates) is not usually
enough. Indeed, when working with image series we usuallytw@compare them (fusion,
change detection, etc.) at the pixel level.

Since common DEM and sensor parameters do not allow for suelc@uracy, we have to use
clever strategies to improve the co-registration of thegesa The classical one consists in
refining the sensor parameters by taking homologous pogitgden the images to co-register.
This is called bundle block adjustment and will be impleneenit comming versions of OTB.

Even if the model parameters are refined, errors due to DEMracg can not be eliminated. In
this case, image to image registration can be applied. fpoaches are presented in chapters
8 and 9.

10.2 Map Projections

Map projections describe the link between geographic doates and cartographic ones. So
map projections allow to represent a 2-dimensional madhitdla 3-dimensional space (the
Earth surface) in a 2-dimensional space (a map which use@ t@ $heet of paper!). This
geometrical transformation doesn’t have a unique solutsanover the cartography history,
every country or region in the world has been able to exptesdelief of being the center of
the universe. In other words, every cartographic projecties to minimize the distortions of

264 Chapter 10. Ortho-registration

the 3D to 2D transformation for a given point of the Earth aod.

In OTB the oth::MapProjection class is derived from theitk::Transform class, so
the coordinate transformation points are overloaded witip rprojection equations. The
oth::MapProjection class is templated over the type of cartographic projectignich is
provided by the OSSIM library. In order to hide the complgxf the approach, some type
definitions for the more common projections are given in tlesofbMapProjections.h file.

You will seldom use a map projection by itself, but rather incatho-rectification framework.
An example is given in the next section.

10.3 Ortho-rectification with OTB

The source code for this example can be found in the file
Examples/Projections/OrthoRectificationExample.cxx

This example demonstrates the use of ttk::OrthoRectificationFilter . This filter is
intended to orthorectify images which are in a distributoniat with the appropriate meta-data
describing the sensor model. In this example, we will chdosese an UTM projection for the
output image.

The first step toward the use of these filters is to include tbpgr header files: the one for the
ortho-rectification filter and the one defining the differprijections available in OTB.

#include "otbOrthoRectificationFilter.h"
#include "otbMapProjections.h”

We will start by defining the types for the images, the imagerlder and the image file writer.
The writer will be aoth::StreaminglmageFileWriter which will allow us to set the number
of stream divisions we want to apply when writing the outpo&age, which can be very large.

typedef otb::Image<unsigned char, 2> CharlmageType;,

typedef otb::Image<unsigned int, 2> ImageType;

typedef otb::Vectorimage<unsigned int, 2> VectorimageTy pe;
typedef otb::imageFileReader<VectorimageType> ReaderT ype;

typedef oth::StreaminglmageFileWriter<VectorimageTyp e> WriterType;

ReaderType::Pointer reader=ReaderType::New();
WriterType::Pointer writer=WriterType::New();

1We proposed to optimize an OTB map projection for Toulouseweutidn't get any help from OTB users.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MapProjection.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MapProjection.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

10.3. Ortho-rectification with OTB 265

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

We can now proceed to declare the type for the ortho-redificafilter. The class
oth::OrthoRectificationFilter is templated over the input and the output image types

as well as over the cartographic projection. We define tbeeghe type of the projection we
want, which is an UTM projection for this case.

typedef otb::UtminverseProjection utmMapProjectionTyp e;

typedef otb::OrthoRectificationFilter<imageType, Imag eType,
utmMapProjectionType> OrthoRectifFilterType ;

OrthoRectifFilterType::Pointer orthoRectifFilter =
OrthoRectifFilterType::New();

Now we need to instanciate the map projection, setzthreeand hemisphergarameters and
pass this projection to the orthorectification filter.

utmMapProjectionType::Pointer utmMapProjection =

utmMapProjectionType::New();
utmMapProjection->SetZone(atoi(argv[3]));
utmMapProjection->SetHemisphere(*(argv(4]));
orthoRectifFilter->SetMapProjection(utmMapProjectio n);

Wiring the orthorectification filter into a PerBandimagééiilallows to orthrectify images with
multiple bands seamlesly.

typedef oth::PerBandVectorimageFilter<VectorimageTyp e,
VectorimageType, OrthoRectifFilterType> PerBandFilter Type;
PerBandFilterType::Pointer perBandFilter=PerBandFilt erType::New();

perBandFilter->SetFilter(orthoRectifFilter);
perBandFilter->SetInput(reader->GetOutput());

Using the user-provided information, we define the outpgiar for the image generated by
the orthorectification filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html

266 Chapter 10. Ortho-registration

ImageType::IndexType start;

start[0]=0;

start[1]=0;
orthoRectifFilter->SetOutputStartindex(start);

ImageType::SizeType size;
size[0]=atoi(argv[7]);
size[1]=atoi(argv[8]);
orthoRectifFilter->SetSize(size);

ImageType::SpacingType spacing;
spacing[0]=atof(argv[9]);
spacing[1]=atof(argv[10]);
orthoRectifFilter->SetOutputSpacing(spacing);

ImageType::PointType origin;
origin[0]=strtod(argv[5], NULL);
origin[1]=strtod(argv[6], NULL);
orthoRectifFilter->SetOutputOrigin(origin);

We can now set plug the ortho-rectification filter to the wriied set the number of tiles we
want to split the output image in for the writing step.

writer->Setinput(perBandFilter->GetOutput());

writer->SetTilingStreamDivisions();

Finally, we trigger the pipeline execution by calling thepdate() method on
the writer. Please note that the ortho-rectification filtes derived from the
oth::StreamingResamplelmageFilter in order to be able to compute the input image re-
gions which are needed to build the output image. Since thampler applies a geometric
transformation (scale, rotation, etc.), this region cotapan is not trivial.

writer->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingResampleImageFilter.html

CHAPTER

ELEVEN

Radiometry

Remote sensing is not just a matter of taking pictures, lmat -almostly — a matter of measur-
ing physical values. In order to properly deal with physicegnitudes, the numerical values
provided by the sensors have to be calibrated. After thagrakindices with physical meaning
can be computed.

Calibration functionnalities (absolute and relative) awdn atmospheric correction routines
will be available in future versions of OTB. Please note that6S Radiative Transfer Code
is already included in the OTB source code and compiles odh@fbox. Calibration and
atmospheric corrections in OTB will be based on it.

In the current version of OTB, several vegetation indicesalready available. They are pre-
sented in this chapter.

11.1 Vegetation Index

11.1.1 Introduction

A vegetation index is a quantitative measure used to me&soumgass or vegetative vigor, usu-
ally formed from combinations of several spectral bandspsetwvalues are added, divided, or
multiplied in order to yield a single value that indicates tmount or vigor of vegetation.

11.1.2 NDVI

NDVI was one of the most successful of many attempts to sirmptyquickly identify vegetated
areas and theondition and it remains the most well-known and used index to detectjteen
plant canopies in multispectral remote sensing data. Greckegsibility to detect vegetation had
been demonstrated, users tended to also use the NDVI taifyuthetphotosynthetic capacity of

Lhttp://6s.ltdri.org/

http://6s.ltdri.org/

268 Chapter 11. Radiometry

plant canopies. This, however, can be a rather more complgartaking if not done properly.

The source code for this example can be found in the file
Examples/Radiometry/NDVIRAndNIRVegetationindeximage Filter.cxx

The following example illustrates the use of tbid::RANINIRVegetationindeximageFilter

with the use of the Normalized Difference Vegatation Ind&DY1). NDVI computes the
difference between the NIR channel, notegir, and the red channel, notdq radiances
reflected from the surface and transmitted through the gihess:

Lnir— Ly
NDVI = ———— 11.1
Lnir+ Ly (D
With the otb::RAndNIRVegetationindexImageFilter class the filter inputs are one channel

images: one inmage represents the NIR channel, the thetbthBlR channel.

Let’s look at the minimal code required to use this algorittinst, the following header defin-
ing the oth::RAndNIRVegetationindexImageFilter class must be included.

#include "otbRANdNIRVegetationindeximageFilter.h"

The image types are now defined using pixel types the dimengkiput and output images are
defined asoth::Image

const unsigned int Dimension = 2;
typedef double InputPixelType;
typedef float OutputPixelType;
typedef otb::Image<InputPixelType,Dimension> InputRIm ageType;
typedef otb::Image<InputPixelType,Dimension> InputNIR ImageType;
typedef otb::Image<OutputPixelType,Dimension> Outputl mageType;

The NDVI (Normalized Difference Vegetation Index) is insiated using the images pixel type
as template parameters. Itis implemented as a functorwlaist will be passed as a parameter
to an otb::RAndNIRVegetationindeximageFilter

typedef oth::Functor::NDVI< InputPixelType,
InputPixelType,
OutputPixelType> FunctorType;

The otb::RAndNIRVegetationindeximageFilter type is instantiated using the images
types and the NDVI functor as template parameters.

typedef otb::RAndNIRVegetationindeximageFilter<input RImageType,
InputNIRImageType,
OutputimageType,
FunctorType>
RANndNIRVegetationindeximageFilterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html

11.1. Vegetation Index 269

Figure 11.1:NDVI input images on the left (Red channel and NIR channel), on the right the result of the
algorithm.

Now the input images are set and a hame is given to the outgem

readerR->SetFileName(argv[1]);
readerNIR->SetFileName(argv[2]);
writer->SetFileName(argv[3]);

We set the processing pipeline: filter inputs are linked ®rérader output and the filter output
is linked to the writer input.

filter->SetinputR(readerR->GetOutput());
filter->SetInputNIR(readerNIR->GetOutput());

writer->Setinput(filter->GetOutput());

Invocation of theUpdate() method on the writer triggers the execution of the pipelings
recommended to placpdate() callsin atry/catch block in case errors occur and exceptions
are thrown.

try
{

}
catch(itk::ExceptionObject & excep)

{

writer->Update();

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let's now run this example using as input the imaye¥1_3.hdr andNDVI_4.hdr (images
kindly and free of charge given by SISA and CNES) providedadirectoryExamples/Data

270 Chapter 11. Radiometry

11.1.3 ARVI

The source code for this example can be found in the file
Examples/Radiometry/ARVIMultiChannelRAndBAndNIRVege tationindeximagefFilter.cxx

The following example illustrates the use of the oth::MbhannelRAndBANdNIR Vegeta-
tionIndexImageFilter with the use of the Atmosphericallgsistant Vegetation Index (ARVI).
ARVI is an improved version of the NDVI that is more resistemthe atmospheric effect. In
addition to the red and NIR channels (used in the NDVI), the/ARkes advantage of the
presence of the blue channel to accomplish a self-correptiocess for the atmospheric effect
on the red channel. For this, it uses the difference in theanag between the blue and the
red channels to correct the radiance in the red channels definepy s, py, pj, the normal-
ized radiances (that is to say the radiance normalized tectafice units) of red, blue and NIR
channels respectivelp;, is defined as

Prb = Pr —Y*(Pp—Pr) (11.2)
The ARVI expression is
ARVI = PNIR—Prb (11.3)
PNIR T Pro

This formula can be simplified with :

LniR— Lo

ARVI =
LniR+ Lo

(11.4)

For more details, refer to Faufman and Tamrork [51].

With the otb::MultiChannelRAndBAndNIRVegetationindeximageFil ter class the input
has to be a multi channel image and the user has to specify aidmnel of the red, blue and
NIR channel.

Let’s look at the minimal code required to use this algorittinst, the following header defin-

ing the oth::MultiChannelRAndBANndNIRVegetationindeximageFil ter class must be in-
cluded.
#include "otbMultiChannelRAndBANndNIRVegetationindex! mageFilter.h"

The image types are now defined using pixel types and dimen$ice input image is defined
as anotb::Vectorimage , the output is aoth::image

const unsigned int Dimension = 2;
typedef double InputPixelType;

typedef float OutputPixelType;
typedef oth::Vectorimage<InputPixelType ,Dimension> In putimageType;

typedef otb::Image<OutputPixelType,Dimension> Outputl mageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

11.1. Vegetation Index 271

The ARVI (Atmospherically Resistant Vegetation Index)ristantiated using the image pixel
types as template parameters.

typedef otb::Functor::ARVI< InputPixelType,

InputPixelType,
InputPixelType,
OutputPixelType > FunctorType;
The oth::MultiChannelRAndBAndNIRVegetationindeximageFil ter type is defined using

the image types and the ARVI functor as template paramet#ksthen instantiate the filter
itself.

typedef otb::MultiChannelRAndBANdNIRVegetationindex| mageFilter
<InputimageType,
OutputimageType,
FunctorType >
MultiChannelRAndBAndNIRVegetationindexImageFilterTy pe;
MultiChannelRAndBANdNIRVegetationindeximageFilterTy pe::Pointer
filter = MultiChannelRAndBAndNIRVegetationindeximageF ilterType::New();

Now the input image is set and a name is given to the outputemag

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

The three used index bands (red, blue and NIR) are declared.

filter->SetRedIndex(::atoi(argv[5]));
filter->SetBluelndex(::atoi(argv[6]));
filter->SetNIRIndex(::atoi(argv[7]));

Theyparameter is set. Theth::MultiChannelRAndBAndNIRVegetationindexImageFil ter
class sets the default valuepfo 0.5. This parameter is used to reduce the atmospheric effect
on a global scale.

filter->GetFunctor().SetGammay::atof(argv[8]));
The filter input is linked to the reader output and the filtetpatti is linked to the writer input.

filter->Setinput(reader->GetOutput());

writer->Setinput(_ filter->GetOutput());

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html

272 Chapter 11. Radiometry

Figure 11.2:ARVI result on the right with the left image in input.

The invocation of théJpdate() method on the writer triggers the execution of the pipelibe.
is recommended to place update calls tryatch block in case errors occur and exceptions
are thrown.

try
{

}
catch(itk::ExceptionObject & excep)

{

writer->Update();

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let's now run this example using as input the im&gexVegetation.hd (image kindly and
free of charge given by SISA and CNES) ayx®.6 provided in the directorfzxamples/Data

11.2 Atmospheric Corrections

The source code for this example can be found in the file
Examples/Radiometry/AtmosphericCorrectionSequenceme nt.cxx

The following example illustrates the application of atilosric corrections to an optical mul-
tispectral image similar to Pleiades. These correctioasrade in four steps :

e digital number to luminance correction;

¢ luminance to refletance image conversion;

e atmospheric correction for TOA (top of atmosphere) to TQEp @f canopy) reflectance
estimation;

e correction of the adjency effects taking into account thighmgorhood contribution.

11.2. Atmospheric Corrections 273

The manipulation of each class used for the different stagdfze link with the 6S radiometry
library will be explained.

Let’s look at the minimal code required to use this algoritifiinst, the following header defin-

ing the otb::AtmosphericCorrectionSequencement class must be included. For the nu-
merical to luminance image, luminance to refletance imagd, raflectance to atmospheric
correction image corrections and the neighborhood caomediour header files are required.

#include "otblmageToLuminancelmageFilter.h"

#include "otbLuminanceToReflectancelmageFilter.h"

#include "otbReflectanceToSurfaceReflectancelmageFil ter.h"
#include "otbSurfaceAdjencyEffect6SCorrectionSchemeF ilter.n"

This chain uses the 6S radiative transfer code to compuiemadric parameters. To manipulate
6S data, three classes are needed (the first one to store théatae the second one that calls
6S class and generates the information which will be storékd last one).

#include "otbAtmosphericCorrectionParameters.h”
#include "otbAtmosphericCorrectionParametersTo6SAtmo sphericRadiativeTerms.h"
#include "otbAtmosphericRadiativeTerms.h"

Image types are now defined using pixel types and dimensioaifiput image is defined as an
oth::Vectorimage , the output image is ath::Vectorimage . To simplify, input and output
image types are the same one.

const unsigned int Dimension = 2;

typedef double PixelType;

typedef oth::Vectorimage<PixelType,Dimension> ImageTy pe;
The GenerateOutputinformation() reader method is called to know the number of compo-
nent per pixel of the image. It is recommended to pl@eserateOutputinformation calls

in atry/catch block in case errors occur and exceptions are thrown.

reader->SetFileName(argv[1]);

try
{
reader->GenerateOutputinformation();
}
catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
The otb::ImageToLuminancelmageFilter type is defined and instancied. This class uses a

functor applied to each component of each pixéf)(whose formula is:

http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionSequencement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToLuminanceImageFilter.html

274 Chapter 11. Radiometry

k XK
LToa = @ + B (11.5)
k

Where :

o LK, is the incident luminance (W.m~2.sr—L.unr?);
o XX is the measured digital number (ie. the input image pixelpoment);
e ay is the absolute calibration gain for the channel k;

e [is the absolute calibration bias for the channel k.

typedef oth::ImageToLuminancelmageFilter<imageType,| mageType>
ImageToLuminancelmageFilterType;

ImageToLuminancelmageFilterType::Pointer filterimage ToLuminance
= ImageToLuminancelmageFilterType::New();

Here,a andp are read from an ASCII file given in input, stored in a vectod passed to the
class.

filterimageToLuminance->SetAlpha(alpha);
filterimageToLuminance->SetBeta(beta);

The otb::LuminanceToReflectancelmageFilter type is defined and instancied. This class
used a functor applied to each component of each pixel oltméniance filter outpum(-"rOA):

k
Tloa

Koa— —oToA 11.6
PTOA™ EK cog@s).d/do (11.6)

Where :

o rhoX ., is the reflectance measured by the sensor;
e Ogis the zenithal solar angle in degrees;

° Eg is the solar illumination out of the atmosphere measured distancedy from the
Earth;

e d/dy is the ratio between the Earth-Sun distance at the acaquisitaite and the mean
Earth-Sun distance. The ratio can be directly given to taescbr computed using a 6S
routine. In the last case (that is the one of this example)utier has to precise the month
and the day of the acquisition.

http://www.melaneum.com/OTB/doxygen/classotb_1_1LuminanceToReflectanceImageFilter.html

11.2. Atmospheric Corrections 275

typedef otb::LuminanceToReflectancelmageFilter<image Type,ImageType>
LuminanceToReflectancelmageFilterType;
LuminanceToReflectancelmageFilterType::Pointer filte rLuminanceToReflectance

= LuminanceToReflectancelmageFilterType::New();

The solar illumination is read from a ASCII file given in inpstored in a vector and given to
the class. Day, month and zenital solar angle are inputs amthe directly given to the class.

filterLuminanceToReflectance->SetZenithalSolarAngle (
static_cast<double>(atof(argv[6])));
filterLuminanceToReflectance->SetDay(atoi(argv(7])) ;
filterLuminanceToReflectance->SetMonth(atoi(argv[8]);
filterLuminanceToReflectance->SetSolarlllumination(solarlllumination);

At this step of the chain, radiometric informations are reztle Those
informations will be computed from different parameters orsl in a
oth::AtmosphericCorrectionParameters class intance. Thisontainer will be given
to an oth::AtmosphericCorrectionParametersTo6SAtmospheric RadiativeTerms
class instance which will call a 6S routine that will compule needed radiometric in-
formations and store them in atb::AtmosphericRadiativeTerms class instance. For
this, oth::AtmosphericCorrectionParametersTo6SAtmospheric RadiativeTerms
oth::AtmosphericCorrectionParameters and oth::AtmosphericRadiativeTerms
types are defined and instancied.

typedef otb::AtmosphericCorrectionParametersTo6SAtmo sphericRadiativeTerms
AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe;

typedef otb::AtmosphericCorrectionParameters
AtmosphericCorrectionParametersType;

typedef otb::AtmosphericRadiativeTerms
AtmosphericRadiativeTermsType;

The otb::AtmosphericCorrectionParameters class needs several parameters :

e The zenithal and azimutal solar angles that describe tlae salidence configuration (in
degrees);

e The zenithal and azimuthal viewing angles that describevitwing direction (in de-
grees);

e The month and the day of the acquisition;
e The atmospheric pressure;

e The water vapor amount, that is, the total water vapor carmtegr vertical atmospheric
column;

http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParametersTo6SAtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParametersTo6SAtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html

276 Chapter 11. Radiometry

e The ozone amount that is the Stratospheric ozone layermipnte

e The aerosol model that is the kind of particles (no aeroswitinental, maritime, urban,
desertic);

e The aerosol optical thickness at 550 nm that is the is thed®adiimpact of aerosol for
the reference wavelength 550 nm;

e The filter function that is the values of the filter function fme spectral band, fro ¢
to Asup by step of 2.5 nm. One filter function by channel is requirelisTast parameter
are read in text files, the other one are directly given to thesc

dataAtmosphericCorrectionParameters->SetSolarZenith alAngle(
static_cast<double>(atof(argv[6])));

dataAtmosphericCorrectionParameters->SetSolarAzimut alAngle(
static_cast<double>(atof(argv[9])));

dataAtmosphericCorrectionParameters->SetViewingZeni thalAngle(
static_cast<double>(atof(argv[10])));

dataAtmosphericCorrectionParameters->SetViewingAzim utalAngle(
static_cast<double>(atof(argv[11])));

dataAtmosphericCorrectionParameters->SetMonth(atoi(argv[8)));
dataAtmosphericCorrectionParameters->SetDay(atoi(ar av[7]);
dataAtmosphericCorrectionParameters->SetAtmospheric Pressure(

static_cast<double>(atof(argv[12])));

dataAtmosphericCorrectionParameters->SetWaterVaporA mount(
static_cast<double>(atof(argv[13])));

dataAtmosphericCorrectionParameters->SetOzoneAmount (
static_cast<double>(atof(argv[14])));

AerosolModelType aerosolModel =
static_cast<AerosolModelType>(::atoi(argv[15]));

dataAtmosphericCorrectionParameters->SetAerosolMode I(aerosolModel);

dataAtmosphericCorrectionParameters->SetAerosolOpti cal(
static_cast<double>(atof(argv[16])));

Once those parameters are loaded and stored in the AtmaspbeectionParameters
instance class, it is given in input of an instance of AtmespCorrectionParameter-
sTo6SAtmosphericRadiativeTerms that will compute thedrdgadiometric informations.

11.2. Atmospheric Corrections 277

AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe::Pointer
filterAtmosphericCorrectionParametersTo6SRadiativeT erms =
AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe::New();

filterAtmosphericCorrectionParametersTo6SRadiativeT erms->Setlnput(

dataAtmosphericCorrectionParameters);

The output of this class will be an instance of the AtmospiadiativeTerms class. This class
contains (for each channel of the image)

e The Intrinsic atmospheric reflectance that takes into auicfmu the molecular scattering
and the aerosol scattering attenuated by water vapor aflsgrp

e The spherical albedo of the atmosphere;
e The total gaseous transmission (for all species);

e The total transmittance of the atmosphere from sun to gré¢dodnward transmittance)
and from ground to space sensor (upward transmittance).

Atmospheric corrections can now start. First, an instancef o
oth::Reflectance ToSurfaceReflectancelmageFilter is created.
typedef otb::ReflectanceToSurfaceReflectancelmageFil ter<imageType,
ImageType> ReflectanceToSurfaceReflectancelmageFilte rType;
ReflectanceToSurfaceReflectancelmageFilterType::Poi nter
filterReflectanceToSurfaceReflectancelmagefFilter
= ReflectanceToSurfaceReflectancelmageFilterType::Ne w();

The aim of the atmospheric correction is to invert the s@feflectance (for each pixel of
the input image) from the TOA reflectance and from simulaiohthe atmospheric radiative
functions corresponding to the geometrical conditionfiefdbservation and to the atmospheric
components. The process required to be applied on eachgbitted image, band by band with
the following formula:

unif A
P = 11 SA (11.7)
Where,
PTOA— Patm
= (11.8)
T(8)-T () 15"
With :

e proais the reflectance at the top of the atmosphere;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ReflectanceToSurfaceReflectanceImageFilter.html

278 Chapter 11. Radiometry

pg“” is the ground reflectance under asumption of a lambertigacand an uniform

environment;

Patm IS the intrinsic atmospheric reflectance;

o t3'9%%is the soherical albedo of the atmosphere;

T(us) is the downward transmittance;

e T(pv) is the upward transmittance.

All those parameters are contained in the AtmosphericCbomParameter-
sTo6SRadiativeTerms output.

filterReflectanceToSurfaceReflectancelmageFilter->
SetAtmosphericRadiativeTerms(
filterAtmosphericCorrectionParametersTo6SRadiativeT erms->GetOutput());

Next (and last step) is the neighborhood correction. Fos, thihe SurfaceAdjencyEf-
fect6SCorrectionSchemerFilter class is used. The prewotface reflectance inversion is per-
formed under the assumption of a homogeneous ground envénoin The following step allows
to correct the adjacency effect on the radiometry of pix€he method is based on the decom-
position of the observed signal as the summation of the owtriboition of the target pixel
and of the contribution of neighbored pixels moderated Igyrttistance to the target pixel. A
simplified relation may be :

" T () — < pS> ta(wy)

PS exH—3/)

(11.9)

With :

pg”'f is the ground reflectance under asumption of an homogenesusmement;

T(Wv) is the upward transmittance;

tq(Ms) is the upward diffus transmittance;

exp—d/1y) is the upward direct transmittance;

ps is the environment contribution to the pixel target reflac&in the total observed
signal.

pS=3 i Y if (r(i,i)) xps" (i.]) (11.10)
where,

— 1(i,j) is the distance between the pixel(i,j) and the cdrgieel of the window inkm

11.2. Atmospheric Corrections 279

— f(r) is the global environment function.

R Tr(r) +t4 (). fa(r)

f(r)= (11.112)
ta (k)
The neighborhood consideration window size is given by thedow radius. An instance of
oth::SurfaceAdjencyEffect6SCorrectionSchemeFilter is created.
typedef oth::SurfaceAdjencyEffect6SCorrectionSchemeF ilter<imageType,
ImageType> SurfaceAdjencyEffect6SCorrectionSchemeFil terType;
SurfaceAdjencyEffect6SCorrectionSchemeFilterType::P ointer
filterSurfaceAdjencyEffect6SCorrectionSchemekFilter
= SurfaceAdjencyEffect6SCorrectionSchemeFilterType:: New();

The needs four input informations:

e Radiometric informations (the output of the Atmospherio@otionParameter-
sTo6SRadiativeTerms filter);

e The zenithal viewing angle;
e The neighborhood window radius;

e The pixel spacing in kilometers.
At this step, each filter of the chain is instancied and evewy loas its input paramters set. A
name can be given to the output image and each filter can littkether to create the final

processing chain.

writer->SetFileName(argv[2]);

filterimageToLuminance->Setinput(reader->GetOutput();
filterLuminanceToReflectance->Setinput(filterimageT oLuminance->GetOutput());
filterReflectanceToSurfaceReflectancelmageFilter->S etinput(
filterLuminanceToReflectance->GetOutput());
filterSurfaceAdjencyEffect6SCorrectionSchemeFilter- >Setinput(
filterReflectanceToSurfaceReflectancelmageFilter->G etOutput());

writer->Setinput(
filterSurfaceAdjencyEffect6SCorrectionSchemeFilter- >GetOutput());

The invocation of théJpdate() method on the writer triggers the execution of the pipelihe.
is recommended to place this call itrgcatch block in case errors occur and exceptions are
thrown.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SurfaceAdjencyEffect6SCorrectionSchemeFilter.html

280 Chapter 11. Radiometry

try
{

}
catch(itk::ExceptionObject & excep)

{

writer->Update();

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

CHAPTER

TWELVE

Image Fusion

Satellite sensors present an important diversity in terheharacteristics. Some provide a high
spatial resolution while other focus on providing sevemddral bands. The fusion process
brings the information from different sensors with diffieteharacteristics together to get the
best of both worlds.

Most of the fusion methods in the remote sensing communigl déth the pansharpening
technique This fusion combines the image from the PANchromatic seofone satellite (high
spatial resolution data) with the multispectral (XS) ddtavér resolution in several spectral
bands) to generate images with a high resolution and seseatral bands. Several advantages
make this situation easier:

e PAN and XS images are taken simultaneously from the saméiteater with a very
short delay);

e the imaged area is common to both scenes;

e many satellites provide these data (SPOT 1-5, QuickbirlaBés)

This case is well-studied in the literature and many metlexdst. Only very few are available
in OTB now but this should evolve soon.

12.1 Simple Pan Sharpening

A simple way to view the pan-sharpening of data is to condiaat; at the same resolution, the
panchromatic channel is the sum of the XS channel. Afteimguthe two images in the same
geometry, after orthorectification (see chapter 10) wittoegrsampling of the XS image, we
can proceed to the data fusion.

The idea is to apply a low pass filter to the panchromatic bawgie it a spectral content (in the
Fourier domain) equivalent to the XS data. Then we normdlizeXS data with this low-pass
panchromatic and multiply the result with the original pamenatic band.

282 Chapter 12. Image Fusion

The process is described on figure 12.1.

L fi

PAN + XS

Figure 12.1:Simple pan-sharpening procedure.

The source code for this example can be found in the file
Examples/Fusion/PanSharpeningExample.cxx

Here we are illustrating the use of thuth::SimpleRcsPanSharpeningFusionimageFilter
for PAN-sharpening. This example takes a PAN and the cooretipg XS images as input.
These images are supposed to be registered.

The fusion operation is defined as

XS

————PAN 12.1
Filtered PAN) (12.2)

Figure 12.2 shows the result of applying this PAN sharpefilteg to a Quickbird image.

We start by including the required header and declaring thie fanction:

#include "otbimage.h"

#include "otbVectorimage.h”

#include "otblmageFileReader.h"

#include "otbStreaminglmageFileWriter.h"

#include "otbSimpleRcsPanSharpeningFusionimageFilter e

int main(int arge, char* argv(])

{

http://www.melaneum.com/OTB/doxygen/classotb_1_1SimpleRcsPanSharpeningFusionImageFilter.html

12.1. Simple Pan Sharpening 283

Figure 12.2:Result of applying the otb::SimpleRcsPanSharpeningFusionimageFilter to orthorec-
tified Quickbird image. From left to right : original PAN image, original XS image and the result of the PAN
sharpening

http://www.melaneum.com/OTB/doxygen/classotb_1_1SimpleRcsPanSharpeningFusionImageFilter.html

284 Chapter 12. Image Fusion

We declare the different image type used here as well as tagameader. Note that, the
reader for the PAN image is templated by asib::image while the XS reader uses an
oth::Vectorimage

typedef otb::lmage<double, 2> ImageType;

typedef otb::Vectorimage<double, 2> VectorimageType;

typedef otb::imageFileReader<imageType> ReaderType;

typedef oth::ImageFileReader<VectorimageType> ReaderV ectorType;
typedef otb::Vectorimage<unsigned int, 2> Vectorintimag eType;

ReaderVectorType::Pointer readerXS=ReaderVectorType: :New();
ReaderType::Pointer readerPAN=ReaderType::New();

We pass the filenames to the readers

readerPAN->SetFileName(argv[1]);
readerXS->SetFileName(argv[2]);

We declare the fusion filter an set its inputs using the resader

typedef otb::SimpleRcsPanSharpeningFusionimageFilter
<ImageType,VectorimageType,VectorintimageType> Fusio nFilterType;
FusionFilterType::Pointer fusion = FusionFilterType::N ew();
fusion->SetPaninput(readerPAN->GetOutput());
fusion->SetXsInput(readerXS->GetOutput());

And finally, we declare the writer and call itépdate() method to trigger the full pipeline
execution.

typedef oth::StreaminglmageFileWriter<Vectorintimage Type> WriterType;
WriterType::Pointer writer=WriterType::New();

writer->SetFileName(argv[3]);

writer->SetInput(fusion->GetOutput());

writer->Update();

12.2 Bayesian Data Fusion

The source code for this example can be found in the file
Examples/Fusion/BayesianFusionimageFilter.cxx

The following example illustrates the use of thiy::BayesianFusionFilter . The Bayesian
data fusion relies on the idea that variables of interestotésl as vector, cannot be directly
observed. They are linked to the observable varialdgough the following error-like model.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BayesianFusionFilter.html

12.2. Bayesian Data Fusion 285

Y=g(2)+E (12.2)

where g¥) is a set of functionals an# is a vector of random errors that are stochastically
independent fronZ. This algorithm uses elementary probability calculus, sexeral assump-
tions to compute the data fusion. For more explication sebé&ader, Radoux and Bogaert’s
publication [27]. Three images are used :

e a panchromatic image,
e a multispectral image resampled at the panchromatic imaagias resolution,

e a multispectral image resampled at the panchromatic imaafgasresolution, using, e.g.
a cubic interpolator.

¢ afloat :A, the meaning of the weight to be given to the panchromatigempared to
the multispectral one.

Let’s look at the minimal code required to use this algorittinst, the following header defin-
ing the oth::BayesianFusionFilter class must be included.

#include "otbBayesianFusionFilter.n"

The image types are now defined using pixel types and paatidithension. The panchromatic
image is defined as aotb::lmage and the multispectral one agb::Vectorimage

typedef double InternalPixel Type;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Panch rolmageType;
typedef otb::Vectorimage< InternalPixelType, Dimension > MultiSpecimageType;

The Bayesian data fusion filter type is instantiated usiegrtiages types as a template param-
eters.

typedef otb::BayesianFusionFilter< MultiSpecimageType ,

MultiSpecimageType,
PanchrolmageType,
OutputimageType > BayesianFusionFilterType;

Next the filter is created by invoking thBew() method and assigning the result to a
itk::SmartPointer

BayesianFusionFilterType::Pointer bayesianFilter = Bay esianFusionFilterType::New();

Now the multi spectral image, the interpolated multi spdimage and the panchromatic image
are given as inputs to the filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

286 Chapter 12. Image Fusion

Figure 12.3:nput images used for this example ((©European Space Imaging).

bayesianFilter->SetMultiSpect(multiSpectReader->Get Output());
bayesianFilter->SetMultiSpectinterp(multiSpectinter pReader->GetOutput());
bayesianFilter->SetPanchro(panchroReader->GetOutput 0)

writer->Setinput(bayesianFilter->GetOutput());

The BayesianFusionFilter requires defining one parameteiThe\ parameter can be used to
tune the fusion toward either a high color consistency orgstatails. Typicah value range in
[0.5,1], where higher values yield sharper details. by defaistset at 0.9999.

bayesianFilter->SetLambda(atof(argv[9]));

The invocation of thépdate() method on the writer triggers the execution of the pipelihe.
is recommended to place update calls trygatch block in case errors occur and exceptions
are thrown.

try
{
writer->Update();
}
catch(itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std:endl;
std::cerr << excep << std::endl;

}

Lets now run this example using as input the imagesultiSpect.tif ,
multiSpectinterp.tif and panchro.tif provided in the directoryExamples/Data
The results obtained for 2 different values }oare shown in figure 12.3.

12.2. Bayesian Data Fusion 287

Figure 12.4:Fusion results for the Bayesian Data Fusion filter for A = 0.5 on the left and A = 0.99990n
the right.

CHAPTER

THIRTEEN

Feature Extraction

13.1 Introduction

Under the ternteature Extractionwe include several techniques aiming to detect or extract
informations of low level of abstraction from images. Thésaturescan be objects : points,
lines, etc. They can also be measures : moments, textuces, et

13.2 Interest Points

13.2.1 Harris detector

The source code for this example can be found in the file
Examples/FeatureExtraction/HarrisExample.cxx
This example illustrates the use of tléh::HarrisimageFilter

The first step required to use this filter is to include its lezdile.
#include "otbHarrisimageFilter.h"

The otb::HarrisimageFilter is templated over the input and output image types, so we star
by defining:

typedef otb::HarrisimageFilter<InputimageType,
InputimageType> HarrisFilterType;

The otb::HarrisimageFilter needs some parameters to operate. The derivative compu-
tation is performed by a convolution with the derivative oGaussian kernel of varianag

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html

290 Chapter 13. Feature Extraction

Figure 13.1Result of applying the oth::HarrisimageFilter to a Spot 5 image.

(derivation scale) and the smoothing of the image is peréariyy convolving with a Gaussian
kernel of variance, (integration scale). This allows the computation of théofeing matrix:

_ A2 L)Z((X, Op) LxLy(X, Op)
l.l(X,O'| 70D) - 0-Dg(o-l) * LXLy(X7O'D) L%(X7O'D) (13-1)
The output of the detector is
det(y) — atrace?(p).

harris->SetSigmaD(SigmaD);
harris->SetSigmal(Sigmal);
harris->SetAlpha(Alpha);

Figure 13.1 shows the result of applying the interest poatéctor to a small patch extracted
from a Spot 5 image.

The output of the oth::HarrisimageFilter is an image where,for each pixel, we obtain
the intensity of the detection. Often, the user may want toageess to the set of points for
which the output of the detector is higher than a given tholesHrhis can be obtained by using
the oth::HarrisimageToPointSetFilter . This filter is only templated over the input image
type, the output being &k::PointSet with pixel type equal to the image pixel type.

typedef otb::HarrisimageToPointSetFilter<inputimageT ype> FunctionType;

We declare now the filter and a pointer to the output point set.

typedef FunctionType::OutputPointSetType OutputPointS etType;
FunctionType::Pointer harrisPoints = FunctionType::New 0;
OutputPointSetType::Pointer pointSet = OutputPointSetT ype::New();
The oth::HarrisimageToPointSetFilter takes the same parameters as the
oth::HarrisimageFilter and an additional parameter : the threshold for the point

selection.

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html

13.2. Interest Points 291

harrisPoints->Setinput(0,reader->GetOutput());
harrisPoints->SetSigmaD(SigmaD);
harrisPoints->SetSigmal(Sigmal);
harrisPoints->SetAlpha(Alpha);
harrisPoints->SetLowerThreshold(10);
pointSet = harrisPoints->GetOutput();

We can now iterate through the obtained pointset and ackesobrdinates of the points. We
start by accessing the container of the points which is endated into the point set (see section
5.2 for more information on usingk::PointSet s) and declaring an iterator to it.

typedef OutputPointSetType::PointsContainer Container Type;
ContainerType* pointsContainer = pointSet->GetPoints() ;
typedef ContainerType::Iterator lteratorType;

lteratorType itList = pointsContainer->Begin();

And we get the points coordinates

while(itList != pointsContainer->End())

typedef OutputPointSetType::PointType OutputPointType
OutputPointType pCoordinate = (itList.Value());

std::cout << pCoordinate << std::endl;

++itList;

}

13.2.2 SIFT detector

The source code for this example can be found in the file
Examples/FeatureExtraction/SIFTExample.cxx

This example illustrates the use of thuth::ImageToSIFTKeyPointSetFilter . The Scale-
Invariant Feature Transform (or SIFT) is an algorithm in poer vision to detect and describe
local features in images. The algorithm was published byidDaowe [59]. The detection and
description of local image features can help in object ragta@n and image registration. The
SIFT features are local and based on the appearance of thet @bjparticular interest points,
and are invariant to image scale and rotation. They are alsast to changes in illumination,
noise, occlusion and minor changes in viewpoint.

The first step required to use this filter is to include its lezdile.

#include "otblmageToSIFTKeyPointSetFilter.n"

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html

292 Chapter 13. Feature Extraction

The oth::ImageToSIFTKeyPointSetFilter is templated over its input image type and the
output point set type. Therefore, we start by defining theladeypes.

typedef otb::Image<RealType,Dimension> ImageType;

typedef itk::VariableLengthVector<RealType> RealVecto rType;

typedef oth::imageFileReader<imageType> ReaderType;

typedef itk::PointSet<RealVectorType,Dimension> Point SetType;

typedef otb::ImageToSIFTKeyPointSetFilter<imageType, PointSetType> ImageToSIFTKeyPointSetFilterType;

Since the SIFT detector produces a point set, we will needtides for the coordinates of the
points and the data associated with them.

typedef PointSetType::PointsContainer PointsContainer Type;
typedef PointsContainerType::lterator PointslteratorT ype;
typedef PointSetType::PointDataContainer PointDataCon tainerType;
typedef PointDataContainerType::Iterator PointDatalte ratorType;

We can now instantiate the reader and the SIFT filter and plegipeline.

ReaderType::Pointer reader = ReaderType::New();
ImageToSIFTKeyPointSetFilterType::Pointer filter = Ima geToSIFTKeyPointSetFilterType::New();

reader->SetFileName(infname);

filter->Setinput(0,reader->GetOutput());

The SIFT filter needs the following parameters:

e the number of octaves, that is, the number of levels of uaaepting,
¢ the number of scales (blurring) per octave,

¢ the low contrast threshold to be applied to each point forditection on the difference
of Gaussians image,

¢ the threshold on the responses to consider a point as an edge.

filter->SetOctavesNumber(octaves);
filter->SetScalesNumber(scales);

filter->SetDoGThreshold(threshold);
filter->SetEdgeThreshold(ratio);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html

13.3. Alignments 293

Figure 13.2:Result of applying the oth::ImageToSIFTKeyPointSetFilter to a Spot 5 image. Left to
right: original image and SIFT with thresholds 0, 1 and 2 respectively.

Figure 13.3:Result of applying the oth::ImageToSIFTKeyPointSetFilter to a high resolution image
image. Left to right: original image and SIFT on the original and a rotated image respectively.

Figure 13.2 shows the result of applying the SIFT point detgo a small patch extracted from
a Spot 5 image using different threshold values. Figure $8dvs the result of applying the
SIFT point detector to a small patch extracted from a Spot &gignusing different threshold
values.

13.3 Alignments

The source code for this example can be found in the file
Examples/FeatureExtraction/AlignmentsExample.cxx

This example illustrates the use of thuth::ImageToPathListAlignFilter . This filter al-
lows to extract meaninful alignments. Alignments (thatdges and lines) are detected using
the Gestaltapproach proposed by Desolneux et al. [25]. In this conaxtevent is consid-
ered meaningful if the expectation of its occurrence wowdd/ery small in a random image.
One can thus consider that in a random image the directioneoftadient of a given point is
uniformly distributed, and that neighbouring pixels haveeay low probability of having the
same gradient direction. This algorithm gives a set of grtdine segments defined by the two
extremity coordinates under the form o$ta::list of itk::PolyLineParametricPath

The first step required to use this filter is to include its lezad

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html

294 Chapter 13. Feature Extraction

#include "otblmageToPathListAlignFilter.h"

In order to visualize the detected alignments, we will usee tfacility class
oth::DrawPathFilter which draws aitk::PolyLineParametricPath on top of a
given image.

#include "itkPolyLineParametricPath.h"
#include "otbDrawPathFilter.h"

The otb::ImageToPathListAlignFilter is templated over the input image type and the
output path type, so we start by defining:

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;
typedef oth::imageToPathListAlignFilter<inputimageTy pe,PathType>
ListAlignFilterType;

Next, we build the pipeline.

ListAlignFilterType::Pointer alignFilter = ListAlignFi lterType::New();

alignFilter->Setlnput(reader->GetOutput());

We can choose the number of accepted false alarms in theidatedth the methobetEps()
for which the parameter is of the formlogl0(max. number of false alarms

alignFilter->SetEps(atoi(argv(3]));

As stated, above, theth::DrawPathFilter , is useful for drawint the detected alignments.
This class is templated over the input image and path typgsian on the output image type.

typedef otb::DrawPathFilter< InputimageType, PathType,
OutputimageType > DrawPathFilterType;

We will now go through the list of detected paths and feed thethe otb::DrawPathFilter
inside a loop. We will use a list iterator insidevhile statement.

typedef ListAlignFilterType::OutputPathListType ListT ype;

ListType* pathList = alignFilter->GetOutput();

ListType::lterator listlt = pathList->Begin();

http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html

13.3. Alignments 295

Figure 13.4Result of applying the oth::ImageToPathListAlignFilter to a VHR image of a suburb.

We define a dummy image will be iteratively fed to thb::DrawPathFilter after the draw-
ing of each alignment.

InputimageType::Pointer backgroundimage = reader->GetO utput();
We iterate through the list and write the result to a file.

while(listlt != pathList->End())
{

DrawPathFilterType::Pointer drawPathFilter = DrawPathF ilterType::New();
drawPathFilter->Setimagelnput(backgroundimage);
drawPathFilter->SetPathinput(listlt.Get());

drawPathFilter->SetValue(itk::NumericTraits<OutputP ixelType>:max());
drawPathFilter->Update();

backgroundimage = drawPathFilter->GetOutput();
++istlt;

}

writer->Setinput(backgroundimage);

Figure 13.4 shows the result of applying the alignment dieteto a small patch extracted from
a VHR image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html

296 Chapter 13. Feature Extraction

13.4 Lines

13.4.1 Line Detection

The source code for this example can be found in the file
Examples/FeatureExtraction/RatioLineDetectorExample CXX .

This example illustrates the use of tlh::RatioLineDetectorimageFilter . This filter is
used for line detection in SAR images. Its principle is disedt in [87]: a line is detected if
two parallel edges are present in the images. These edgdstarted with the ratio of means
detector.

The first step required to use this filter is to include its leedile.
#include "otbLineRatioDetectorlmageFilter.h"

Then we must decide what pixel type to use for the image. Wesdhto make all computations
with floating point precision and rescale the results betw@and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::image< InternalPixelType, 2 > Internallmage Type;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

The filter can be instantiated using the image types definedeab
typedef oth::LineRatioDetectorimageFilter< Internallm ageType, InternallmageType > FilterType;

An oth::ImageFileReader class is also instantiated in order to read image data frola.a fi

typedef otb::imageFileReader< InternallmageType > Reade rType;
An otb::lmageFileWriter is instantiated in order to write the output image to a file.
typedef otb::imageFileWriter< OutputimageType > WriterT ype;

The intensity rescaling of the results will be carried out byhe
itk::RescalelntensitylmageFilter which is templated by the input and output im-

age types.

http://www.melaneum.com/OTB/doxygen/classotb_1_1RatioLineDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

13.4. Lines 297

typedef itk::RescalelntensitylmageFilter< Internalima geType,
OutputimageType > RescalerType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescalelntensitylmageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be cloageneric way by using the
NumericTraits ~ functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

The image obtained with the reader is passed as input to the
oth::LineRatioDetectorimageFilter . The pipeline is built as follows.

filter->SetInput(reader->GetOutput());
rescaler->Setlnput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

The methodsSetLengthLine() and SetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv(4]));
filter->SetWidthLine(atoi(argv[5]));

The filter is executed by invoking tHépdate() method. If the filter is part of a larger image
processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineRatioDetectorImageFilter.html

298 Chapter 13. Feature Extraction

Figure 13.5Result of applying the oth::LineRatioDetectorimageFilter to a SAR image. From left
to right : original image, line intensity and edge orientation.

We can also obtain the direction of the lines by invoking @¢OutputDirection() method.

rescaler->Setlnput(filter->GetOutputDirection());
writer->Setlnput(rescaler->GetOutput());
writer->Update();
shows the result of applying the LineRatio edge detecterfiti a SAR image.

The following classes provide similar functionality:
e otb::LineCorrelationDetectorimageFilter

The source code for this example can be found in the file
Examples/FeatureExtraction/CorrelationLineDetectorE xample.cxx

This example illustrates the use of tloh::CorrelationLineDetectorimageFilter . This

filter is used for line detection in SAR images. Its princiigldescribed in [87]: aline is detected
if two parallel edges are present in the images. These edgeetected with the correlation of

means detector.

The first step required to use this filter is to include its lezdite.

#include "otbLineCorrelationDetectorimageFilter.h"

Then we must decide what pixel type to use for the image. Wesdhto make all computations
with floating point precision and rescale the results betw@and 255 in order to export PNG

images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineRatioDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationLineDetectorImageFilter.html

13.4. Lines 299

typedef otb::Image< InternalPixelType, 2 > Internallmage Type;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

The filter can be instantiated using the image types definedeab

typedef oth::LineCorrelationDetectorimageFilter< Inte rnallmageType,
InternallmageType > FilterType;

An otb:ImageFileReader class is also instantiated in order to read image data frota.a fi
typedef oth::ImageFileReader< InternallmageType > Reade IType;

An otb::lmageFileWriter is instantiated in order to write the output image to a file.
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

The intensity rescaling of the results will be carried out byhe

itk::RescalelntensitylmageFilter which is templated by the input and output im-
age types.
typedef itk::RescalelntensitylmageFilter< Internalima geType,

OutputimageType > RescalerType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescalelntensitylmageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be cloaeeneric way by using the
NumericTraits ~ functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

300 Chapter 13. Feature Extraction

Figure 13.6:Result of applying the otb::LineCorrelationDetectorimageFilter to a SAR image.
From left to right : original image, line intensity and edge orientation.

The image obtained with the reader is passed as input to the
oth::LineCorrelationDetectorimageFilter . The pipeline is built as follows.

filter->Setinput(reader->GetOutput());
rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

The methodsSetLengthLine() and SetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv[4]));
filter->SetWidthLine(atoi(argv[5]));
The filter is executed by invoking tHépdate() method. If the filter is part of a larger image

processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();
We can also obtain the direction of the lines by invoking@e&utputDirections() method.

rescaler->Setinput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();

shows the result of applying the LineCorrelation edge detditer to a SAR image.

The following classes provide similar functionality:

e otb::LineCorrelationDetectorimageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html

13.4. Lines 301

The source code for this example can be found in the file
Examples/FeatureExtraction/AssymmetricFusionOfLineD etectorExample.cxx

This example illustrates the use of thih::AssymmetricFusionOfLineDetectorimageFilter

The first step required to use this filter is to include its lezdite.
#include "otbAssymmetricFusionOfLineDetectorimageFil ter.h"

Then we must decide what pixel type to use for the image. Wesdto make all computations
with floating point precision and rescale the results betw@and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::image< InternalPixelType, 2 > Internallmage Type;
typedef otb::image< OutputPixelType, 2 > OutputimageType ;

The filter can be instantiated using the image types definedeab

typedef oth::AssymmetricFusionOfLineDetectorimageFil ter< InternallmageType,
InternallmageType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data frofa.a fi

typedef otb::imageFileReader< InternallmageType > Reade rType;
An otb::ImageFileWriter is instantiated in order to write the output image to a file.
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

The intensity rescaling of the results will be carried out byhe

itk::RescalelntensitylmageFilter which is templated by the input and output im-
age types.
typedef itk::RescalelntensitylmageFilter< Internalima geType,

OutputimageType > RescalerType;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymmetricFusionOfLineDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

302 Chapter 13. Feature Extraction

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescalelntensitylmageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be choageneric way by using the
NumericTraits ~ functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

The image obtained with the reader is passed as input to the
oth::AssymetricFusionOfDetectorimageFilter . The pipeline is built as follows.

filter->Setinput(reader->GetOutput());
rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

The methodsSetLengthLine() and SetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv[3]));
filter->SetWidthLine(atoi(argv[4]));

The filter is executed by invoking tHdpdate() method. If the filter is part of a larger image
processing pipeline, callingpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

Figure 13.7 shows the result of applying the AssymetriobnuSif edge detector filter to a SAR
image.

13.4.2 Segment Extraction

The source code for this example can be found in the file
Examples/FeatureExtraction/LocalHoughExample.cxx

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymetricFusionOfDetectorImageFilter.html

13.4. Lines 303

Figure 13.7:Result of applying the oth::AssymetricFusionOfDetectorimageFilter to a SAR im-
age. From left to right : original image, line intensity.

This example illustrates the use of tlh::ExtractSegmentsimageFilter

The first step required to use this filter is to include its eedite.

#include "otbLocalHoughFilter.h"
#include "otbDrawLineSpatialObjectListFilter.h"
#include "otbLineSpatialObjectList.h"

Then we must decide what pixel type to use for the image. Wesdto make all computations
with floating point precision and rescale the results betw@and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > Internallmage Type;
typedef otb::Image< OutputPixelType, 2 > OutputimageType ;

The filter can be instantiated using the image types definedeab

typedef otb::LocalHoughFilter< InternallmageType > Loca |[HoughType;
typedef oth::DrawLineSpatialObjectListFilter< Interna limageType,
OutputimageType > DrawLineListType;

An oth::ImageFileReader class is also instantiated in order to read image data frofa.a fi

typedef oth::ImageFileReader< InternallmageType > Reade IType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymetricFusionOfDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractSegmentsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

304 Chapter 13. Feature Extraction

An otb::ImageFileWriter is instantiated in order to write the output image to a file.
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
LocalHoughType::Pointer localHough= LocalHoughType::N ew();

DrawLineListType::Pointer drawLineList= DrawLineListT ype::New();

The same is done for the writer.
WriterType::Pointer writer = WriterType::New();
The image obtained with the reader is passed as input to the

oth::ExtractSegmentsimagefFilter . The pipeline is built as follows.

localHough->SetInput(reader->GetOutput());

drawLineList->Setlnput(reader->GetOutput());
drawLineList->SetlnputLineSpatialObjectList(localHo ugh->GetOutput());
writer->SetFileName(argv[2]);

writer->Setinput(drawLineList->GetOutput());

writer->Update();

Figure 13.8 shows the result of applying tht::LocalHoughimageFilter

13.5 Geometric Moments

13.5.1 Complex Moments

The complex geometric moments are defined as:

400 400

cpq://(x+iy)p(xfiy)qf(x,y)dxdy (13.2)

—00 —00

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractSegmentsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LocalHoughImageFilter.html

13.5. Geometric Moments 305

Figure 13.8:Result of applying the oth::LocalHoughimageFilter . From left to right : original image,
extracted segments.

wherex andy are the coordinates of the imadéx,y), i is the imaginary unit angh+ q is the
order ofcyg. The geometric moments are particularly useful in the chseale changes.

Complex Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/ComplexMomentimageExampl e.cxXx .

This example illustrates the use of tloth::ComplexMomentimageFunction

The first step required to use this filter is to include its edite.
#include "otbComplexMomentimageFunction.h"

The oth::ComplexMomentimageFunction is templated over the input image type and the
output complex type value, so we start by defining:

typedef std::complex<float> ComplexType;
typedef otb::ComplexMomentimageFunction<inputimageTy pe,ComplexType> CMType;

CMType::Pointer cmFunction =CMType::New();

Next, we plug the input image into the complex moment fuentéiad we set its parameters.

reader->Update();

cmFunction->Setinputimage(reader->GetOutput());
cmFunction->SetQ(Q);

cmFunction->SetP(P);

We can chose the pixel of the image which will used as centehfomoment computation

http://www.melaneum.com/OTB/doxygen/classotb_1_1LocalHoughImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html

306 Chapter 13. Feature Extraction

InputimageType::IndexType center;
center[0]=50;
center[1]=50;

We can also choose the size of the neighborhood around ther gexel for the moment com-
putation.

In order to get the value of the moment, we call BvaluateAtindex ~ method.

ComplexType Result = cmFunction->EvaluateAtindex(cente r;

std::cout << "The moment of order (" << P << "" << Q <<
") is equal to " << Result << std:: end|;

Complex Moments for Paths

The source code for this example can be found in the file
Examples/FeatureExtraction/ComplexMomentPathExample CXX .

The complex moments can be computed on images, but sometumesre interested in
computing them on shapes extracted from images by seghmntalgorithms. These
shapes can be represented bik:Path s. This example illustrates the use of the
oth::ComplexMomentPathFunction for the computation of complex geometric moments on
ITK paths.

The first step required to use this filter is to include its teadite.
#include "otbComplexMomentPathFunction.h"

The otb::ComplexMomentPathFunction is templated over the input path type and the output
complex type value, so we start by defining:

const unsigned int Dimension = 2;

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;

typedef std::complex<double> ComplexType;
typedef otb::ComplexMomentPathFunction<PathType,Comp lexType> CMType;

CMType::Pointer cmFunction =CMType::New();

Next, we set the parameters of the plug the input path intadneplex moment function and
we set its parameters.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Path.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentPathFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentPathFunction.html

13.5. Geometric Moments 307

cmFunction->SetlnputPath(path);
cmFunction->SetQ(Q);
cmFunction->SetP(P);

Since the paths are defined in physical coordinates, we doeed to set the center for the
moment computation as we did with theth::ComplexMomentimageFunction . The same
applies for the size of the neighborhood around the cenket for the moment computation.
The moment computation is triggered by calling Bvaluate method.

ComplexType Result = cmFunction->Evaluate();

std::cout << "The moment of order (* << P << "" << Q <<
") is equal to " << Result << std:: end];

13.5.2 Hu Moments

Using the algebraic moment theory, H. Ming-Kuel obtainedraify of 7 invariants with respect
to planar transformations called Hu invariants, [42]. Tdhowariants can be seen as nonlinear
combinations of the complex moments. Hu invariants haven bvegy much used in object
recognition during the last 30 years, since they are ingat@rotation, scaling and translation.
[32] gives their expressions :

M = C11, P2 = C20C02; @3 = C30Co3; @4 = C21C12; (13.3)
05 = Re(Cocl,); @5 = Re(Ca1cs,); @7 = Im(caocsy). '

[29] have used these invariants for the recognition of aft@ilhouettes. Flusser and Suk have
used them for image registration, [47].

Hu Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/HuMomentimageExample.cxx
This example illustrates the use of thh::HuMomentimageFunction

The first step required to use this filter is to include its ledile.
#include "otbHulmageFunction.h"

The otb::HulmageFunction is templated over the input image type and the output (rggé t
value, so we start by defining:

http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HuMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HuImageFunction.html

308 Chapter 13. Feature Extraction

typedef float MomentType;
typedef otb::HulmageFunction<inputimageType,
MomentType> HuType;

HuType::Pointer hmFunction =HuType::New();

We can choose the region and the pixel of the image which wébuas coordinate origin for
the moment computation

InputimageType::RegionType region;
InputimageType::SizeType size;
InputimageType::IndexType start;

start[0] = 0;
start{1] = 0;
size[0] = 50;
size[1] = 50;

reader->Update();
InputimageType::Pointer image = reader->GetOutput();

region.Setindex(start);
region.SetSize(size);

image->SetRegions(region);
image->Update();

InputimageType::IndexType center;
center[0]=start[0]+size[0]/2;
center[1]=start[1]+size[1]/2;

Next, we plug the input image into the complex moment functad we set its parameters.

hmFunction->SetInputimage(image);
hmFunction->SetMomentNumber(mMomentNumber);

In order to get the value of the moment, we call BvaluateAtindex ~ method.

MomentType Result = hmFunction->EvaluateAtindex(center);

13.5. Geometric Moments 309

std::cout << "The moment of order " << mMomentNumber <<
" is equal to " << Result << std:: endl;

The following classes provide similar functionality:

e oth::HuPathFunction

13.5.3 Flusser Moments

The Hu invariants have been modified and improved by sevetthbes. Flusser used these
moments in order to produce a new family of descriptors oeokdgher than 3, [32]. These
descriptors are invariant to scale and rotation. They Haedédllowing expressions:

W1 = C11 = @1 W =CouCio=qu; W3 =ReC003,) = @s;
W =Im(cocty); Ws = Re(Caocty) = @5; We = IM(Ca0Ci,) = @r- (13.4)
W7 = C2; Ws = Re(C31C2,); Yo = IM(Cz1C12 2); '
W10 = ReCaoct,); W11 = IM(CaoCs,).

Examples

Flusser Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/FlusserMomentimageExampl e.cxx .
This example illustrates the use of tloéh::FlusserMomentimageFunction

The first step required to use this filter is to include its ledile.
#include "otbFlusserlmageFunction.h"

The otb::FlusserlimageFunction is templated over the input image type and the output
(real) type value, so we start by defining:

typedef float MomentType;
typedef oth::FlusserimageFunction<InputimageType,
MomentType> FlusserType;

FlusserType::Pointer fmFunction =FlusserType::New();

We can choose the region and the pixel of the image which w#éduas coordinate origin for
the moment computation

http://www.melaneum.com/OTB/doxygen/classotb_1_1HuPathFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserImageFunction.html

310 Chapter 13. Feature Extraction

InputimageType::RegionType region;
InputimageType::SizeType size;
InputimageType::IndexType start;

start[0] = 0;
start[1] = 0;
size[0] = 50;
size[1] = 50;

reader->Update();
InputimageType::Pointer image = reader->GetOutput();

region.Setindex(start);
region.SetSize(size);

image->SetRegions(region);
image->Update();

InputimageType::IndexType center;
center[0]=start[0]+size[0]/2;
center[1]=start[1]+size[1]/2;

Next, we plug the input image into the complex moment functiad we set its parameters.

fmFunction->Setinputimage(image);
fmFunction->SetMomentNumber(mMomentNumber);

In order to get the value of the moment, we call BvaluateAtindex

MomentType Result = fmFunction->EvaluateAtindex(center);

std::cout << "The moment of order " << mMomentNumber <<
"is equal to " << Result << std:: endl;

The following classes provide similar functionality:

e oth::FlusserPathFunction

method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserPathFunction.html

13.6. Road extraction 311

13.6 Road extraction

Road extraction is a critical feature for an efficient useighlvesolution satellite images. There
are many applications of road extraction: update of GIShiege, reference for image registra-
tion, help for identification algorithms and rapid mappimy &xample. Road network can be
used to register an optical image with a map or an optical eweth a radar image for example.
Road network extraction can help for other algorithms:ated building detection, bridge de-
tection. In these cases, a rough extraction can be suffidiettte context of response to crisis,
a fast mapping is necessary: within 6 hours, infrastrusttoethe designated area are required.
Within this timeframe, a manual extraction is inconceieadhd an automatic help is necessary.

13.6.1 Road extraction filter

The source code for this example can be found in the file
Examples/FeatureExtraction/ExtractRoadExample.cxx

The easiest way to use the road extraction filter provided B @ to use the composite filter.
If a modification in the pipeline is required to adapt to a joaittr situation, the step by step
example, described in the next section can be adapted.

This example demonstrates the use of thib::RoadExtractionFilter . This filter is a
composite filter achieving road extraction according toalyerithm adapted by E. Christophe
and J. Inglada [15] from an original method proposed in [55].

The first step toward the use of this filter is the inclusionhaf proper header files.

#include "otbPolyLineParametricPathWithValue.h"
#include "otbRoadExtractionFilter.h"
#include "otbDrawPathListFilter.h"

Then we must decide what pixel type to use for the image. Wessto do all the computation
in floating point precision and rescale the results betwean®255 in order to export PNG
images.

typedef double InputPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimensi®tease note that the
oth::RoadExtractionFilter needs anotb::Vectorimage as input to handle multispectral
images.

typedef oth::Vectorimage<InputPixelType,Dimension> In putVectorimageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

312 Chapter 13. Feature Extraction

typedef otb::Image<InputPixelType,Dimension> Inputima geType;
typedef otb::Image<OutputPixelType,Dimension> Outputl mageType;

We define the type of the polyline that the filter produces. Wee uthe
oth::PolyLineParametricPathWithValue , which allows the filter to produce a likehood
value along with each polyline. The filter is able to produitkePolyLineParametricPath

as well.

typedef oth::PolyLineParametricPathWithValue<InputPi xelType,Dimension> PathType;

Now we can define theotb::RoadExtractionFilter that takes a multi-spectral image as
input and produces a list of polylines.

typedef oth::RoadExtractionFilter<inputVectorimageTy pe,
PathType> RoadExtractionFilterType;

We also define anotb::DrawPathListFilter to draw the output polylines on an image,
taking their likehood values into account.

typedef otb::DrawPathListFilter<inputimageType, PathT ype,
InputimageType> DrawPathFilterType;

The intensity rescaling of the results will be carried out byhe

itk::RescalelntensitylmagerFilter which is templated by the input and output im-
age types.
typedef itk::RescalelntensitylmageFilter<inputimageT ype,

OutputimageType> RescalerType;

An oth::ImageFileReader class is also instantiated in order to read image data frofa.a fi
Then, anoth::ImageFileWriter is instantiated in order // to write the output image to a file.

typedef oth::ImageFileReader<InputVectorimageType> Re aderType;
typedef oth::ImageFileWriter<OutputimageType> WriterT ype,

The different filters composing our pipeline are createdrivpking theirNew() methods, as-
signing the results to smart pointers.

http://www.melaneum.com/OTB/doxygen/classotb_1_1PolyLineParametricPathWithValue.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PolyLineParametricPath.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

13.6. Road extraction 313

ReaderType::Pointer reader = ReaderType::New();

RoadExtractionFilterType::Pointer roadExtractionFilt er

= RoadExtractionFilterType::New();
DrawPathFilterType::Pointer drawingFilter = DrawPathFi [terType::New();
RescalerType::Pointer rescaleFilter = RescalerType::Ne w();

WriterType::Pointer writer = WriterType::New();

The otb::RoadExtractionFilter needs to have a reference pixel corresponding to the spec-
tral content likely to represent a road. This is done by pagai pixel to the filter. Here we
suppose that the input image has four spectral bands.

InputVectorimageType::PixelType ReferencePixel;
ReferencePixel.SetSize(4);

ReferencePixel.SetElement(0,::atof(argv[3]
ReferencePixel.SetElement(1,::atof(argv(4]
ReferencePixel.SetElement(2,::atof(argv[5]
ReferencePixel.SetElement(3,::atof(argv[6]));
roadExtractionFilter->SetReferencePixel(ReferencePi xel);

e)
=

We must also set the alpha parameter of the filter which allemts tune the width of the roads
we want to extract. Typical value isQ.and should be working in most situations.

roadExtractionFilter->SetAlpha(atof(argv[7]));

All other parameter should not influence the results too minichost situation and can be kept
at the default value.

The amplitude threshold parameter tunes the sensitivith@fvectorization step. A typical
value is 5107°.

roadExtractionFilter->SetAmplitude Threshold(atof(ar gv[a]));

The tolerance threshold tunes the sensitivity of the patipkiication step. Typical value isQ.

roadExtractionFilter->SetTolerance(atof(argv[9]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html

314 Chapter 13. Feature Extraction

Roads are not likely to have sharp turns. Therefore we sehtheangle parameter, as well as
the link angular threshold. The value is typicdly

roadExtractionFilter->SetMaxAngle(atof(argv[10]));
roadExtractionFilter->SetAngularThreshold(atof(argv [10D));

The oth::RoadExtractionFilter performs two odd path removing operations at different
stage of its execution. The first mean distance thresholdhenskecond mean distance threshold
set their criterion for removal. Path are removed if theiramelistance between nodes is to
small, since such path coming from previous filters are Vitelbe tortuous. The first removal
operation as a typical mean distance threshold parameled odind the second of 1M

roadExtractionFilter->SetFirstMeanDistanceThreshold (atof(argv[11)]));
roadExtractionFilter->SetSecondMeanDistance Threshol d(atof(argv[12]));
The otb::RoadExtractionFilter is able to link path whose ends are near according to

an euclidean distance criterion. The threshold for thisadise to link a path is the distance
threshold parameter. A typical value is 25.

roadExtractionFilter->SetDistance Threshold(atof(arg v[13]));

We will now create a black background image to draw the resulpolyline on. To
achieve this we need to know the size of our input image. Tboerewe trigger the
GenerateOutputinformation() of the reader.

reader->GenerateOutputinformation();

InputimageType::Pointer blackBackground = InputimageTy pe::New();
blackBackground->SetRegions(reader->GetOutput()->Ge tLargestPossibleRegion());
blackBackground->Allocate();

blackBackground->FillBuffer(0);

We tell the otb::DrawPathListFilter to try to use the likehood value embedded within the
polyline as a value for drawing this polyline if possible.

drawingFilter->UselnternalPathValueOn();

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html

13.6. Road extraction 315

Theitk::RescalelntensitylmageFilter needs to know which is the minimum and maxi-
mum values of the output generated image. Those can be choageneric way by using the
NumericTraits ~ functions, since they are templated over the pixel type.

rescaleFilter->SetOutputMinimum(itk::NumericTraits< OutputPixelType >::min());
rescaleFilter->SetOutputMaximum(itk::NumericTraits< OutputPixelType >:max());

Now it is time for some pipeline wiring.

roadExtractionFilter->Setlnput(reader->GetOutput())
drawingFilter->Setlnput(blackBackground);
drawingFilter->SetlnputPath(roadExtractionFilter->G etOutput());
rescaleFilter->SetInput(drawingFilter->GetOutput())

The update of the pipeline is triggered by thgdate() method of the rescale intensity filter.
rescaleFilter->Update();

Figure 13.9 shows the result of applying the road extractilber to a fusionned Quickbird
image.

13.6.2 Step by step road extraction

The source code for this example can be found in the file
Examples/FeatureExtraction/ExtractRoadByStepsExampl e.cxXx .

This example illustrates the details of thth::RoadExtractionFilter . This filter, described
in the previous section, is a composite filter that includetha steps below. Individual filters
can be replaced to design a road detector targeted at SAR#&fiagexample.

The spectral angle is used to compute a grayscale image fremtiltispectral original im-
age usingotb::SpectralAngleDistancelmageFilter . The spectral angle is illustrated on
Figure 13.10. Pixels corresponding to roads are in darler.co

typedef otb::SpectralAngleDistancelmageFilter<MultiS pectrallmageType,
InternallmageType> SAFilterType;

SAFilterType::Pointer saFilter = SAFilterType::New();

saFilter->SetReferencePixel(pixelRef);

saFilter->SetInput(multispectralReader->GetOutput());

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SpectralAngleDistanceImageFilter.html

316 Chapter 13. Feature Extraction

A

~
/
~

\\ <7 N\ -

e

Figure 13.9:Result of applying the otb::RoadExtractionFilter to a fusionned Quickbird image.
From left to right : original image, extracted road with their likehood values (color are inverted for display).

B3 A
o
.
<
N
.
'
S
L} ~~
' e
] e
Spectral '
'
Angle ' :
']
'
d
' ' B2
. H >
1 14 . L
B
' A
')
' REEEY:
' Joae
.
......... LR A
M
'
:
-

Figure 13.10:lllustration of the spectral angle for one pixel of a three-band image. One of the vector is
the reference pixel and the other is the current pixel.

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html

13.6. Road extraction 317

A square root is applied to the spectral angle image in omlenhance contrast between darker
pixels (which are pixels of interest) withk::SqrtimageFilter

typedef itk::SqrtimageFilter<internallmageType,Inter nallmageType> SqrtFilterType;
SqrtFilterType::Pointer sqrtFilter = SqrtFilterType:N ew();
sqrtFilter->Setinput(saFilter->GetOutput());

Use the Gaussian gradient filter compute the gradient drectand intensity (
itk::GradientRecursiveGaussianimageFilter).

double sigma = alpha*(1.2/resolution+1);

typedef itk::GradientRecursiveGaussianimageFilter<in ternallmageType,
VectorlmageType> GradientFilterType;
GradientFilterType::Pointer gradientFilter = GradientF ilterType::New();

gradientFilter->SetSigma(sigma);
gradientFilter->SetInput(sqrtFilter->GetOutput());

Compute the scalar product of the neighboring pixels ang kee minimum value and the di-

rection with otb::NeighborhoodScalarProductFilter . This is the line detector described
in [55].
typedef oth::NeighborhoodScalarProductFilter<Vectorl mageType,
InternallmageType,InternallmageType> NeighborhoodSca larProductType;

NeighborhoodScalarProductType::Pointer scalarFilter
= NeighborhoodScalarProductType::New();
scalarFilter->SetIinput(gradientFilter->GetOutput()) ;

The resulting image is passed to thth::RemovelsolatedByDirectionFilter filter to re-
move pixels with no neighbor having the same direction.

typedef oth::RemovelsolatedByDirectionFilter<interna lImageType,
InternallmageType, InternallmageType> RemovelsolatedB yDirectionType;
RemovelsolatedByDirectionType::Pointer removelsolate dByDirectionFilter
= RemovelsolatedByDirectionType::New();
removelsolatedByDirectionFilter->SetIinput(scalarFil ter->GetOutput());
removelsolatedByDirectionFilter
->SetInputDirection(scalarFilter->GetOutputDirectio n());

We remove pixels having a direction corresponding to brlgigs as we know that after the
spectral angle, roads are in darker color with tilke:RemoveWrongDirectionFilter filter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SqrtImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NeighborhoodScalarProductFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveIsolatedByDirectionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveWrongDirectionFilter.html

318 Chapter 13. Feature Extraction

typedef otb::RemoveWrongDirectionFilter<internallmag eType,
InternallmageType,InternallmageType> RemoveWrongDire ctionType;
RemoveWrongDirectionType::Pointer removeWrongDirecti onFilter
= RemoveWrongDirectionType::New();
removeWrongDirectionFilter->SetInput(removelsolated ByDirectionFilter->GetOutput());
removeWrongDirectionFilter->SetInputDirection(scala rFilter->GetOutputDirection());

We remove pixels which are not maximum on the direction pedjpeilar to the road direction
with the oth::NonMaxRemovalByDirectionFilter

typedef oth::NonMaxRemovalByDirectionFilter<internal ImageType,
InternallmageType, InternalimageType> NonMaxRemovalBy DirectionType;
NonMaxRemovalByDirectionType::Pointer nonMaxRemovalB yDirectionFilter
= NonMaxRemovalByDirectionType::New();
nonMaxRemovalByDirectionFilter->Setinput(removeWron gDirectionFilter->GetOutput());
nonMaxRemovalByDirectionFilter
->SetInputDirection(scalarFilter->GetOutputDirectio n());

Extracted road are vectorized into polylines witth::VectorizationPathListFilter

typedef otb::VectorizationPathListFilter<internallma geType,
InternallmageType,PathType> VectorizationFilterType;
VectorizationFilterType::Pointer vectorizationFilter
= VectorizationFilterType::New();

vectorizationFilter->Setinput(nonMaxRemovalByDirect ionFilter->GetOutput());
vectorizationFilter->SetInputDirection(scalarFilter ->GetOutputDirection());
vectorizationFilter->SetAmplitude Threshold(atof(arg via]);

However, this vectorization is too simple and need to be edfito be usable. First, we
remove all aligned points to make one segment witth::SimplifyPathListFilter

Then we break the polylines which have sharp angles as theyrabably not road with

oth::BreakAngularPathListFilter . Finally we remove path which are too short with
oth::RemoveTortuousPathListFilter

typedef otb::SimplifyPathListFilter<PathType> Simplif yPathType;
SimplifyPathType::Pointer simplifyPathListFilter = Sim plifyPathType::New();
simplifyPathListFilter->SetTolerance(1.0);

simplifyPathListFilter->Setinput(vectorizationFilte r->GetOutput());

typedef oth::BreakAngularPathListFilter<PathType> Bre akAngularPathType;
BreakAngularPathType::Pointer breakAngularPathListFi Iter

= BreakAngularPathType::New();
breakAngularPathListFilter->SetMaxAngle(M_P1/8.);

http://www.melaneum.com/OTB/doxygen/classotb_1_1NonMaxRemovalByDirectionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorizationPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SimplifyPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BreakAngularPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveTortuousPathListFilter.html

13.6. Road extraction 319

breakAngularPathListFilter->Setinput(simplifyPathLi stFilter->GetOutput());

typedef oth::RemoveTortuousPathListFilter<PathType> R emoveTortuousPathType;
RemoveTortuousPathType::Pointer removeTortuousPathLi stFilter

= RemoveTortuousPathType::New();

removeTortuousPathListFilter->SetMeanDistanceThresh old(1.0);
removeTortuousPathListFilter->Setinput(breakAngular PathListFilter->GetOutput());

Polylines within a certain range are linked dth::LinkPathListFilter) to try
to fill gaps due to occultations by vehicules, trees, etc. oigef simplifying
polylines (otb::SimplifyPathListFilter) and removing the shortest ones with

otb::RemoveTortuousPathListFilter

typedef otb::LinkPathListFilter<PathType> LinkPathTyp e
LinkPathType::Pointer linkPathListFilter = LinkPathTyp e::New();
linkPathListFilter->SetDistanceThreshold(25.0/resol ution);
linkPathListFilter->SetAngularThreshold(M_PI/8);
linkPathListFilter->SetIinput(removeTortuousPathList Filter->GetOutput());
SimplifyPathType::Pointer simplifyPathListFilter2 = Si mplifyPathType::New();
simplifyPathListFilter2->SetTolerance(1.0);
simplifyPathListFilter2->SetInput(linkPathListFilte r->GetOutput());
RemoveTortuousPathType::Pointer removeTortuousPathLi stFilter2

= RemoveTortuousPathType::New();
removeTortuousPathListFilter2->SetMeanDistanceThres hold(10.0);
removeTortuousPathListFilter2->SetInput(simplifyPat hListFilter2->GetOutput());

A value can be associated with each polyline according tel piadlues under the polyline with
oth::LikehoodPathListFilter . A higher value will mean a higher likelihood to be a road.

typedef otb::LikehoodPathListFilter<PathType,
InternallmageType> PathListToPathListWithValueType;

PathListToPathListWithValueType::Pointer pathListCon verter

= PathListToPathListWithValueType::New();
pathListConverter->Setinput(removeTortuousPathListF ilter2->GetOutput());
pathListConverter->Setinputimage(hnonMaxRemovalByDir ectionFilter->GetOutput());

A black background image is built to draw the path on.

InternallmageType::Pointer output = InternalimageType: :New();

output->SetRegions(multispectralReader->GetOutput()
->GetLargestPossibleRegion());

output->Allocate();

output->FillBuffer(0.0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1LinkPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SimplifyPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveTortuousPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LikehoodPathListFilter.html

320 Chapter 13. Feature Extraction

Polylines are drawn on a black background image with::DrawPathListFilter . The
SetUselternalValues() tell the drawing filter to draw the path with its likehood valu
typedef otb::DrawPathListFilter<internallmageType, Pa thType,
InternallmageType> DrawPathType;
DrawPathType::Pointer drawPathListFilter = DrawPathTyp e:New();
drawPathListFilter->SetInput(output);
drawPathListFilter->SetInputPath(pathListConverter- >GetOutput());

drawPathListFilter->SetUselnternalPathValue(true);

The output from the drawing filter contains very small val@@dsshood values). Therefore
the image has to be rescaled to be viewed. The whole pipalieadcuted by invoking the
Update() method on this last filter.

typedef itk::RescalelntensitylmageFilter<internallma geType,
InternallmageType> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMaximum(255);

rescaler->SetOutputMinimum(0);

rescaler->Setinput(drawPathListFilter->GetOutput())

rescaler->Update();

Figures 13.11 and 13.12 show the result of applying the rgadeion by steps to a fusionned
Quickbird image. The result image is a RGB composition shgwhe extracted path in red.
Full processing took about 3 seconds for each image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html

13.6. Road extraction 321

Figure 13.11:Result of applying the road extraction by steps pipeline to a fusionned Quickbird image.
From left to right : original image, extracted road with their likehood values.

Figure 13.12:Result of applying the road extraction by steps pipeline to a fusionned Quickbird image.
From left to right : original image, extracted road with their likehood values.

CHAPTER

FOURTEEN

Image Segmentation

Segmentation of remote sensing images is a challenging faskyriad of different methods
have been proposed and implemented in recent years. Inodpite huge effort invested in this
problem, there is no single approach that can generallyegbk problem of segmentation for
the large variety of image modalities existing today.

The most effective segmentation algorithms are obtainexhbgfully customizing combinations
of components. The parameters of these components are funtée characteristics of the
image modality used as input and the features of the objedts segmented.

The Insight Toolkit provides a basic set of algorithms theat be used to develop and customize
a full segmentation application. They are therefore alstglan the Orfeo Toolbox. Some of the
most commonly used segmentation components are descniltieel fiollowing sections.

14.1 Region Growing

Region growing algorithms have proven to be an effectiver@ggh for image segmentation.
The basic approach of a region growing algorithm is to starhfa seed region (typically one or
more pixels) that are considered to be inside the object segmented. The pixels neighboring
this region are evaluated to determine if they should alsodmsidered part of the object. If
so, they are added to the region and the process continueagas new pixels are added to
the region. Region growing algorithms vary depending orctiteria used to decide whether a
pixel should be included in the region or not, the type cotiniég used to determine neighbors,
and the strategy used to visit neighboring pixels.

Several implementations of region growing are availablelk. This section describes some
of the most commonly used.

324 Chapter 14. Image Segmentation

14.1.1 Connected Threshold

A simple criterion for including pixels in a growing regios o evaluate intensity value inside
a specific interval.

The source code for this example can be found in the file
Examples/Segmentation/ConnectedThresholdimageFilter CXX .

The following example illustrates the use of thik::ConnectedThresholdimageFilter

This filter uses the flood fill iterator. Most of the algoritrordomplexity of a region growing
method comes from visiting neighboring pixels. The floodif#drator assumes this respon-
sibility and greatly simplifies the implementation of theien growing algorithm. Thus the
algorithm is left to establish a criterion to decide whethgrarticular pixel should be included
in the current region or not.

The criterion used by the ConnectedThresholdimageFitéased on an interval of intensity
values provided by the user. Values of lower and upper tlotdsthould be provided. The
region growing algorithm includes those pixels whose istii#s are inside the interval.

[(X) € [lower, uppet (14.1)

Let’s look at the minimal code required to use this algorittinst, the following header defin-
ing the ConnectedThresholdimageFilter class must bededu

#include "itkConnectedThresholdimageFilter.h"

Noise present in the image can reduce the capacity of thier fiib grow large re-
gions. When faced with noisy images, it is usually convenientpre-process the im-
age by using an edge-preserving smoothing filter. In thigiqudar example we use the
itk::CurvatureFlowlmageFilter , hence we need to include its header file.

#include "itkCurvatureFlowlmageFilter.h"

We declare the image type based on a particular pixel typedandnsion. In this case the
float type is used for the pixels due to the requirements of the smapfilter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Inter nallmageType;

The smoothing filter is instantiated using the image typetasmplate parameter.

typedef itk::CurvatureFlowlmageFilter< InternallmageT ype, InternalimageType >
CurvatureFlowlmageFilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

14.1. Region Growing 325

Then the filter is created by invoking thdew() method and assigning the result to a
itk::SmartPointer

CurvatureFlowlmageFilterType::Pointer smoothing =
CurvatureFlowlmageFilterType::New();

We now declare the type of the region growing filter. In thise# is the ConnectedThresh-
oldimagekFilter.

typedef itk::ConnectedThresholdimageFilter< Internall mageType,
InternallmageType > ConnectedFilterType;

Then we construct one filter of this class using ke/() method.
ConnectedFilterType::Pointer connectedThreshold = Conn ectedFilterType::New();

Now it is time to connect a simple, linear pipeline. A file reats added at the beginning of the
pipeline and a cast filter and writer are added at the end. &kefitter is required to convert
float pixel types to integer types since only a few image file fosysipportioat types.

smoothing->Setinput(reader->GetOutput());
connectedThreshold->Setlnput(smoothing->GetOutput());
caster->Setinput(connectedThreshold->GetOutput());
writer->Setinput(caster->GetOutput());

The CurvatureFlowlmageFilter requires a couple of paramsdb be defined. The following are
typical values, however they may have to be adjusted depgrmdti the amount of noise present
in the input image.

smoothing->SetNumberOfiterations(5);
smoothing->SetTimeStep(0.125);

The ConnectedThresholdimageFilter has two main parasietée defined. They are the lower
and upper thresholds of the interval in which intensity ealshould fall in order to be included
in the region. Setting these two values too close will navalenough flexibility for the region
to grow. Setting them too far apart will result in a regiontteagulfs the image.

connectedThreshold->SetLower(lowerThreshold);
connectedThreshold->SetUpper(upperThreshold);

The output of this filter is a binary image with zero-value gi&x everywhere except on
the extracted region. The intensity value set inside théorei selected with the method
SetReplaceValue()

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

326 Chapter 14. Image Segmentation

Structure| Seed Index| Lower | Upper Output Image

Road (110,38) 50 100 | Second from left in Figure 14.1
Shadow | (118100 0 10 Third from left in Figure 14.1
Building | (169146) | 220 255 | Fourth from leftin Figure 14.1]

Table 14.1: Parameters used for segmenting some structures shown in Figure 14.1 with the filter
itk::ConnectedThresholdimageFilter

connectedThreshold->SetReplaceValue(
itk::NumericTraits<OutputPixelType>::max());

The initialization of the algorithm requires the user toypde a seed point. It is convenient to
select this point to be placed intgpical region of the structure to be segmented. The seed is
passed in the form of &k::Index to theSetSeed() method.

connectedThreshold->SetSeed(index);

The invocation of théJpdate() method on the writer triggers the execution of the pipelihe.
is usually wise to put update calls irirglcatch ~ block in case errors occur and exceptions are
thrown.

try
{
writer->Update();

}
catch(itk::ExceptionObject & excep)

{

std::cerr << "Exception caught " << std:endl;
std::cerr << excep << std::endl;

}

Let's run this example using as input the imag@_Suburb.png provided in the directory
Examples/Data . We can easily segment the major structures by providingssieethe appro-
priate locations and defining values for the lower and upipessholds. Figure 14.1 illustrates
several examples of segmentation. The parameters useceasnfed in Table 14.1.

Notice that some objects are not being completely segmeftad illustrates the vulnerability
of the region growing methods when the structures to be seggdelo not have a homogeneous
statistical distribution over the image space. You may wauexperiment with different values
of the lower and upper thresholds to verify how the accepgibn will extend.

Another option for segmenting regions is to take advantdgigedfunctionality provided by the
ConnectedThresholdimageFilter for managing multiplelse@he seeds can be passed one by
one to the filter using théddSeed() method. You could imagine a user interface in which

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

14.1. Region Growing 327

Figure 14.1:Segmentation results for the ConnectedThreshold filter for various seed points.

an operator clicks on multiple points of the object to be segted and each selected point is
passed as a seed to this filter.

14.1.2 Otsu Segmentation

Another criterion for classifying pixels is to minimize tleeror of misclassification. The goal

is to find a threshold that classifies the image into two chgsdech that we minimize the area
under the histogram for one cluster that lies on the othestetis side of the threshold. This
is equivalent to minimizing the within class variance or igglently maximizing the between

class variance.

The source code for this example can be found in the file
Examples/Segmentation/OtsuThresholdimageFilter.cxx

This example illustrates how to use tlitk::OtsuThresholdimageFilter
#include "itkOtsuThresholdimageFilter.h"
The next step is to decide which pixel types to use for thetiapd output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using thepeaive pixel types and dimen-
sions.

typedef otb::image< InputPixelType, 2 > InputimageType;
typedef otb::Image< OutputPixelType, 2 > OutputimageType ;

The filter type can be instantiated using the input and outpage types defined above.

typedef itk::OtsuThresholdimageFilter<
InputimageType, OutputimageType > FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1OtsuThresholdImageFilter.html

328 Chapter 14. Image Segmentation

An oth::ImageFileReader class is also instantiated in order to read image data frofe.a fi
(See Section 6 on page 95 for more information about readidgaiting data.)

typedef oth::imageFileReader< InputimageType > ReaderTy pe;
An otb::ImageFileWriter is instantiated in order to write the output image to a file.
typedef oth::ImageFileWriter< InputimageType > WriterTy pe;

Both the filter and the reader are created by invoking tNew() methods and assigning the
result to itk::SmartPointer S.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to tTdtesholdimageFilter.
filter->Setinput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lawetupper thresholds. The method
SetinsideValue() defines the intensity value to be assigned to pixels witmasites falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValug(insideValue);

The methodSetNumberOfHistogramBins() defines the number of bins to be used for com-
puting the histogram. This histogram will be used integnall order to compute the Otsu
threshold.

filter->SetNumberOfHistogramBins(128);

The execution of the filter is triggered by invoking thpdate() method. If the filter's output
has been passed as input to subsequent filter&ptete() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

We print out here the Threshold value that was computedriatigrby the filter. For this we
invoke theGetThreshold method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 329

Figure 14.2Effect of the OtsuThresholdimageFilter.

int threshold = filter->GetThreshold();
std::cout << "Threshold = " << threshold << std::end!;

Figure 14.2 illustrates the effect of this filter. This figwgows the limitations of this filter for
performing segmentation by itself. These limitations aadipularly noticeable in noisy images
and in images lacking spatial uniformity.

The following classes provide similar functionality:
e itk::ThresholdimageFilter

The source code for this example can be found in the file
Examples/Segmentation/OtsuMultiple ThresholdimageFil ter.cxx

This example illustrates how to use tlitk::OtsuMultipleThresholdsCalculator
#include "itkOtsuMultipleThresholdsCalculator.h"

OtsuMultipleThresholdsCalculator calculates thresbfid a give histogram so as to maximize
the between-class variance. We use ScalarimageToHistGgaerator to generate histograms

typedef itk::Statistics::ScalarimageToHistogramGener ator< InputimageType >
ScalarlimageToHistogramGeneratorType;

typedef itk::OtsuMultipleThresholdsCalculator<
ScalarlmageToHistogramGeneratorType::HistogramType > CalculatorType;

Once thresholds are computed we will use BinaryThreshadbkFilter to segment the input
image into segments.

typedef itk::BinaryThresholdimageFilter< InputimageTy pe, OutputimageType >
FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1OtsuMultipleThresholdsCalculator.html

330 Chapter 14. Image Segmentation

ScalarlmageToHistogramGeneratorType::Pointer scalarl mageToHistogramGenerator =
ScalarlmageToHistogramGeneratorType::New();
CalculatorType::Pointer calculator = CalculatorType::N ew();

FilterType::Pointer filter = FilterType::New();

scalarimageToHistogramGenerator->SetNumberOfBins(12 8);
int nbThresholds = argc-2;
calculator->SetNumberOfThresholds(nbThresholds);

The pipeline will look as follows:

scalarimageToHistogramGenerator->Setinput(reader->G etOutput();
calculator->SetInputHistogram(scalarimageToHistogra mGenerator->GetOutput());
filter->Setinput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

Thresholds are obtained using @etOutput method

const CalculatorType::OutputType &thresholdVector = cal culator->GetOutput();
CalculatorType::OutputType::const_iterator itNum = thr esholdVector.begin();

for(; itNum < thresholdVector.end(); itNum++)

{

std::cout << "OtsuThreshold["
<< (int)(itNum - thresholdVector.begin())
K" ="<<
static_cast<itk::NumericTraits<CalculatorType::Meas urementType>::PrintType>
(*itNum) << std::endl;

Figure 14.3 illustrates the effect of this filter.

The following classes provide similar functionality:

e itk::ThresholdimageFilter

14.1.3 Neighborhood Connected

The source code for this example can be found in the file
Examples/Segmentation/NeighborhoodConnectedimagerFil ter.cxx

The following example illustrates the use of title:NeighborhoodConnectedimageFilter
This filter is a close variant of thétk::ConnectedThresholdimageFilter . On one hand,
the ConnectedThresholdimageFilter accepts a pixel inghi@n if its intensity is in the interval

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

331

14.1. Region Growing

Figure 14.3:Effect of the OtsuMultipleThresholdimageFilter.

332 Chapter 14. Image Segmentation

defined by two user-provided threshold values. The NeigihdmitConnectedimageFilter, on
the other hand, will only accept a pixeldfl its neighbors have intensities that fit in the interval.
The size of the neighborhood to be considered around eaehipidefined by a user-provided
integer radius.

The reason for considering the neighborhood intensitistead of only the current pixel inten-
sity is that small structures are less likely to be acceptélde region. The operation of this filter
is equivalent to applying the ConnectedThresholdimageHibllowed by mathematical mor-

phology erosion using a structuring element of the sameeshgthe neighborhood provided to
the NeighborhoodConnectedimagekFilter.

#include "itkNeighborhoodConnectedimageFilter.h"

The itk::CurvatureFlowlmageFilter is used here to smooth the image while preserving
edges.

#include "itkCurvatureFlowlmagerFilter.h"

We now define the image type using a particular pixel type arabe dimension. In this case
thefloat type is used for the pixels due to the requirements of the smrapfilter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::image< InternalPixelType, Dimension > Inter nallmageType;

The smoothing filter type is instantiated using the image p a template parameter.

typedef itk::CurvatureFlowimageFilter<InternallmageT ype, InternallmageType>
CurvatureFlowimageFilterType;

Then, the filter is created by invoking thHéew() method and assigning the result to a
itk::SmartPointer

CurvatureFlowlmageFilterType::Pointer smoothing =
CurvatureFlowlmageFilterType::New();

We now declare the type of the region growing filter. In thisec# is the NeighborhoodCon-
nectedimageFilter.

typedef itk::NeighborhoodConnectedimageFilter<intern allmageType,
InternallmageType > ConnectedFilterType;

One filter of this class is constructed using Nesv() method.

http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 333

ConnectedFilterType::Pointer neighborhoodConnected = C onnectedFilterType::New();

Now it is time to create a simple, linear data processinglivipe A file reader is added at

the beginning of the pipeline and a cast filter and writer alged at the end. The cast filter
is required to converfloat pixel types to integer types since only a few image file fognat
supportfloat types.

smoothing->Setinput(reader->GetOutput());
neighborhoodConnected->Setinput(smoothing->GetOutpu t0));
caster->Setinput(neighborhoodConnected->GetOutput());
writer->Setinput(caster->GetOutput());

The CurvatureFlowlmageFilter requires a couple of parameb be defined. The following are
typical values for © images. However they may have to be adjusted depending amtbant
of noise present in the input image.

smoothing->SetNumberOfiterations(5);
smoothing->SetTimeStep(0.125);

The NeighborhoodConnectedimageFilter requires that tain parameters are specified. They
are the lower and upper thresholds of the interval in whidhrisity values must fall to be
included in the region. Setting these two values too closenat allow enough flexibility for
the region to grow. Setting them too far apart will result iregion that engulfs the image.

neighborhoodConnected->SetLower(lowerThreshold);
neighborhoodConnected->SetUpper(upperThreshold);

Here, we add the crucial parameter that defines the neighbdiize used to determine whether
a pixel lies in the region. The larger the neighborhood, tleeenstable this filter will be against
noise in the input image, but also the longer the computimg tivill be. Here we select a filter
of radius 2 along each dimension. This results in a neighdmdtof 5x 5 pixels.

InternallmageType::SizeType radius;

radius[0] = 2; // two pixels along X
radius[1] = 2; // two pixels along Y

neighborhoodConnected->SetRadius(radius);

As in the ConnectedThresholdimageFilter we must now peotti@ intensity value to be used
for the output pixels accepted in the region and at least eeé goint to define the initial region.

neighborhoodConnected->SetSeed(index);
neighborhoodConnected->SetReplaceValue(255);

334 Chapter 14. Image Segmentation

Structure| Seed Index| Lower | Upper Output Image

Road (110,38) 50 100 | Second from left in Figure 14.4
Shadow | (118100 0 10 Third from left in Figure 14.4
Building | (169 146) 220 255 | Fourth from left in Figure 14.4

Table 14.2: Parameters used for segmenting some structures shown in Figure 14.4 with the filter
itk::NeighborhoodConnectedThresholdimageFilter

Figure 14.4:Segmentation results for the NeighborhoodConnected Threshold filter for various seed points.

The invocation of thépdate() method on the writer triggers the execution of the pipelihe.
is usually wise to put update calls irirgcatch ~ block in case errors occur and exceptions are
thrown.

try
{
writer->Update();

1
catch(itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let's run this example using as input the imag®R_Suburb.png provided in the directory
Examples/Data . We can easily segment the major structures by providindssieethe appro-
priate locations and defining values for the lower and upipersholds. Figure 14.4 illustrates
several examples of segmentation. The parameters useteaented in Table 14.2.

As with the ConnectedThresholdimageFilter, several seedkl be provided to the filter by
using theAddSeed() method. Compare the output of Figure 14.4 with those of FEidi#.1
produced by the ConnectedThresholdimageFilter. You may teaplay with the value of the
neighborhood radius and see how it affect the smoothne$& &fdgmented object borders, the
size of the segmented region and how much that costs in camggtirhe.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodConnectedThresholdImageFilter.html

14.1. Region Growing 335

14.1.4 Confidence Connected

The source code for this example can be found in the file
Examples/Segmentation/ConfidenceConnected.cxx

The following example illustrates the use of tlitk::ConfidenceConnectedimageFilter

The criterion used by the ConfidenceConnectedimageFdteased on simple statistics of the
current region. First, the algorithm computes the mean tartlard deviation of intensity val-
ues for all the pixels currently included in the region. Arpeovided factor is used to multiply
the standard deviation and define a range around the meaghtbégipixels whose intensity
values fall inside the range are accepted and included inetlien. When no more neighbor
pixels are found that satisfy the criterion, the algorittentonsidered to have finished its first
iteration. At that point, the mean and standard deviatiothefintensity levels are recomputed
using all the pixels currently included in the region. Thigan and standard deviation defines a
new intensity range that is used to visit current region Ineégs and evaluate whether their in-
tensity falls inside the range. This iterative processpeated until no more pixels are added or
the maximum number of iterations is reached. The followiggagion illustrates the inclusion
criterion used by this filter,

[(X) € [m— fo,m+ fo] (14.2)

wherem and ¢ are the mean and standard deviation of the region intessitiés a factor
defined by the usel{) is the image an& is the position of the particular neighbor pixel being
considered for inclusion in the region.

Let's look at the minimal code required to use this algorittinst, the following header defin-
ing the itk::ConfidenceConnectedimageFilter class must be included.

#include "itkConfidenceConnectedimageFilter.h"

Noise present in the image can reduce the capacity of thier filb grow large re-
gions. When faced with noisy images, it is usually convenigentpre-process the im-
age by using an edge-preserving smoothing filter. In thisiqudar example we use the
itk::CurvatureFlowlmageFilter , hence we need to include its header file.

#include "itkCurvatureFlowlmagerFilter.h"

We now define the image type using a pixel type and a particdifaension. In this case the
float type is used for the pixels due to the requirements of the maypfilter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::image< InternalPixelType, Dimension > Inter nallmageType;

The smoothing filter type is instantiated using the image typ a template parameter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

336 Chapter 14. Image Segmentation

typedef itk::CurvatureFlowlmageFilter< InternallmageT ype, InternallimageType >
CurvatureFlowimageFilterType;

Next the filter is created by invoking thBew() method and assigning the result to a
itk::SmartPointer

CurvatureFlowlmageFilterType::Pointer smoothing =
CurvatureFlowlmageFilterType::New();

We now declare the type of the region growing filter. In thisecd is the ConfidenceConnecte-
dimageFilter.

typedef itk::ConfidenceConnectedimageFilter<internal ImageType, InternallmageType>
ConnectedFilterType;

Then, we construct one filter of this class usingltlea/() method.
ConnectedFilterType::Pointer confidenceConnected = Con nectedFilterType::New();

Now it is time to create a simple, linear pipeline. A file reageadded at the beginning of
the pipeline and a cast filter and writer are added at the ehd.c@ast filter is required here to
convertfloat pixel types to integer types since only a few image file fosratpportloat

types.

smoothing->Setinput(reader->GetOutput());
confidenceConnected->Setinput(smoothing->GetOutput())
caster->SetInput(confidenceConnected->GetOutput());
writer->Setinput(caster->GetOutput());

The CurvatureFlowlmageFilter requires defining two paramse The following are typical
values. However they may have to be adjusted depending antbant of noise present in the
input image.

smoothing->SetNumberOfiterations(5);
smoothing->SetTimeStep(0.125);

The ConfidenceConnectedimageFilter requires defining warpeters. First, the factérthat
the defines how large the range of intensities will be. Snadlles of the multiplier will restrict
the inclusion of pixels to those having very similar intdies to those in the current region.
Larger values of the multiplier will relax the accepting diion and will result in more gener-
ous growth of the region. Values that are too large will caheeegion to grow into neighboring
regions that may actually belong to separate structures.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 337

confidenceConnected->SetMultiplier(2.5);

The number of iterations is specified based on the homogeutfdttie intensities of the object to
be segmented. Highly homogeneous regions may only requiogile of iterations. Regions
with ramp effect, may require more iterations. In practiteseems to be more important to
carefully select the multiplier factor than the number efdttions. However, keep in mind that
there is no reason to assume that this algorithm should cgave a stable region. It is possible
that by letting the algorithm run for more iterations theioegwill end up engulfing the entire

image.

confidenceConnected->SetNumberOfiterations(5);

The output of this filter is a binary image with zero-value giéxeverywhere except on the
extracted region. The intensity value to be set inside theoneis selected with the method
SetReplaceValue()

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user topde a seed point. It is convenient
to select this point to be placed intgpical region of the structure to be segmented. A small
neighborhood around the seed point will be used to computénitial mean and standard
deviation for the inclusion criterion. The seed is passethéform of a itk::Index to the
SetSeed() method.

confidenceConnected->SetSeed(index);

The size of the initial neighborhood around the seed is defiméth the method
SetlnitialNeighborhoodRadius() . The neighborhood will be defined as Brdimensional
rectangular region withr2+- 1 pixels on the side, wheres the value passed as initial neighbor-
hood radius.

confidenceConnected->SetlnitiaINeighborhoodRadius(2);

The invocation of théJpdate() method on the writer triggers the execution of the pipelihe.
is recommended to place update calls tryatch ~ block in case errors occur and exceptions
are thrown.

try
{
writer->Update();
}
catch(itk::ExceptionObject & excep)

{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

338 Chapter 14. Image Segmentation

Structure| Seed Index| Lower | Upper Output Image

Road (110,38) 50 100 | Second from left in Figure 14.1
Shadow | (118100 0 10 Third from left in Figure 14.1
Building | (169 146) 220 255 | Fourth from left in Figure 14.1

Table 14.3: Parameters used for segmenting some structures shown in Figure 14.1 with the filter
itk::ConnectedThresholdimageFilter

Figure 14.5:Segmentation results for the ConfidenceConnected filter for various seed points.

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let's now run this example using as input the ima&@f Suburb.png provided in the direc-
tory Examples/Data . We can easily segment structures by providing seeds inppegriate
locations. For example

14.2 Segmentation Based on Watersheds

14.2.1 Overview

Watershed segmentation classifies pixels into regiongugiadient descent on image features
and analysis of weak points along region boundaries. Ingagiter raining onto a landscape
topology and flowing with gravity to collect in low basins. gkize of those basins will grow
with increasing amounts of precipitation until they spiltd one another, causing small basins
to merge together into larger basins. Regions (catchmesihd)aare formed by using local
geometric structure to associate points in the image domdinlocal extrema in some fea-
ture measurement such as curvature or gradient magnitulis. tdchnique is less sensitive
to user-defined thresholds than classic region-growindhots, and may be better suited for
fusing different types of features from different data sethie watersheds technique is also
more flexible in that it does not produce a single image seggtien, but rather a hierarchy of
segmentations from which a single region or set of regiomsbeaextracted a-priori, using a
threshold, or interactively, with the help of a graphicatuimterface [100, 101].

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

14.2. Segmentation Based on Watersheds 339

VAR

Intensity profile of input image Intensity profile of filtered image Watershed Segmentation

Watershed Depth

Figure 14.6:A fuzzy-valued boundary map, from an image or set of images, is segmented using local
minima and catchment basins.

The strategy of watershed segmentation is to treat an infiag® a height function, i.e., the
surface formed by graphinfjas a function of its independent paramet&rs,U. The imagef

is often not the original input data, but is derived from ttata through some filtering, graded
(or fuzzy) feature extraction, or fusion of feature mapsrfrdifferent sources. The assumption
is that higher values of (or —f) indicate the presence of boundaries in the original data.
Watersheds may therefore be considered as a final or inté&ataetiep in a hybrid segmentation
method, where the initial segmentation is the generatiagheé&dge feature map.

Gradient descent associates regions with local minimé @learly interior points) using the
watersheds of the graph éf as in Figure 14.6. That is, a segment consists of all poimts i
whose paths of steepest descent on the graghtefminate at the same minimum fn Thus,
there are as many segments in an image as there are minifnaThe segment boundaries
are “ridges” [52, 53, 31] in the graph df In the 1D casey c), the watershed boundaries
are the local maxima of, and the results of the watershed segmentation is triviad higher-
dimensional image domains, the watershed boundaries &ly local phenomena; they
depend on the shape of the entire watershed.

The drawback of watershed segmentation is that it produpegien for each local minimum—
in practice too many regions—and an over segmentation sedutalleviate this, we can estab-
lish a minimum watershed depth. The watershed depth is ffexatice in height between the
watershed minimum and the lowest boundary point. In othedsadt is the maximum depth of
water a region could hold without flowing into any of its neigins. Thus, a watershed segmen-
tation algorithm can sequentially combine watersheds witepths fall below the minimum
until all of the watersheds are of sufficient depth. This Haptasurement can be combined
with other saliency measurements, such as size. The resutdgmentation containing regions
whose boundaries and size are significant. Because thermggrgicess is sequential, it pro-
duces a hierarchy of regions, as shown in Figure 14.7. Riswimrk has shown the benefit of
a user-assisted approach that provides a graphical iogetfathis hierarchy, so that a techni-
cian can quickly move from the small regions that lie withinaea of interest to the union of
regions that correspond to the anatomical structure [101].

There are two different algorithms commonly used to implemeatersheds: top-down and
bottom-up. The top-down, gradient descent strategy waserhfor ITK because we want to
consider the output of multi-scale differential operatasd thef in question will therefore

have floating point values. The bottom-up strategy starth seeds at the local minima in
the image and grows regions outward and upward at discrersity levels (equivalent to a

340 Chapter 14. Image Segmentation

Boolean Operations

e —

on Sub-Trees |

(e.g. User Interaction)

Threshold of Node

Watershed depth

HEE

L

Figure 14.7:A watershed segmentation combined with a saliency measure (watershed depth) produces
a hierarchy of regions. Structures can be derived from images by either thresholding the saliency measure
or combining subtrees within the hierarchy.

sequence of morphological operations and sometimes aalteghological watershed§9].)
This limits the accuracy by enforcing a set of discrete gexgls on the image.

Figure 14.8 shows how the ITK image-to-image watersheds fst constructed. The filter is
actually a collection of smaller filters that modularize #everal steps of the algorithm in a
mini-pipeline. The segmenter object creates the initighsentation via steepest descent from
each pixel to local minima. Shallow background regions areaved (flattened) before seg-
mentation using a simple minimum value threshold (this iédpminimize oversegmentation
of the image). The initial segmentation is passed to a sesabefilter that generates a hier-
archy of basins to a user-specified maximum watershed d@&pih relabeler object at the end
of the mini-pipeline uses the hierarchy and the initial segtation to produce an output image

Watershed Image Filter Output Flood Level

‘
Basic Image
Segmentatio Relabeler

Labeled
Image

Height
Image

7

Threshold
Tree)
D Data Object
Maximum Flood Level
Parameter

Figure 14.8:The construction of the Insight watersheds filter.

14.2. Segmentation Based on Watersheds 341

at any scaldelowthe user-specified maximum. Data objects are cached in thiepipieline
so that changing watershed depths only requires a (fastyekhg of the basic segmentation.
The three parameters that control the filter are shown inrEi@4.8 connected to their relevant
processing stages.

14.2.2 Using the ITK Watershed Filter

The source code for this example can be found in the file
Examples/Segmentation/WatershedSegmentation.cxx

The following example illustrates how to preprocess andmsag images using the
itk::WatershedimageFilter . Note that the care with which the data is preprocessed will
greatly affect the quality of your result. Typically, thedbeesults are obtained by preprocessing
the original image with an edge-preserving diffusion fjlrch as one of the anisotropic dif-
fusion filters, or with the bilateral image filter. As notedSection 14.2.1, the height function
used as input should be created such that higher positiuesabrrespond to object boundaries.
A suitable height function for many applications can be gatesl as the gradient magnitude of
the image to be segmented.

The itk::VectorGradientMagnitudeAnisotropicDiffusionima geFilter class is used
to smooth the image and thi::VectorGradientMagnitudelmageFilter is used to gen-
erate the height function. We begin by including all prepssing filter header files and the
header file for the WatershedimageFilter. We use the veetaions of these filters because the
input data is a color image.

#include "itkVectorGradientAnisotropicDiffusionimage Filter.h"
#include "itkVectorGradientMagnitudelmageFilter.h"
#include "itkWatershedimageFilter.h"

We now declare the image and pixel types to use for instémiadf the filters. All of
these filters expect real-valued pixel types in order to wor@perly. The preprocessing
stages are done directly on the vector-valued data and tireesgation is done using float-
ing point scalar data. Images are converted from RGB pixat tip numerical vector type
using itk::VectorCastimageFilter . Please pay attention to the fact that we are using
itk:lmage s since the itk::VectorGradientMagnitudelmageFilter has some internal
typedefs which make polymorfism impossible.

typedef itk:RGBPixel<unsigned char> RGBPixelType;

typedef otb::Image<RGBPixelType, 2> RGBImageType;

typedef itk:Vector<float, 3> VectorPixelType;

typedef itk:Image<VectorPixelType, 2> VectorimageType ;
typedef itk:lmage<unsigned long, 2> LabeledimageType;

typedef itk::image<float, 2> ScalarimageType;

The various image processing filters are declared using/frestcreated above and eventually
used in the pipeline.

http://www.melaneum.com/OTB/doxygen/classitk_1_1WatershedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorCastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeImageFilter.html

342 Chapter 14. Image Segmentation

typedef oth::ImageFileReader<RGBImageType> FileReader Type;

typedef itk::VectorCastimageFilter<RGBImageType, Vect orlmageType>
CastFilterType;

typedef itk::VectorGradientAnisotropicDiffusionimage Filter<VectorlmageType,
VectorimageType> DiffusionFilterType;

typedef itk::VectorGradientMagnitudelmageFilter<Vect orlmageType,float,ScalarimageType>
GradientMagnitudeFilterType;

typedef itk::WatershedimageFilter<ScalarimageType> Wa tershedFilterType;

Next we instantiate the filters and set their parameters. fif$testep in the image processing
pipeline is diffusion of the color input image using an aiigpic diffusion filter. For this class
of filters, the CFL condition requires that the time step beyooe than 0.25 for two-dimensional
images, and no more than 0.125 for three-dimensional imadesnumber of iterations and the
conductance term will be taken from the command line. Segd@et.6.2 for more information
on the ITK anisotropic diffusion filters.

DiffusionFilterType::Pointer diffusion = DiffusionFilt erType::New();
diffusion->SetNumberOfiterations(atoi(argv[4]));
diffusion->SetConductanceParameter(atof(argv[3]));

diffusion->SetTimeStep(0.125);

The ITK gradient magnitude filter for vector-valued imagas optionally take several param-
eters. Here we allow only enabling or disabling of principanponent analysis.

GradientMagnitudeFilterType::Pointer
gradient = GradientMagnitudeFilterType::New();
gradient->SetUsePrincipleComponents(atoi(argv[7]));

Finally we set up the watershed filter. There are two parammetevel controls watershed
depth, andhreshold controls the lower thresholding of the input. Both parametee set as
a percentage (0.0 - 1.0) of the maximum depth in the input énag

WatershedFilterType::Pointer watershed = WatershedFilt erType:New();
watershed->SetLevel(atof(argv(6]));
watershed->SetThreshold(atof(argv[5]));

The output of WatershedimageFilter is an image of unsigaed integer labels, where a label
denotes membership of a pixel in a particular segmentedmegihis format is not practical
for visualization, so for the purposes of this example, wi eagnvert it to RGB pixels. RGB
images have the advantage that they can be saved as a simpliéepgnd viewed using any

standard image viewer software. Thtk:Functor;:ScalarToRGBPixelFunctor classis a
special function object designed to hash a scalar valueaimtitk:RGBPixel . Plugging this
functor into the itk::UnaryFunctorimageFilter creates an image filter for that converts

scalar images to RGB images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

14.2. Segmentation Based on Watersheds 343

Figure 14.9:Segmented RGB image. At left is the original image. The image in the middle was generated
with parameters: conductance = 2.0, iterations = 10, threshold = 0.0, level = 0.05, principal components =
on. The image on the right was generated with parameters: conductance = 2.0, iterations = 10, threshold
=0.001, level = 0.15, principal components = off.

typedef itk::Functor::ScalarToRGBPixelFunctor<unsign ed long>
ColorMapFunctorType;

typedef itk::UnaryFunctorimageFilter<LabeledimageTyp e,
RGBImageType, ColorMapFunctorType> ColorMapFilterType ;

ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

The filters are connected into a single pipeline, with remdad writers at each end.

caster->SetInput(reader->GetOutput());
diffusion->SetInput(caster->GetOutput());
gradient->SetInput(diffusion->GetOutput());
watershed->SetInput(gradient->GetOutput());
colormapper->Setinput(watershed->GetOutput());
writer->SetInput(colormapper->GetOutput());

Tuning the filter parameters for any particular applicati®m process of trial and error. The
thresholdparameter can be used to great effect in controlling ovensegation of the image.
Raising the threshold will generally reduce computationetiand produce output with fewer
and larger regions. The trick in tuning parameters is to icemghe scale level of the objects
that you are trying to segment in the image. The best timditgueade-off will be achieved
when the image is smoothed and thresholded to eliminatersajust below the desired scale.

Figure 14.9 shows output from the example code. Note thaitiaatrdifference between the
two segmentations is the mode of the gradient magnitudeledilen.

A note on the computational complexity of the watershed rélgm is warranted. Most of the
complexity of the ITK implementation lies in generating tiierarchy. Processing times for this
stage are non-linear with respect to the number of catchlyasins in the initial segmentation.
This means that the amount of information contained in argaria more significant than the
number of pixels in the image. A very large, but very flat infalkie less time to segment than a
very small, but very detailed input.

344 Chapter 14. Image Segmentation

14.3 Level Set Segmentation

The paradigm of the level Zero Set f(xy)=0
set is that it is a numeri-
cal method for tracking the
evolution of contours and
surfaces. Instead of ma-
nipulating the contour di- Interior
rectly, the contour is embed- f(x,y) > 0
ded as the zero level set of a
higher dimensional function
called the level-set function,
Y(X,t). The level-set func-
tion is then evolved under
the control of a differential
equation. At any time, the Exterior f(x,y) <0
evolving contour can be ob-
tained by extracting the zero
level-setl” ((X),t) = {@(X,t) = 0} from the output. The main advantages of using level sets is
that arbitrarily complex shapes can be modeled and topmdbghanges such as merging and
splitting are handled implicitly.

Figure 14.10Concept of zero set in a level set.

Level sets can be used for image segmentation by using ilmaged features such as mean
intensity, gradient and edges in the governing differémtipuation. In a typical approach, a
contour is initialized by a user and is then evolved untilts fhe form of an object in the image.
Many different implementations and variants of this basinaept have been published in the
literature. An overview of the field has been made by Setl8@h [

The following sections introduce practical examples of safthe level set segmentation meth-
ods available in ITK. The remainder of this section desaifsatures common to all of these
filters except theitk::FastMarchinglmageFilter , Which is derived from a different code

framework. Understanding these features will aid in ushrgfiiters more effectively.

Each filter makes use of a generic level-set equation to cterthe update to the solutiapmof
the partial differential equation.

S —aA) -0y BPOX) | 00 | HyZ(K |) (14.3)
whereA is an advection tern® is a propagation (expansion) term, ahdk a spatial modifier
term for the mean curvature The scalar constants 3, andy weight the relative influence of
each of the terms on the movement of the interface. A segtiemtdter may use all of these
terms in its calculations, or it may omit one or more terms térm is left out of the equation,
then setting the corresponding scalar constant weightitidpawe no effect.

All of the level-set based segmentation filtensstoperate with floating point precision to pro-

http://www.melaneum.com/OTB/doxygen/classitk_1_1FastMarchingImageFilter.html

14.3. Level Set Segmentation 345

Y1)

—-2.4-1.3-0.6-0.7-0.8-1.8

-2.4-1.4-0.30.4| 0.3/D -0.8-1.¢
—2.4—1.4—9.4/0.6 1.6/1.3/1.2| 08| -0.8-1.8
-1.2-020.8/1.8 2.3/1.3 }).3 -0.7
-1.1 —o.\z 0.9(0.7|1.7 1.2/0.2/-0.8

—2.5—1.5—0.5%‘.3\0.7 2.4/1.4/0.4/-0.9
N 1.3 0/3#4 -0.6

-1.6-0.6 0.4|-0.7-0.6-1.6

-2.5-1.513

-1.6-0.6-1.7

Figure 14.11:The implicit level set surface I is the black line superimposed over the image grid. The
location of the surface is interpolated by the image pixel values. The grid pixels closest to the implicit
surface are shown in gray.

duce valid results. The third, optional template paramistdrenumerical typaused for calcu-
lations and as the output image pixel type. The numerica tgfloat by default, but can be
changed talouble for extra precision. A user-defined, signed floating poipetyhat defines
all of the necessary arithmetic operators and has suffipietision is also a valid choice. You
should not use types suchias orunsigned char for the numerical parameter. If the input
image pixel types do not match the numerical type, thosetinpill be cast to an image of
appropriate type when the filter is executed.

Most filters require two images as input, an initial modgX,t = 0), and afeature image
which is either the image you wish to segment or some prepseckversion. You must specify
the isovalue that represents the surflde your initial model. The single image output of each
filter is the functiony at the final time step. It is important to note that the contepresenting
the surfacd™ is the zero level-set of the output image, and not the isevgbu specified for
the initial model. To represeift using the original isovalue, simply add that value back # th
output.

The solutionl is calculated to subpixel precision. The best discrete@afipration of the sur-
face is therefore the set of grid positions closest to the-zevssings in the image, as shown in
Figure 14.11. Theitk::ZeroCrossingimageFilter operates by finding exactly those grid
positions and can be used to extract the surface.

There are two important considerations when analyzing thegssing time for any particular
level-set segmentation task: the surface area of the expinterface and the total distance that
the surface must travel. Because the level-set equatienssaally solved only at pixels near the
surface (fast marching methods are an exception), the tikentat each iteration depends on
the number of points on the surface. This means that as tfecsugrows, the solver will slow
down proportionally. Because the surface must evolve glidavprevent numerical instabilities

http://www.melaneum.com/OTB/doxygen/classitk_1_1ZeroCrossingImageFilter.html

346 Chapter 14. Image Segmentation

Input Anisotropic Gradient Sigmoid Fast Time-Crossing Binary Binary
otb::Image Diffusion Magmtude Filter Marching Map Threshold Image

Figure 14.12Collaboration diagram of the FastMarchinglmageFilter applied to a segmentation task.

in the solution, the distance the surface must travel in tiege dictates the total number of
iterations required.

Some level-set techniques are relatively insensitive ttiainconditions and are there-
fore suitable for region-growing segmentation. Other téghes, such as the
itk::LaplacianSegmentationLevelSetimageFilter , can easily become “stuck” on image
features close to their initialization and should be usdy when a reasonable prior segmenta-
tion is available as the initialization. For best efficiengyur initial model of the surface should
be the best guess possible for the solution.

14.3.1 Fast Marching Segmentation

The source code for this example can be found in the file
Examples/Segmentation/FastMarchinglmageFilter.cxx

When the differential equation governing the level set eimtuhas a very simple form, a fast
evolution algorithm called fast marching can be used.

The following example illustrates the use of thie:FastMarchingimageFilter . This filter
implements a fast marching solution to a simple level selugiem problem. In this example,
the speed term used in the differential equation is expeictdxd provided by the user in the
form of an image. This image is typically computed as a furctf the gradient magnitude.
Several mappings are popular in the literature, for exantpkenegative exponentiakp —x)
and the reciprocal A{1+X). In the current example we decided to use a Sigmoid functiaes

it offers a good deal of control parameters that can be cugezhio shape a nice speed image.

The mapping should be done in such a way that the propagatesdf the front will be very
low close to high image gradients while it will move rathestfén low gradient areas. This
arrangement will make the contour propagate until it rea¢he edges of anatomical structures
in the image and then slow down in front of those edges. Thpubutf the FastMarchinglm-
ageFilter is @ime-crossing maghat indicates, for each pixel, how much time it would take fo
the front to arrive at the pixel location.

The application of a threshold in the output image is thenvedgnt to taking a snapshot of
the contour at a particular time during its evolution. It ipected that the contour will take a
longer time to cross over the edges of a particular struciihies should result in large changes
on the time-crossing map values close to the structure e®@gggmentation is performed with
this filter by locating a time range in which the contour wastemed for a long time in a region

http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FastMarchingImageFilter.html

14.3. Level Set Segmentation 347

of the image space.

Figure 14.12 shows the major components involved in theiegin of the FastMarchingim-
ageFilter to a segmentation task. It involves an initialgsteof smoothing using the
itk::CurvatureAnisotropicDiffusionimageFilter . The smoothed image is passed as
the input to theitk::GradientMagnitudeRecursiveGaussianimageFilter and then to the
itk::SigmoidimageFilter . Finally, the output of the FastMarchinglmageFilter is gEsto

a itk::BinaryThresholdimageFilter in order to produce a binary mask representing the
segmented object.

The code in the following example illustrates the typicaiupeof a pipeline for performing
segmentation with fast marching. First, the input imagemsathed using an edge-preserving
filter. Then the magnitude of its gradient is computed andg@a$o a sigmoid filter. The result
of the sigmoid filter is the image potential that will be usedaffect the speed term of the
differential equation.

Let's start by including the following headers. First welirde the header of the Curvature-
AnisotropicDiffusionimageFilter that will be used for rering noise from the input image.

#include "itkCurvatureAnisotropicDiffusionimageFilte r.h"

The headers of the GradientMagnitudeRecursiveGausség@hilter and SigmoidimageFilter
are included below. Together, these two filters will prodtieeimage potential for regulating
the speed term in the differential equation describing tludution of the level set.

#include "itkGradientMagnitudeRecursiveGaussianimage Filter.h"
#include "itkSigmoidimageFilter.h"

Of course, we will need theth::Image class and the FastMarchinglmageFilter class. Hence
we include their headers.

#include "otblmage.h"
#include "itkFastMarchinglmagerFilter.h"

The time-crossing map resulting from the FastMarchingleféiter will be thresholded using
the BinaryThresholdimageFilter. We include its headeeher

#include "itkBinaryThresholdimageFilter.h"

Reading and writing images will be done with theotb:IimageFileReader and
oth::ImageFileWriter

#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SigmoidImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

348 Chapter 14. Image Segmentation

We now define the image type using a pixel type and a partidifaension. In this case the
float type is used for the pixels due to the requirements of the smragpfilter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::image< InternalPixelType, Dimension > Inter nallmageType;

The output image, on the other hand, is declared to be binary.

typedef unsigned char OutputPixelType;
typedef otb::Image< OutputPixelType, Dimension > Outputl mageType;

The type of the BinaryThresholdimagerFilter filter is ingtated below using the internal image
type and the output image type.

typedef itk::BinaryThresholdimageFilter< Internallmag eType,
OutputimageType > ThresholdingFilterType;
ThresholdingFilterType::Pointer thresholder = Threshol dingFilterType::New();

The upper threshold passed to the BinaryThresholdimageRmiill define the time snapshot
that we are taking from the time-crossing map.

thresholder->SetLowerThreshold(00)
thresholder->SetUpperThreshold(timeThreshold);

thresholder->SetOutsideValue(0);
thresholder->SetlnsideValue(255);

We instantiate reader and writer types in the followingdine

typedef otb::ImageFileReader< InternallmageType > Reade IType;
typedef otb::ImageFileWriter< OutputimageType > WriterT ype;

The CurvatureAnisotropicDiffusionimageFilter type isfantiated using the internal image
type.

typedef itk::CurvatureAnisotropicDiffusionimageFilte r<
InternallmageType,
InternallmageType > SmoothingFilterType;

Then, the filter is created by invoking thdéew() method and assigning the result to a
itk::SmartPointer

SmoothingFilterType::Pointer smoothing = SmoothingFilt erType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.3. Level Set Segmentation 349

The types of the GradientMagnitudeRecursiveGaussiargfritigr and SigmoidimageFilter are
instantiated using the internal image type.

typedef itk::GradientMagnitudeRecursiveGaussianimage Filter<
InternallmageType,
InternallmageType > GradientFilterType;

typedef itk::SigmoidimageFilter<
InternallmageType,
InternallmageType > SigmoidFilterType;

The corresponding filter objects are instantiated withNew() method.

GradientFilterType::Pointer gradientMagnitude = Gradie ntFilterType::New();
SigmoidFilterType::Pointer sigmoid = SigmoidFilterType :New();

The minimum and maximum values of the SigmoidimageFilteipotiare defined with the
methodsSetOutputMinimum() ~ and SetOutputMaximum() . In our case, we want these two
values to be @ and 10 respectively in order to get a nice speed image to feed té-ase
MarchinglmageFilter.

sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);

We now declare the type of the FastMarchinglmageFilter.

typedef itk::FastMarchinglmageFilter< InternallmageTy pe,
InternallmageType > FastMarchingFilterType;

Then, we construct one filter of this class usinge&/() method.
FastMarchingFilterType::Pointer fastMarching = FastMar chingFilterType::New();
The filters are now connected in a pipeline shown in Figur&2.dsing the following lines.

smoothing->Setinput(reader->GetOutput());
gradientMagnitude->Setlnput(smoothing->GetOutput()) ;
sigmoid->Setinput(gradientMagnitude->GetOutput());
fastMarching->Setinput(sigmoid->GetOutput());
thresholder->Setinput(fastMarching->GetOutput());

writer->Setinput(thresholder->GetOutput());

The CurvatureAnisotropicDiffusionlmageFilter classuigs a couple of parameters to be de-
fined. The following are typical values. However they mayéhay be adjusted depending on
the amount of noise present in the input image.

350 Chapter 14. Image Segmentation

smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfiterations(10);
smoothing->SetConductanceParameter(2.0);

The GradientMagnitudeRecursiveGaussianimageFiltiopas the equivalent of a convolu-
tion with a Gaussian kernel followed by a derivative opeataldie sigma of this Gaussian can
be used to control the range of influence of the image edges.

gradientMagnitude->SetSigma(sigma);

The SigmoidimageFilter class requires two parameters fioel¢he linear transformation to
be applied to the sigmoid argument. These parameters asegasing th&etAlpha() and
SetBeta() methods. In the context of this example, the parametersswe 10 intensify the
differences between regions of low and high values in thedp®@age. In an ideal case, the
speed value should bellin the homogeneous regions and the value should decayyr&piel0
around the edges of structures. The heuristic for findingr#thges is the following. From the
gradient magnitude image, let’s clll the minimum value along the contour of the structure to
be segmented. Then, let's c&IR an average value of the gradient magnitude in the middle of
the structure. These two values indicate the dynamic réemegente want to map to the interval
[0: 1] in the speed image. We want the sigmoid to rfdpto 0.0 andK2 to 10. Given that 1

is expected to be higher th&® and we want to map those values t06 @nd 10 respectively,
we want to select a negative value for alpha so that the siyfoaiction will also do an inverse
intensity mapping. This mapping will produce a speed imagp shat the level set will march
rapidly on the homogeneous region and will definitely stoprencontour. The suggested value
for beta is(K1+ K2)/2 while the suggested value for alphai62 — K1) /6, which must be a
negative number. In our simple example the values are pedvig the user from the command
line arguments. The user can estimate these values by dfgéne gradient magnitude image.

sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);

The FastMarchinglmageFilter requires the user to proviseeal point from which the contour
will expand. The user can actually pass not only one seed paina set of them. A good
set of seed points increases the chances of segmenting dexoohfect without missing parts.
The use of multiple seeds also helps to reduce the amounnefrieeded by the front to visit
a whole object and hence reduces the risk of leaks on the @figegions visited earlier. For
example, when segmenting an elongated object, it is uraldsito place a single seed at one
extreme of the object since the front will need a long timernappgate to the other end of the
object. Placing several seeds along the axis of the objdcpmebably be the best strategy to
ensure that the entire object is captured early in the expawos$ the front. One of the important
properties of level sets is their natural ability to fuseesaVfronts implicitly without any extra
bookkeeping. The use of multiple seeds takes good advaofdhis property.

The seeds are passed stored in a container. The type of thisimer is defined as
NodeContainer among the FastMarchinglmagekFilter traits.

14.3. Level Set Segmentation 351

typedef FastMarchingFilterType::NodeContainer NodeCon tainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();

Nodes are created as stack variables and initialized witiwgewand anitk::Index position.

NodeType node;
const double seedValue = 0.0;

node.SetValue(seedValue);
node.Setindex(seedPosition);

The list of nodes is initialized and then every node is iregkrtsing thensertElement()

seeds->Initialize();
seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingliitegekith the method
SetTrialPoints()

fastMarching->SetTrialPoints(seeds);

The FastMarchinglmageFilter requires the user to spekéysize of the image to be produced
as output. This is done using tBetOutputSize() . Note that the size is obtained here from
the output image of the smoothing filter. The size of this imegvalid only after théJpdate()
methods of this filter has been called directly or indirectly

fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize()) ;

Since the front representing the contour will propagatdinapusly over time, it is desirable
to stop the process once a certain time has been reachedallbiis us to save computation
time under the assumption that the region of interest haaa@yr been computed. The value
for stopping the process is defined with the metBetbtoppingValue() . In principle, the
stopping value should be a little bit higher than the thrétkalue.

fastMarching->SetStoppingValue(stoppingTime);

The invocation of théJpdate() method on the writer triggers the execution of the pipelike.
usual, the call is placed intgy/catch ~ block should any errors occur or exceptions be thrown.

try
{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

352 Chapter 14. Image Segmentation

Structure| Seed Index| o a B | Threshold| Output Image from left
Road (91,176) | 05| -0.5]| 3.0 100 First

Shadow | (118100) | 1.0 | -0.5| 3.0 100 Second
Building | (14521) | 05| -0.5| 3.0 100 Third

Table 14.4: parameters used for segmenting some structures shown in Figure 14.14 using the filter
FastMarchinglmagerFilter. All of them used a stopping value of 100.

writer->Update();

}
catch(itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std:endl;

}

Now let's run this example using the input imaQ& Suburb.png provided in the directory
Examples/Data . We can easily segment structures by providing seeds inppepriate loca-
tions. The following table presents the parameters usesiime structures.

Figure 14.13 presents the intermediate outputs of theipgélustrated in Figure 14.12. They
are from left to right: the output of the anisotropic diffosifilter, the gradient magnitude of the
smoothed image and the sigmoid of the gradient magnitudehwikifinally used as the speed
image for the FastMarchingimageFilter.

The following classes provide similar functionality:

o itk::ShapeDetectionLevelSetimageFilter

o itk::GeodesicActiveContourLevelSetimageFilter
o itk:: ThresholdSegmentationLevelSetimageFilter
o itk::CannySegmentationLevelSetimageFilter

o itk::LaplacianSegmentationLevelSetimageFilter

See the ITK Software Guide for examples of the use of thesseta

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapeDetectionLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannySegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html

14.3. Level Set Segmentation 353

Figure 14.13:Images generated by the segmentation process based on the FastMarchingimageFilter.
From left to right and top to bottom: input image to be segmented, image smoothed with an edge-preserving
smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient magnitude. This last
image, the sigmoid, is used to compute the speed term for the front propagation

P

Figure 14.14:I1mages generated by the segmentation process based on the FastMarchingimageFilter.
From left to right: segmentation of the road, shadow, building.

CHAPTER

FIFTEEN

Multi-scale Analysis

15.1 Introduction

In this chapter, the tools for multi-scale and multi-regimh processing (analysis, synthesis and
fusion) will be presented. Most of the algorithms are base@ywramidal approaches. These
approaches were first used for image compression and thdyaseel on the fact that, once an
image has been low-pass filtered it does not have detailsndetye cut-off frequency of the
low-pass filter any more. Therefore, the image can be subdsdmpdecimated — without any
loss of information.

A pyramidal decomposition is thus performed applying thiéoWeing 3 steps in an iterative
way:

1. Low pas filter the imagh, in order to producé (I);

2. Compute the differende, = I, — F(l,) which corresponds to the details at lemel

3. Subsamplély,) in order to obtairn 1.

The result is a series of decrasing resolution imdgemnd a series of decreasing resolution
detailsDy.

15.2 Morphological Pyramid

If the smoothing filter used in the pyramidal analysis is aphotogical filter, one cannot safely
subsample the filtered image without loss of information.weer, by keeping the details
possibly lost in the down-sampling operation, such a deamitipn can be used.

The Morphological Pyramid is an approach to such a decoriposit’s computation process
is an iterative analysis involving smoothing by the morgigatal filter, computing the details

356 Chapter 15. Multi-scale Analysis

lost in the smoothing, down-sampling the current image, @rdputing the details lost in the
down-sampling.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidAnalysisFil terExample.cxx

This example illustrates the use of tloh::MorphologicalPyramidAnalyseFilter

The first step required to use this filter is to include its teadite.

#include "otbMorphologicalPyramidAnalysisFilter.h"

The mathematical morphology filters to be used have also indheded here.

#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"

As usual, we start by defining the types needed for the piteésmages, the image reader and
the image writer.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image<InputPixelType,Dimension> Inputima geType;
typedef oth::image<OutputPixelType,Dimension> Outputl mageType;
typedef oth::ImageFileReader<inputimageType> ReaderTy pe;
typedef oth::ImageFileWriter<OutputimageType> WriterT ype;

Now, we define the types needed for the morphological filtérelvwill be used to build the
morphological pyramid. The first thing to do is define the stning element, which in our
case, will be a itk::BinaryBallStructuringElement which is templated over the pixel
type and the dimension of the image.

typedef itk::BinaryBallStructuringElement<InputPixel Type,
Dimension> StructuringElementType;

We can now define the type of the filter to be used by the morgjwdb pyramid. In this
case, we choose to use aih::OpeningClosingMorphologicalFilter which is just the
concatenation of an opening and a closing. This filter isldted over the input and output
image types and the structurung element type that we justedafiove.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html

15.2. Morphological Pyramid 357

typedef otb::OpeningClosingMorphologicalFilter<input ImageType,
InputimageType, StructuringElementType>
OpeningClosingFilterType;

We can finally define the type of the morpholoical pyramid filt€he filter is templated over
the input and output mage types and linepasmorphological filter to be used.

typedef otb::MorphologicalPyramidAnalysisFilter<inpu timageType,
OutputimageType,OpeningClosingFilterType>
PyramidFilterType;

Since theotb::MorphologicalPyramidAnalyseFilter generates a list of images as output,
it is useful to have an iterator to access the images. Thigrie ds follows :

typedef PyramidFilterType::OutputimageListType::lter ator
ImageListlterator;

We can now instantiate the reader in order to access theimaigie which has to be analysed.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
We instantiate the morphological pyramid analysis filtedt aat its parameters which are:

e the number of iterations or levels of the pyramid;

¢ the subsample scale or decimation factor between two ssigegg/ramid levels.
After that, we plug the pipeline and run it by calling tdpdate() method.

PyramidFilterType::Pointer pyramid = PyramidFilterType ::New();
pyramid->SetNumberOfLevels(numberOfLevels);
pyramid->SetDecimationRatio(decimationRatio);
pyramid->Setinput(reader->GetOutput());

pyramid->Update();

The morphological pyramid has 5 types of output:

¢ the analysed image at each level of the pyramid througleét@utput() method;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html

358 Chapter 15. Multi-scale Analysis

¢ the brighter details extracted from the filtering operatibrough theGetSupFilter()
method;

e the darker details extracted from the filtering operatiomodlgh theGetinfFilter()
method,;

¢ the brighter details extracted from the resampling openatirough theSetSupDeci()
method,;

e the darker details extracted from the resampling operdtiomugh theGetinfDeci()
method; to decimation

Each one of these methods provides a list of images (one ébrlesel of analysis), so we can
iterate through the image lists by using iterators.

ImageListlterator itAnalyse = pyramid->GetOutput()->Be gin();
ImageListlterator itSupFilter = pyramid->GetSupFilter()->Begin();
ImageListlterator itinfFilter = pyramid->GetlnfFilter()->Begin();
ImageListlterator itinfDeci = pyramid->GetSupDeci()->B egin();
ImageListlterator itSupDeci = pyramid->GetInfDeci()->B egin();

We can now instantiate a writer and use it to write all the iesa files.

WriterType::Pointer writer = WriterType::New();
int i=1;

/I Writing the results images
std::cout<<(itAnalyse!=(pyramid->GetOutput()->End()))<<std::endl;
while(itAnalyse!=pyramid->GetOutput()->End())

writer->Setinput(itAnalyse.Get());
writer->SetFileName(argv[0*4+i+1]);
writer->Update();

writer->SetInput(itSupFilter.Get());
writer->SetFileName(argv[1*4+i+1]);
writer->Update();

writer->SetInput(itinfFilter.Get());
writer->SetFileName(argv[2*4+i+1]);
writer->Update();

15.2. Morphological Pyramid 359

Figure 15.2:Result of the analysis for 4 levels of the pyramid.

writer->Setinput(itinfDeci.Get());
writer->SetFileName(argv[3*4+i+1]);
writer->Update();

writer->SetInput(itSupDeci.Get());
writer->SetFileName(argv[4*4+i+1]);
writer->Update();

++itAnalyse;
++itSupFilter;
++itInfFilter;
++itinfDeci;
++itSupDeci;
++i;

Figure 15.1 shows the test image to be processed by the mogited pyramid.
Figure 15.2 shows the 4 levels of analysis of the image.

Figure 15.3 shows the 4 levels of bright details.

360 Chapter 15. Multi-scale Analysis

Figure 15.3:Bright details for 4 levels of the pyramid.

Figure 15.4:Dark details for 4 levels of the pyramid.

Figure 15.4 shows the 4 levels of dark details.
Figure 15.5 shows the 4 levels of bright decimation details.
Figure 15.6 shows the 4 levels of dark decimation details.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSynthesisFi lterExample.cxx

This example illustrates the use of tloéh::MorphologicalPyramidSynthesisFilter

The first step required to use this filter is to include its ledile.
#include "otbMorphologicalPyramidSynthesisFilter.h"

The mathematical morphology filters to be used have also iadbeded here, as well as the
oth::MorphologicalPyramidAnalyseFilter in order to perform the analysis step.

#include "otbMorphologicalPyramidAnalysisFilter.h"
#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"

Figure 15.5Bright decimation details for 4 levels of the pyramid.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidSynthesisFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html

15.2. Morphological Pyramid 361

Figure 15.6:Dark decimation details for 4 levels of the pyramid.

As usual, we start by defining the types needed for the pitteésimages, the image reader and
the image writer.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef oth::Image<InputPixelType,Dimension> Inputima geType;
typedef otb::image<OutputPixelType,Dimension> Outputl mageType;
typedef oth::imageFileReader<InputimageType> ReaderTy pe;
typedef oth::ImageFileWriter<OutputimageType> WriterT ype;

Now, we define the types needed for the morphological filtérelvwill be used to build the
morphological pyramid. The first thing to do is define the sttning element, which in our
case, will be a itk::BinaryBallStructuringElement which is templated over the pixel
type and the dimension of the image.

typedef itk::BinaryBallStructuringElement<inputPixel Type,Dimension>
StructuringElementType;

We can now define the type of the filter to be used by the morpficdd pyramid. In this
case, we choose to use aih::OpeningClosingMorphologicalFilter which is just the
concatenation of an opening and a closing. This filter islt#ted over the input and output
image types and the structurung element type that we justedafiove.

typedef oth::OpeningClosingMorphologicalFilter<input ImageType,
InputimageType,StructuringElementType>
OpeningClosingFilterType;

We can now define the type of the morpholoical pyramid filtdre Tilter is templated over the
input and output mage types and tbevpasmorphological filter to be used.

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html

362 Chapter 15. Multi-scale Analysis

typedef otb::MorphologicalPyramidAnalysisFilter<inpu timageType,
OutputimageType,OpeningClosingFilterType>
PyramidAnalysisFilterType;

We can finally define the type of the morpholoical pyramid kests filter. The filter is tem-
plated over the input and output mage types.

typedef oth::MorphologicalPyramidSynthesisFilter<inp utimageType,
OutputimageType>
PyramidSynthesisFilterType;

We can now instantiate the reader in order to access theimaigie which has to be analysed.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);

We instantiate the morphological pyramid analysis filteat aat its parameters which are:

e the number of iterations or levels of the pyramid;

¢ the subsample scale or decimation factor between two ssigeggyramid levels.
After that, we plug the pipeline and run it by calling tdpdate() method.

PyramidAnalysisFilterType::Pointer pyramidAnalysis =

PyramidAnalysisFilterType::New();
pyramidAnalysis->SetNumberOfLevels(numberOfLevels);
pyramidAnalysis->SetDecimationRatio(decimationRatio);
pyramidAnalysis->Setlnput(reader->GetOutput());
pyramidAnalysis->Update();

Once the analysis step is finished we can proceed to the symtiféhe image from its different
levels of decomposition. The morphological pyramid haspesyof output:

¢ the Analysisd image at each level of the pyramid throughGit@utput() method;

e the brighter details extracted from the filtering operatiorough theGetSupFilter()
method,;

e the darker details extracted from the filtering operatiomuigh theGetinfFilter()
method,;

15.2. Morphological Pyramid 363

¢ the brighter details extracted from the resampling openatirough the5etSupDeci()
method,;

¢ the darker details extracted from the resampling operatioough theGetInfDeci()
method; to decimation

This outputs can be used as input of the synthesis filter mguhie appropriate methods.

PyramidSynthesisFilterType::Pointer pyramidSynthesis = PyramidSynthesisFilterType::New();
pyramidSynthesis->SetInput(pyramidAnalysis->GetOutp ut()->Back());
pyramidSynthesis->SetSupFilter(pyramidAnalysis->Get SupFilter());
pyramidSynthesis->SetSupDeci(pyramidAnalysis->GetSu pDeci());
pyramidSynthesis->SetInfFilter(pyramidAnalysis->Get InfFilter());
pyramidSynthesis->SetInfDeci(pyramidAnalysis->Getin fDeci());

After that, we plug the pipeline and run it by calling tpdate() method.

pyramidSynthesis->Update();

We finally instatiate a the writer in order to save the resulige to a file.

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(pyramidSynthesis->GetOutput()->Bac k();
writer->Update();

Since the synthesis operation is applied on the result o&ttadysis, the input and the output
images should be identical. This is the case as shown in fiuie

Of course, in a real application, a specific processing vélldpplied after the analysis and
before the synthesis to, for instance, denoise the imagerbgving pixels at the finer scales,
etc.

15.2.1 Morphological Pyramid Exploitation

One of the possible uses of the morphological pyramid is ¢éigenentation of objects — regions
— of a particular scale.

364 Chapter 15. Multi-scale Analysis

Figure 15.7:Result of the morphological pyramid analysis and synthesis. Left: original image. Right:
result of applying the analysis and the synthesis steps.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSegmenterEx ample.cxx

This example illustrates the use of thetb::MorphologicalPyramid::Segmenter . This
class performs the segmentation of a detail image extréairda morphological pyramid anal-
ysis. The Segmentation is perfomed using itkeConnectedThresholdimageFilter . The
seeds are extracted from the image using ¢ke:ImageToPointSetFilter . The thresolds
are set by using quantiles computed with the HistogramGeoer

The first step required to use this filter is to include its teadite.
#include "otbMorphologicalPyramidSegmenter.h"

As usual, we start by defining the types needed for the piteésmages, the image reader and
the image writer. Note that, for this example, an RGB imagehei created to store the results
of the segmentation.

const unsigned int Dimension = 2;

typedef double InputPixelType;

typedef unsigned short LabelPixelType;

typedef itk:RGBPixel<unsigned char> RGBPixelType;

typedef otb::Image<InputPixelType,Dimension> Inputima geType;
typedef otb::Image<LabelPixelType,Dimension> Labellma geType;
typedef otb::Image<RGBPixelType, 2> RGBImageType;

typedef otb::ImageFileReader<inputimageType> ReaderTy pe;
typedef otb::ImageFileWriter<RGBImageType> WriterType ;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramid_1_1Segmenter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPointSetFilter.html

15.2. Morphological Pyramid 365

We define now the segmenter. Please pay attention to thehfaicthis class belongs to the
morphologicalPyramid namespace.

typedef oth::MorphologicalPyramid::Segmenter<inputim ageType,
LabellmageType>
SegmenterType;

We instantiate the readers which will give us access to ttegérof details produced by the
morphological pyramid analysis and the original imagedbefinalysis) which is used in order
to produce segmented regions which are sharper than whad Wwave been obtained with the
detail image only.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName(originalFilename);

We instantiate the segmenter and set its parameters asv$olldVe plug the output of the

readers for the details image and the original image; wehsdbdolean variable which controls
wether the segmented details are bright or dark; we set thetideiused to threshold the details
image in order to obtain the seed points for the segmentatierset the quantile for setting

the threshold for the region growing segmentation; andl§inale set the minimum size for a

segmented region to be kept in the final result.

SegmenterType::Pointer segmenter = SegmenterType::New();
segmenter->SetDetailsimage(reader->GetOutput());
segmenter->SetOriginallmage(reader2->GetOutput());
segmenter->SetSegmentDarkDetailsBool(segmentDark);
segmenter->SetSeedsQuantile(seedsQuantile);

segmenter->SetConnected ThresholdQuantile(segmentati onQuantile);
segmenter->SetMinimumObjectSize(minObjectSize);

The output of the segmenter is an image of integer labelstendnabel denotes membership of
a pixel in a particular segmented region. This value is Ugualded using 16 bits. This format
is not practical for visualization, so for the purposes @ txample, we will convert it to RGB
pixels. RGB images have the advantage that they can be sazesimple png file and viewed
using any standard image viewer software. TheFunctor::ScalarToRGBPixelFunctor

class is a special function object designed to hash a scalae into an itk:RGBPixel
Plugging this functor into theitk::UnaryFunctorimageFilter creates an image filter for
that converts scalar images to RGB images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

366 Chapter 15. Multi-scale Analysis

Figure 15.8: Morphological pyramid segmentation. From left to right: original image, image of bright
details and result of the sementation.

typedef itk::Functor::ScalarToRGBPixelFunctor<LabelP ixelType>
ColorMapFunctorType;

typedef itk::UnaryFunctorimageFilter<LabellmageType,
RGBImageType, ColorMapFunctorType> ColorMapFilterType ;
ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

We can now plug the final segment of the pipeline by using ther coapper and the image file
writer.

colormapper->Setinput(segmenter->GetOutput());
WriterType::Pointer writer = WriterType::New();
writer->SetIinput(colormapper->GetOutput());
writer->SetFileName(outputFilenamel);
writer->Update();

Figure 15.8 shows the results of the segmentation of theero&gright details obtained with
the morphological pyramid analysis.

This same approach can be applied to all the levels of themotwgical pyramid analysis.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSegmentatio nExample.cxx

This example illustrates the use of thatb::MorphologicalSegmentationFilter . This
filter performs a segmentation of the detalgpFilter and infFilter extracted with the
morphological pyramid. The segmentation algorithm usdubsed on seeds extraction using
the oth::ImageToPointSetFilter , followed by a connected threshold segmentation using
the itk::ConnectedThresholdimageFilter . The threshold for seeds extraction and seg-
mentation are computed using quantiles. A pre processemistapplied by multiplying the

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalSegmentationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

15.2. Morphological Pyramid 367

full resolution brighter details (resp. darker detailsjhwthe original image (resp. the inverted
original image). This perfoms an enhancement of the regionmsour precision. The details
from the pyramid are set via thaetBrighterDetails() and SetDarkerDetails() meth-
ods. The brighter and darker details depend on the filter irstite pyramid analysis. If the
oth::OpeningClosingMorphologicalFilter filter is used, then the brighter details are those
from thesupFilter image list, whereas if theth::ClosingOpeningMorphologicalFilter

filter is used, the brighter details are those fromitiffélter list. The output of the segmenta-
tion filter is a single segmentation images list, contairfirgg the brighter details segmentation
from higher scale to lower, and then the darker details irstrae order. The attention of the
user is drawn to the fact that since the label filter usedmatér will deal with a large number of
labels, theDutputPixelType is required to be sufficiently precise. Unsigned short origimesd
long would be a good choice, unless the user has a very gosdiréa think that a less precise
type will be sufficient. The first step to use this filter is tolude its header file.

#include "otbMorphologicalPyramidSegmentationFilter. h"

The mathematical morphology filters to be used have also ioddeded here, as well as the
morphological pyramid analysis filter.

#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "otbMorphologicalPyramidAnalysisFilter.h"

As usual, we start by defining the types for the pixels, thegiesathe reader and the writer. We
also define the types needed for the morphological pyranad/sis.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned short OutputPixelType;

typedef otb::Image<inputPixelType,Dimension> Inputima geType;

typedef otb::image<OutputPixelType,Dimension> Outputl mageType;

typedef oth::imageFileReader<InputimageType> ReaderTy pe;

typedef oth::ImageFileWriter<OutputimageType> WriterT ype;

typedef itk::BinaryBallStructuringElement<inputPixel Type,Dimension>
StructuringElementType;

typedef otb::OpeningClosingMorphologicalFilter<input ImageType,

InputimageType, StructuringElementType>
OpeningClosingFilterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ClosingOpeningMorphologicalFilter.html

368 Chapter 15. Multi-scale Analysis

typedef otb::MorphologicalPyramidAnalysisFilter<inpu timageType,
InputimageType,OpeningClosingFilterType>
PyramidFilterType;

We can now define the type for theth::MorphologicalPyramidSegmentationFilter
which is templated over the input and output image types.

typedef oth::MorphologicalPyramidSegmentationFilter< InputimageType,
OutputimageType>
SegmentationFilterType;

Since the output of the segmentation filter is a list of imagesdefine an iterator type which
will be used to access the segmented images.

typedef SegmentationFilterType::OutputimageListltera torType
OutputListlteratorType;

The following code snippet shows how to read the input imageperform the morphological
pyramid analysis.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);

PyramidFilterType::Pointer pyramid = PyramidFilterType ::New();
pyramid->SetNumberOfLevels(numberOfLevels);
pyramid->SetDecimationRatio(decimationRatio);
pyramid->Setinput(reader->GetOutput());

We can now instantiate the segmentation filter and set itanpeters. As one can see,
the SetReferencelmage() is used to pass the original image in order to obtain sharp re-

gion boundaries. Using th8etBrighterDetails() and SetDarkerDetails() the out-
put of the analysis is passed to the filter. Finally, the patans for the segmenta-
tion are set by using th8etSeedsQuantile() , SetConnectedThresholdQuantile() and

SetMinimumObjectSize() methods.

SegmentationFilterType::Pointer segmentation = Segment ationFilterType::New();
segmentation->SetReferencelmage(reader->GetOutput());
segmentation->SetBrighterDetails(pyramid->GetSupFil ter());

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidSegmentationFilter.html

15.2. Morphological Pyramid 369

segmentation->SetDarkerDetails(pyramid->GetinfFilte r());
segmentation->SetSeedsQuantile(seedsQuantile);
segmentation->SetConnectedThresholdQuantile(segment ationQuantile);

segmentation->SetMinimumObjectSize(minObjectSize);

The pipeline is executed bu calling thedate() method.

segmentation->Update();

Finally, we get an iterator to the list generated as outputife segmentation and we use it to
iterate through the list and write the images to files.

OutputListlteratorType it = segmentation->GetOutput()- >Begin();
WriterType::Pointer writer;

int index = 1;

std::stringstream 0ss;

while(it'=segmentation->GetOutput()->End())

oss<<outputFilenamePrefix<<index<<"."<<outputFilena meSuffix;
writer = WriterType::New();

writer->SetInput(it. Get());

writer->SetFileName(oss.str().c_str());

writer->Update();

std::cout<<oss.str()<<" file written."<<std::endl;

++index;

+Hit;

The user will pay attention to the fact that the list contdirst the brighter details segmentation
from higher scale to lower, and then the darker details irstiree order.

CHAPTER

SIXTEEN

Change Detection

16.1 Introduction

Change detection techniques try to detect and locate are@d Wwave changed between two
or more observations of the same scene. These changes cérdifferent types, with dif-
ferent origins and of different temporal length. This altot distinguish different kinds of

applications:

¢ land use monitoringwhich corresponds to the characterization of the evalutibthe
vegetation, or its seasonal changes;

e natural resources managememthich corresponds mainly to the characterisation of the
evolution of the urban areas, the evolution of the defotiestaetc.

e damage mappingwhich corresponds to the location of damages caused byahatu
industrial disasters.

From the point of view of the observed phenomena, one caimgigssh 2 types of changes
whose nature is rather different: the abrupt changes angrtbgressive changes, which can
eventually be periodic. From the data point of view, one careh

¢ Image pairs before and after the event. The applicationsiaiely the abrupt changes.

e Multi-temporal image series on which 2 types on changes rppgar:

— The slow changes like for instance the erosion, vegetatimtuton, etc. The
knowledge of the studied phenomena and of their consegsentére geometri-
cal and radiometrical evolution at the different dates isig¥mportant information
for this kind of analysis.

— The abrupt changes may pose different kinds of problemsrdipg on whether
the date of the change is known in the image series or not. &texiion of areas

372 Chapter 16. Change Detection

affected by a change occurred at a known date may exploiathigri information
in order to split the image series into two sub-series (leefor after) and use the
temporal redundancy in order to improve the detection tes@n the other hand,
when the date of the change is not known, the problem has ahififficulty.

From this classification of the different types of problemse can infer 4 cases for which one
can look for algorithms as a function of the available data:

1. Abrupt changes in an image pair. This is no doubt the fietdMioich more work has
been done. One can find tools at the 3 classical levels of impegmessing: data level
(differences, ratios, with or without pre-filtering, etdgature level (edges, targets, etc.),
and interpretation level (post-classification comparjson

2. Abrupt changes within an image series and a known date.c&meely on bi-date tech-
niques, either by fusing the images into 2 stacks (beforeafied), or by fusing the results
obtained by different image couples (one after and one bdfar event). One can also
use specific discontinuity detection techniques to be adpti the temporal axis.

3. Abrupt changes within an image series and an unknown dEtés case can be seen
either as a generalization of the preceding one (testing\tthepositions for N dates) or
as a particular case of the following one.

4. Progressive changes within an image series. One can wonloisteps:

(a) detect the change areas using stability criteria inghepbral areas;
(b) identify the changes using prior information about §yetof changes of interest.

16.1.1 Surface-based approaches

In this section we discuss about the damage assessmengieehhich can be applied when
only two images (before/after) are available.

As it has been shown in recent review works [18, 60, 73, 748atively high number of meth-
ods exist, but most of them have been developed for optichirdfrared sensors. Only a few
recent works on change detection with radar images existd8@6, 44, 24, 6, 46]. However,
the intrinsic limits of passive sensors, mainly relatech&itdependence on meteorological and
illumination conditions, impose severe constraints foeragional applications. The principal
difficulties related to change detection are of four types:

1. Inthe case of radar images, the speckle noise makes tige iexploitation difficult.

2. The geometric configuration of the image acquisition caxpce images which are dif-
ficult to compare.

16.2. Change Detection Framework 373

3. Also, the temporal gap between the two acquisitions as the sensor aging and the
inter-calibration are sources of variability which ardfidiiilt to deal with.

4. Finally, the normal evolution of the observed scenes muostbe confused with the
changes of interest.

The problem of detecting abrupt changes between a pair afémia the following: Lety, I, be
two images acquired at different dateg,; we aim at producing a thematic map which shows
the areas where changes have taken place.

Three main categories of methods exist:

e Strategy 1: Post Classification Comparison
The principle of this approach [21] is two obtain two landusaps independently for
each date and comparing them.

e Strategy 2: Joint classification
This method consists in producing the change map direaiiy fa joint classification of
both images.

e Strategy 3: Simple detectors

The last approach consists in producing an image of chakgihlbod (by differences,
ratios or any other approach) and thresholding it in ord@réemluce the change map.

Because of its simplicity and its low computation overhehd,third strategy is the one which
has been chosen for the processing presented here.

16.2 Change Detection Framework

The source code for this example can be found in the file
Examples/ChangeDetection/ChangeDetectionFrameworkEx ample.cxx .

This example illustrates the Change Detector frameworklémpnted in OTB. This
framework uses the generic programming approach. All chadgtection filters are
oth::BinaryFunctorNeighborhoodimageFilter s, that is, they are filters taking two images
as input and providing one image as output. The change @etamdmputation itself is per-
formed on a the neighborhood of each pixel of the input images

The first step required to build a change detection filter imétude the header of the parent
class.

#include "otbBinaryFunctorNeighborhoodimageFilter.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

374 Chapter 16. Change Detection

The change detection operation itself is one of the templafehe change detection filters
and takes the form of a function, that is, something accggtie syntaXoo() . This can be
implemented using classical C/C++ functions, but it is grable to implement it using C++
functors. These are classical C++ classes which overloaf) tloperator. This allows to use
them with the same syntax as C/C++ functions.

Since change detectors operate on neighborhoods, thefuatt will take 2 arguments which
are itk::ConstNeighborhoodlterator s.

The change detector functor is templated over the typeseofniput iterators and the output
result type. The core of the change detection is implementdteoperator() section.

template< class Tinputl, class Tlnput2, class TOutput>
class MyChangeDetector

{
public:
/I The constructor and destructor.
MyChangeDetector() {};
“"MyChangeDetector() {};
/I Change detection operation
inline TOutput operator()(const Tinputl & itA,
const Tlnput2 & itB)
{

TOutput result = 0.0;

for(unsigned long pos = 0; pos< itA.Size(); ++pos)

result += static_cast<TOutput>(itA.GetPixel(pos)-itB. GetPixel(pos));

}

return static_cast<TOutput>(result/itA.Size());
}
2

The interest of using functors is that complex operations loa performed using internal
protected class methods and that class variables can be used to dtumadtion so different
pixel locations can access to results of previous compursti

The next step is the definition of the change detector filtes. stated above, this filter will

inherit from oth::BinaryFunctorNeighborhoodimageFilter which is templated over the

2 input image types, the output image type and the functat tesperform the change detection
operation.

Inside the class only a fetypedef s and the constructors and destructors have to be declared.

template <class Tinputimagel, class Tinputimage2, class T Outputimage>

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

16.2. Change Detection Framework 375

class ITK_EXPORT MyChangeDetectorimageFilter :
public otb::BinaryFunctorNeighborhoodimageFilter<
TInputimagel,TInputimage2, TOutputimage,

MyChangeDetector<
typename itk::ConstNeighborhoodIterator<TInputimagel >,
typename itk::ConstNeighborhoodlterator<TInputimage2 >,
typename TOutputimage::PixelType> >
{
public:

[** Standard class typedefs. */
typedef MyChangeDetectorimageFilter ~ Self;

typedef typename otb::BinaryFunctorNeighborhoodimageF ilter<
TInputimagel,TInputimage2, TOutputimage,
MyChangeDetector<
typename itk::ConstNeighborhoodlterator<TInputimagel >
typename itk::ConstNeighborhoodlterator<TInputimage2 >,

typename TOutputimage::PixelType>
> Superclass;
typedef itk:SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;

[** Method for creation through the object factory. */
itkNewMacro(Self);

protected:
MyChangeDetectorimageFilter() {}
virtual “MyChangeDetectorimageFilter() {}

private:
MyChangeDetectorimageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented

Pay attention to the fact that nmx file is needed, since filtering operation is implemented in
the otb::BinaryFunctorNeighborhoodimageFilter class. So all the algorithmics part is
inside the functor.

We can now write a program using the change detector.

As usual, we start by defining the image types. The internadpzdations will be performed
with floating point precision, while the output image will bored using one byte per pixel.

typedef float InternalPixelType;

typedef unsigned char OutputPixelType;

typedef otb::Image<internalPixelType, Dimension> Input ImageTypel;
typedef otb::image<InternalPixelType, Dimension> Input ImageType2;

http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

376 Chapter 16. Change Detection

typedef otb::image<InternalPixelType, Dimension> Chang elmageType;
typedef otb::Image<OutputPixelType, Dimension> Outputl mageType;
We declare the readers, the writer, but also itkeRescalelntensitylmageFilter which

will be used to rescale the result before writing it to a file.

typedef otb::imageFileReader< InputimageTypel > ReaderT ypel;
typedef otb::imageFileReader< InputimageType2 > ReaderT ype2;
typedef otb::imageFileWriter< OutputimageType > WriterT ype;
typedef itk::RescalelntensitylmageFilter< Changelmage Type,

OutputimageType > RescalerType;
The next step is declaring the filter for the change detection

typedef MyChangeDetectorimageFilter<
InputimageTypel,
InputimageType2,
ChangelmageType > FilterType;

We connect the pipeline.

readerl->SetFileName(inputFilenamel);

reader2->SetFileName(inputFilename2);

writer->SetFileName(outputFilename);

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

filter->SetInputl(readerl->GetOutput());
filter->Setinput2(reader2->GetOutput());
filter->SetRadius(atoi(argv[3]));

rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

And that is all.

16.3 Simple Detectors

16.3.1 Mean Difference

The simplest change detector is based on the pixel-wiserdifting of image values:
Io(i, j) =l2(i,j) = (i, J). (16.1)

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

16.3. Simple Detectors 377

Figure 16.1:mages used for the change detection. Left: Before the flood. Right: during the flood.

In order to make the algorithm robust to noise, one actuaisuocal means instead of pixel
values.

The source code for this example can be found in the file
Examples/ChangeDetection/DiffChDet.cxx

This example illustrates the clasgh::MeanDifferencelmageFilter for detecting changes
between pairs of images. This filter computes the mean iityeinsthe neighborhood of each
pixel of the pair of images to be compared and uses the differef means as a change indi-
cator. This example will use the images shown in figure 16Hes€ correspond to the near
infrared band of two Spot acquisitions before and during adflo

We start by including the corresponding header file.
#include "otbMeanDifferencelmageFilter.h"

We start by declaring the types for the two input images, tr@nge image and the image to be
stored in a file for visualization.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

typedef otb::image<internalPixelType, Dimension> Input ImageTypel,;
typedef otb::image<internalPixelType, Dimension> Input ImageType2;
typedef otb::image<internalPixelType, Dimension> Chang elmageType;

typedef otb::Image<OutputPixelType, Dimension> Outputl mageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanDifferenceImageFilter.html

378 Chapter 16. Change Detection

We can now declare the types for the readers and the writer.

typedef otb::imageFileReader< InputimageTypel > ReaderT ypel;
typedef oth::ImageFileReader< InputimageType2 > ReaderT ype2;
typedef otb::imageFileWriter< OutputimageType > WriterT ype;

The change detector will give positive and negative valiegsedding on the sign of the differ-
ence. We are usually interested only in the asbolute valdkeoflifference. For this purpose,
we will use theitk::AbsimageFilter . Also, before saving the image to afile in, for instance,
PNG format, we will rescale the results of the change detedti order to use all the output
pixel type range of values.

typedef itk::AbsImageFilter< ChangelmageType,
ChangelmageType > AbsType;
typedef itk::RescalelntensitylmageFilter< Changelmage Type,
OutputimageType > RescalerType;

The otb::MeanDifferencelmageFilter is templated over the types of the two input images
and the type of the generated change image.

typedef otb::MeanDifferencelmageFilter<
InputimageTypel,
InputimageType2,
ChangelmageType > FilterType;

The different elements of the pipeline can now be instagdiat

ReaderTypel::Pointer readerl = ReaderTypel:New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
AbsType::Pointer absFilter = AbsType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeli

readerl->SetFileName(inputFilenamel);

reader2->SetFileName(inputFilename2);

writer->SetFileName(outputFilename);

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >:max());

The only parameter for this change detector is the radiuseofindow used for computing the
mean of the intensities.

http://www.melaneum.com/OTB/doxygen/classitk_1_1AbsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanDifferenceImageFilter.html

16.3. Simple Detectors 379

Figure 16.2:Result of the mean difference change detector

filter->SetRadius(atoi(argv[4]));

We build the pipeline by plugging all the elements together.

filter->Setinputl(readerl->GetOutput());
filter->Setinput2(reader2->GetOutput());
absFilter->SetInput(filter->GetOutput());

rescaler->Setinput(absFilter->GetOutput());
writer->Setinput(rescaler->GetOutput());

Since the processing time of large images can be long, itésaating to monitor the evolution
of the computation. In order to do so, the change detectarsusa the command/observer
design pattern. This is easily done by attaching an obséwuee filter.

typedef otb::CommandProgressUpdate<FilterType> Comman dType;

CommandType::Pointer observer = CommandType::New();
filter->AddObserver(itk::ProgressEvent(), observer);

Figure 16.2 shows the result of the change detection byrdiifee of local means.

380 Chapter 16. Change Detection

Figure 16.31mages used for the change detection. Left: Before the eruption. Right: after the eruption.

16.3.2 Ratio Of Means

This detector is similar to the previous one except thatéswsratio instead of the difference:

IR(i,]) = :jE: j; (16.2)

The use of the ratio makes this detector robust to multifilieanoise which is a good model for
the speckle phenomenon which is present in radar images.

In order to have a bounded and normalized detector the follpexpression is actually used:

o (a1,)) I1(LJ))
Ir(i,j) =1—min —=, =]. 16.3

") Gl (163)
The source code for this example can be found in the file
Examples/ChangeDetection/RatioChDet.cxx

This example illustrates the classtb::MeanRatiolmageFilter for detecting changes be-
tween pairs of images. This filter computes the mean intemsithe neighborhood of each
pixel of the pair of images to be compared and uses the ratmeains as a change indicator.
This change indicator is then normalized between 0 and 1 img tise classical

)

r—1—min{t2 8 (16.4)
TR

wherepa andpg are the local means. This example will use the images shovigure 16.3.
These correspond to 2 Radarsat fine mode acquisitions baforafter a lava flow resulting
from a volcanic eruption.

We start by including the corresponding header file.
#include "otbMeanRatiolmageFilter.h"

We start by declaring the types for the two input images, tr@nge image and the image to be
stored in a file for visualization.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

16.3. Simple Detectors 381

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image<internalPixelType, Dimension> Input ImageTypel;
typedef otb::image<InternalPixelType, Dimension> Input ImageType2;
typedef otb::iImage<InternalPixelType, Dimension> Chang elmageType;
typedef oth::image<OutputPixelType, Dimension> Outputl mageType;

We can now declare the types for the readers. Since the intagdse vey large, we will force
the pipeline to use streaming. For this purpose, the fileewwiill be streamed. This is achieved

by using theotb::StreamingimageFileWriter class.
typedef otb::imageFileReader< InputimageTypel > ReaderT ypel;
typedef oth::imageFileReader< InputimageType2 > ReaderT ype2;
typedef otb::StreaminglmageFileWriter< OutputimageTyp e > WriterType;

The change detector will give a normalized result betweenddla In order to store the result
in PNG format we will rescale the results of the change dieteéh order to use all the output
pixel type range of values.

typedef itk::ShiftScalelmageFilter< ChangelmageType,
OutputimageType > RescalerType;

The oth::MeanRatiolmageFilter is templated over the types of the two input images and
the type of the generated change image.

typedef otb::MeanRatiolmageFilter<
InputimageTypel,
InputimageTypez2,
ChangelmageType > FilterType;

The different elements of the pipeline can now be instagdiat

ReaderTypel::Pointer readerl = ReaderTypel:New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeli

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

382 Chapter 16. Change Detection

Figure 16.4 Result of the ratio of means change detector

readerl->SetFileName(inputFilenamel);

reader2->SetFileName(inputFilename2);

writer->SetFileName(outputFilename);

float scale = itk::NumericTraits< OutputPixelType >::max 0s
rescaler->SetScale(scale);

The only parameter for this change detector is the radiuseoiindow used for computing the
mean of the intensities.

filter->SetRadius(atoi(argv[4]));

We build the pipeline by plugging all the elements together.

filter->Setinputl(readerl->GetOutput());
filter->Setinput2(reader2->GetOutput());

rescaler->Setinput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

Figure 16.4 shows the result of the change detection by o&tmcal means.

16.4 Statistical Detectors

16.4.1 Distance between local distributions

This detector is similar to the ratio of means detector ($eehe previous section page 380).
Nevertheless, instead of the comparison of means, the asupas performed to the complete
distribution of the two Random Variables (RVs) [44].

16.4. Statistical Detectors 383

The detector is based on the Kullback-Leibler distance detprobability density functions
(pdfs). In the neighborhood of each pixel of the pair of in@eandl, to be compared, the
distance between local pdfg and f, of RVs X; andX; is evaluated by:

K (Xe,X2) = K(Xg|X2) 4+ K(X2|X1) (16.5)
with K(xjm):/ﬁmg]f;“g)) 0d% Q=12 (16.6)

In order to reduce the computational time, the local pdfand fo are not estimated through
histogram computations but rather by a cumulant expaneamgly the Edgeworth expansion,
with is based on the cumulants of the RVs:

6+ 10KZ.
fx(x) = <1+K§fH<>+"2X;H4<> T Hs(x) + Kx“ﬁm“wx))gx(x). (16.7)

In eq. (16.7),Gx stands for the Gaussian pdf which has the same mean andogdarthe RV
X. Thekx:k coefficients are the cumulants of orderandH(x) are the Chebyshev-Hermite
polynomials of ordek (see [46] for deeper explanations).

The source code for this example can be found in the file
Examples/ChangeDetection/KullbackLeiblerDistanceChD et.cxx

This example illustrates the clash::KullbackLeiblerDistancelmageFilter for detect-
ing changes between pairs of images. This filter compute&itiback-Leibler distance be-
tween probability density functions (pdfs). In fact, thellkack-Leibler distance is itself ap-
proximated through a cumulant-based expansion, sincedfsegpe approximated through an
Edgeworth series. The Kullback-Leibler distance is evigldidy:

K H{Xa|X2) = L s e (Iog 2 g, 1 (K Kxg:1 + Ky)2)
d -5 5 - 1= KXy, :
Edgeworth A1| A2 12)2(2 K2 K2 X;1 X2i1 X1;2

2
a3> 1K%:3 C4 2
‘ K = cs—6 9——
(X236 + ><2“24Jr X2372 2736 | ° le:zJr KSo:2

Kx:3Kx,'3 (Kx::1 — Kxor1) (Kxt 2 — KX,
_ 10K %3 (Kxgi1 6X2,1)(X2 ~ Kxpi2) (16.8)
KXo:2

http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html

384 Chapter 16. Change Detection

where
a=0c—3
Kx,;2
C2 3
az - C4 - 6 T
Kxz2 Ko
Cyq C2 15
az=Ccg—15 +45 5— — 3
Kxz;2 Koz Koz
Co = C(2 + [32

cz=a®+3ap?
s = o+ 60°B% 4-3p*
Co = 0® -+ 15042 + 4502B* 1 158°
o = it K
KXy:2

1/2
_ KX1;2

KX2;2

Kx:1, Kx;:2, Kx:3 andky;:4 are the cumulants up to order 4 of the random variablg = 1,2).
This example will use the images shown in figure 16.3. Theseespond to 2 Radarsat fine
mode acquisitions before and after a lava flow resulting feovolcanic eruption.

The program itself is very similar to the ratio of means d&tec implemented in
oth::MeanRatiolmageFilter , in section 16.3.2. Nevertheless the corresponding hddeler
has to be used instead.

#include "otbKullbackLeiblerDistancelmageFilter.h"

The otb::KullbackLeiblerDistancelmageFilter is templated over the types of the
two input images and the type of the generated change image, similar way as the
oth::MeanRatiolmageFilter . Itisthe only line to be changed from the ratio of means ckang
detection example to perform a change detection througbtardie between distributions...

typedef otb::KullbackLeiblerDistancelmageFilter<imag eType,
ImageType,ImageType> FilterType;

The different elements of the pipeline can now be instagdiaFollow the ratio of means change
detector example.

The only parameter for this change detector is the radiuseofindow used for computing the
cumulants.

FilterType::Pointer filter = FilterType::New();
filter->SetRadius((winSize-1)/2);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

16.4. Statistical Detectors 385

Figure 16.5Result of the Kullback-Leibler change detector

The pipeline is built by plugging all the elements together.

filter->Setinput1(readerl->GetOutput());
filter->Setinput2(reader2->GetOutput());

Figure 16.5 shows the result of the change detection by ctngpthe Kullback-Leibler dis-
tance between local pdf through an Edgeworth approximation

16.4.2 Local Correlation

The correlation coefficient measures the likelihood of adinrelationship between two random
variables:

= A iD=y
_ (Ia(iy) —myy)(I2(i, j) —miy) '
(12,15T2(0,1)) 01,91,

(16.9)

wherelq(i, j) andlx(i, j) are the pixel values of the 2 images apgl is the joint probability
density. This is like using a linear model:

. . o

21,) = (13 (i, 1) = my) 2 +m, (16.10)
1

for which we evaluate the likelihood withyj.

With respect to the difference detector, this one will beusilto illumination changes.

The source code for this example can be found in the file
Examples/ChangeDetection/CorrelChDet.cxx

This example illustrates the classh::CorrelationChangeDetector for detecting changes
between pairs of images. This filter computes the correlatiefficient in the neighborhood

http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationChangeDetector.html

386 Chapter 16. Change Detection

Figure 16.6:Images used for the change detection. Left: Before the flood. Right: during the flood.

of each pixel of the pair of images to be compared. This exawl use the images shown in
figure 16.6. These correspond to two ERS acquisitions befiodeduring a flood.

We start by including the corresponding header file.
#include "otbCorrelationChangeDetector.h"

We start by declaring the types for the two input images, trange image and the image to be
stored in a file for visualization.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

typedef otb::image<internalPixelType, Dimension> Input ImageTypel,;
typedef otb::Image<internalPixelType, Dimension> Input ImageType2;
typedef otb::image<internalPixelType, Dimension> Chang elmageType;
typedef otb::lmage<OutputPixelType, Dimension> Outputl mageType;

We can now declare the types for the readers. Since the intagdse vey large, we will force
the pipeline to use streaming. For this purpose, the fileewwill be streamed. This is achieved

by using theotb::StreamingimageFileWriter class.
typedef otb::ImageFileReader< InputimageTypel > ReaderT ypel;
typedef otb::imageFileReader< InputimageType2 > ReaderT ype2;
typedef otb::StreaminglmageFileWriter< OutputimageTyp e > WriterType;

The change detector will give a response which is normaldieen 0 and 1. Before saving
the image to a file in, for instance, PNG format, we will resctiie results of the change
detection in order to use all the output pixel type range ties

typedef itk::ShiftScalelmageFilter< ChangelmageType,
OutputimageType > RescalerType;

The otb::CorrelationChangeDetector is templated over the types of the two input images
and the type of the generated change image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationChangeDetector.html

16.4. Statistical Detectors 387

typedef otb::CorrelationChangeDetector<
InputimageTypel,
InputimageType2,
ChangelmageType > FilterType;

The different elements of the pipeline can now be instagdiat

ReaderTypel::Pointer readerl = ReaderTypel::New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeli

readerl->SetFileName(inputFilenamel);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);

float scale = itk::NumericTraits< OutputPixelType >::max 0s
rescaler->SetScale(scale);

The only parameter for this change detector is the radiuseoiindow used for computing the
correlation coefficient.

filter->SetRadius(atoi(argv[4]));
We build the pipeline by plugging all the elements together.

filter->Setinputl(readerl->GetOutput());
filter->SetIinput2(reader2->GetOutput())
rescaler->Setinput(filter->GetOutput());
writer->Setinput(rescaler->GetOutput());

Since the processing time of large images can be long, itésaating to monitor the evolution
of the computation. In order to do so, the change detectarsusa the command/observer
design pattern. This is easily done by attaching an obséwuee filter.

typedef otb::CommandProgressUpdate<FilterType> Comman dType;

CommandType::Pointer observer = CommandType::New();
filter->AddObserver(itk::ProgressEvent(), observer);

Figure 16.7 shows the result of the change detection by tmra¢lation.

388 Chapter 16. Change Detection

l;d; i 5

" - M v 4 1
’\t-“ . ‘.,"” i
c : u . £ %
‘,“._ n"u B !

Figure 16.7:Result of the correlation change detector

16.5 Multi-Scale Detectors

16.5.1 Kullback-Leibler Distance between distributions

This technique is an extension of the distance betweerndititns change detector presented
in section 16.4.1. Since this kind of detector is based onutants estimations through a sliding

window, the idea is just to upgrade the estimation of the dants by considering new samples

as soon as the sliding window is increasing in size.

Let’s consider the following problem: how to update the matsavhen aN + 1" observation
Xn+1 IS added to a set of observatiofig, X0, ..., Xy } already considered. The evolution of the
central moments may be characterized by:

1
Mo N = *31 JN] (16.11)

-t
Hr N = N/Z)() |J-1[N] SANE

where the notatios;) = Z. 1X has been used. Then, Edgeworth series is updated also by
transforming moments to cumulants by using:

Kx;1 = Mx;1

Kx;2 = Mx;2 — ll>2<;1

Kx:3 = Mx:3 — 3px:2Hx;1 + 2“?(;1

Kx:a = M — 4hxabt — 31 + 120x,2H.1 — 6151

(16.12)

It yields a set of images that represent the change meascwoedaty to an increasing size of
the analysis window.

The source code for this example can be found in the file
Examples/ChangeDetection/KullbackLeiblerProfileChDe texx .

This example illustrates the clasth::KullbackLeiblerProfilelmageFilter for detecting
changes between pairs of images, according to a range obwisite. This example is very

http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html

16.5. Multi-Scale Detectors 389

similar, in its principle, to all of the change detection eydes, especially the distance between
distributions one (section 16.4.1) which uses a fixed windiae.

The main differences are:

1. a set of window range instead of a fixed size of window;

2. an output of typeotb::Vectorimage

Then, the program begins with the oth::Vectorimage and the
oth::KullbackLeiblerProfilelmageFilter header files in addition to those already
details in theoth::MeanRatiolmageFilter example.

#include "otbVectorimage.h"
#include "otbKullbackLeiblerProfilelmageFilter.h"

The otb::KullbackLeiblerProfilelmageFilter is templated over the types of the two
input images and the type of the generated change imageh\ighimow of multi-components),
in a similar way as theotb::KullbackLeiblerDistancelmageFilter

typedef otb::image<PixelType,Dimension> ImageType;

typedef otb::Vectorimage<PixelType,Dimension> Vectorl mageType;

typedef otb::KullbackLeiblerProfilelmageFilter<image Type,
ImageType,VectorimageType> FilterType;

The different elements of the pipeline can now be instagdidt the same way as the ratio of
means change detector example.

Two parameters are now required to give the minimum and thérmemn size of the analysis
window. The program will begin by performing change detattihrough the smaller window
size and then applying moments update of eq. (16.11) bynmenéing the radius of the analysis
window (i.e. add a ring of width 1 pixel around the currentgiborhood shape). The process
is applied until the larger window size is reached.

FilterType::Pointer filter = FilterType::New();

filter->SetRadius((winSizeMin-1)/2,(winSizeMax-1)/2);
filter->Setinput1(readerl->GetOutput());

filter->Setinput2(reader2->GetOutput());

Figure 16.8 shows the result of the change detection by ctngpthe Kullback-Leibler dis-
tance between local pdf through an Edgeworth approximation

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html

390 Chapter 16. Change Detection

Figure 16.8Result of the Kullback-Leibler profile change detector, colored composition including the first,
12th and 24th channel of the generated output.

CHAPTER

SEVENTEEN

Classification

17.1 Introduction

In statistical classification, each object is represented features (a measurement vector), and
the goal of classification becomes finding compact and disjeigions (decision regions[28])
for classes in a-dimensional feature space. Such decision regions areedefiy decision
rules that are known or can be trained. The simplest confiiguraf a classification consists
of a decision rule and multiple membership functions; eaemivership function represents a
class. Figure 17.1 illustrates this general framework.

Membership function

Membership score

Class label

Measurement vector

A priori knowledge

Membership function

Figure 17.1:Simple conceptual classifier.

This framework closely follows that of Duda and Hart[28]. eTtlassification process can be
described as follows:

1. A measurement vector is input to each membership function

2. Membership functions feed the membership scores to ttiside rule.

3. A decision rule compares the membership scores and sedwstass label.

This simple configuration can be used to formulated varidassification tasks by using dif-
ferent membership functions and incorporating task speafjuirements and prior knowledge

392 Chapter 17. Classification

| Parameter Estlmatlon‘ cee | Parameter Estlmatlon

,,,,,

o w e L parameters £ ;r;l
[Membership Functlo o [Membership Functloa

Nﬂembersmp scores Q

o
7 g
@ c/)
':, Classifier .9.
(] e
E_ A g
3 E
« [Decision Rule j %
_J N

Figure 17.2:Statistical classification framework.

into the decision rule. For example, instead of using proialensity functions as member-
ship functions, through distance functions and a minimuhaevdecision rule (which assigns a
class from the distance function that returns the smalbdsiy users can achieve a least squared
error classifier. As another example, users can add a @jestiheme to the decision rule so
that even in a situation where the membership scores sugesiner”, a measurement vector
can be flagged as ill defined. Such a rejection scheme can askédof assigning a class label
without a proper win margin.

17.1.1 Kk-d Tree Based k-Means Clustering
The source code for this example can be found in the file
Examples/Classification/KdTreeBasedKMeansClustering CXX .

K-means clustering is a popular clustering algorithm beeatis simple and usually converges
to a reasonable solution. The k-means algorithm works émfsl
1. Obtains the initial k means input from the user.

2. Assigns each measurement vector in a sample containsrdlm$est mean among the k
number of means (i.e., update the membership of each measatgectors to the nearest
of the k clusters).

3. Calculates each cluster's mean from the newly assignedsumement vectors (updates
the centroid (mean) of k clusters).

4. Repeats step 2 and step 3 until it meets the terminatitarieri

17.1. Introduction 393

The most common termination criteria is that if there is n@sueement vector that changes its
cluster membership from the previous iteration, then therithm stops.

The itk::Statistics::KdTreeBasedKmeansEstimator is a variation of this logic. The
k-means clustering algorithm is computationally very exgdee because it has to recalcu-
late the mean at each iteration. To update the mean valuetiawee to calculate the dis-
tance between k means and each and every measurement véotoeduce the computa-
tional burden, the KdTreeBasedKmeansEstimator uses aaspita structure: the k-d tree
(itk::Statistics::KdTree) with additional information. The additional information-
cludes the number and the vector sum of measurement vectdes aach node under the tree
architecture.

With such additional information and the k-d tree data $tme; we can reduce the compu-
tational cost of the distance calculation and means. ldsté&alculating each measurement
vectors and k means, we can simply compare each node of thiesk-dnd the k means. This
idea of utilizing a k-d tree can be found in multiple artic[8%[68] [50]. Our implementation
of this scheme follows the article by the Kanungo et al [50].

We use theitk::Statistics::ListSample as the input sample, thék::Vector as the
measurement vector. The following code snippet includes tieader files.

#include "itkVector.h"
#include "itkListSample.h"

Since this k-means algorithm requires dk::Statistics::KdTree object as an in-
put, we include the KdTree class header file. As mentionedvggbave need a k-
d tree with the vector sum and the number of measurement rgecto Therefore

we use the itk:Statistics::WeightedCentroidKdTreeGenerator instead of the
itk::Statistics::KdTreeGenerator that generate a k-d tree without such additional in-
formation.

#include "itkkdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"

The KdTreeBasedKmeansEstimator class is the implementafithe k-means algorithm. It
does not create k clusters. Instead, it returns the meanadst for the k clusters.

#include "itkkdTreeBasedKmeansEstimator.h"

To generate the clusters, we must create k instances of
itk::Statistics::EuclideanDistance function as the membership functions for each
cluster and plug that—along with a sample—intoitknStatistics::SampleClassifier

object to get a itk::Statistics::MembershipSample that stores pairs of measurement
vectors and their associated class labels (k labels).

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTree.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTree.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1SampleClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample.html

394 Chapter 17. Classification

#include "itkMinimumDecisionRule.h"
#include "itkEuclideanDistance.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normaisttibution using the
itk::Statistics::NormalVariateGenerator

#include "itkNormalVariateGenerator.h"

Since theNormalVariateGenerator class only supports 1-D, we define our measurement
vector type as one component vector. We then, credist@ample object for data inputs.
Each measurement vector is of length 1. We set this usingdtveasurementVectorSize()

method.

typedef itk::Vector< double, 1 > MeasurementVectorType;

typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();

sample->SetMeasurementVectorSize(1);

The following code snippet creates a NormalVariateGeperddject. Since the random variable
generator returns values according to the standard noristabdtion (The mean is zero, and
the standard deviation is one), before pushing random sahie thesample , we change the
mean and standard deviation. We want two normal (Gaussistnjpdtion data. We have two
for loops. Eactior loop uses different mean and standard deviation. Beforelliledisample
with the second distribution data, we chitialize(random seed) method, to recreate the
pool of random variables in th@rmalGenerator

To see the probability density plots from the two distribatirefer to the Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma IGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv,

double mean = 100;

double standardDeviation = 30;

for (unsigned int i = 0 ;i< 100 ; ++i)

{
mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);

}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

17.1. Introduction 395

probability density
0.006 0.008 0.010 0.0i2
| |)

0.004

0.002

0.000
L

T T T T T T T
o 50 100 150 200 250 300

measurement

Figure 17.3: Two normal distributions’ probability density plot (The means are 100 and 200, and the
standard deviation is 30)

for (unsigned int i = 0 ;i < 100 ; ++i)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);

}

We create a k-d tree.

typedef itk::Statistics::WeightedCentroidKdTreeGener ator< SampleType >
TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGenerat orType::New();

treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

Once we have the k-d tree, it is a simple procedure to producedn estimates.

We create the KdTreeBasedKmeansEstimator. Then, we growéinitial mean values using
the SetParameters() . Since we are dealing with two normal distribution in a 1-@2&p, the

size of the mean value array is two. The first element is therfiean value, and the second is
the second mean value. If we used two normal distributiores 2AD space, the size of array

396 Chapter 17. Classification

would be four, and the first two elements would be the two camepts of the first normal
distribution’s mean vector. We plug-in the k-d tree using$htkdTree()

The remaining two methods specify the termination conditio The estimation pro-
cess stops when the number of iterations reaches the maxirtamation value

set by the SetMaximumiteration() , or the distances between the newly calcu-
lated mean (centroid) values and previous ones are withiem tifreshold set by

the SetCentroidPositionChangesThreshold() . The final step is to call the

StartOptimization() method.

The for loop will print out the mean estimates from the estioraprocess.

typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType> EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();

EstimatorType::ParametersType initialMeans(2);
initialMeans[0] = 0.0;
initialMeans[1] = 0.0;

estimator->SetParameters(initialMeans);

estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumlteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0) ;
estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimat or->GetParameters();

for (unsigned int i =0 ;i< 2; ++)
{
std::cout << "cluster[" << i << "] " << std:end|;
std::cout << " estimated mean @ " << estimatedMeans[i] << std :endl;

}

If we are only interested in finding the mean estimates, wehtrétpp. However, to illustrate
how a classifier can be formed using the statistical claasific framework. We go a little bit
further in this example.

Since the k-means algorithm is an minimum distance classi§i@g the estimated k means and
the measurement vectors. We use the EuclideanDistanceadanembership functions. Our
choice for the decision rule is thik:: Statistics::MinimumDecisionRule that returns the
index of the membership functions that have the smallesieviar a measurement vector.

After creating a SampleClassifier object and a MinimumDOenRule object, we plug-in the
decisionRule and thesample to the classifier. Then, we must specify the number of classes
that will be considered using tf8=tNumberOfClasses() method.

The remainder of the following code snippet shows how to @se-gpecified class labels. The

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MinimumDecisionRule.html

17.1. Introduction 397

classification result will be stored in a MembershipSamfiect, and for each measurement
vector, its class label will be one of the two class label§), 48d 200 (nsigned int).

typedef itk::Statistics::EuclideanDistance< Measureme ntVectorType >
MembershipFunctionType;

typedef itk::MinimumDecisionRule DecisionRuleType;

DecisionRuleType::Pointer decisionRule = DecisionRuleT ype::New();

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;

ClassifierType::Pointer classifier = ClassifierType::N ew();

classifier->SetDecisionRule((itk::DecisionRuleBase: :Pointer) decisionRule);

classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;
classLabels.resize(2);

classLabels[0] = 100;

classLabels[1] = 200;

classifier->SetMembershipFunctionClassLabels(classL abels);

Theclassifier is almost ready to do the classification process excepttthateds two mem-
bership functions that represents two clusters respégtive

In this example, the two clusters are modeled by two Euclidéiatance functions. The dis-
tance function (model) has only one parameter, its meartr@@dh set by theSetOrigin()
method. To plug-in two distance functions, we call fkueMembershipFunction() method.
Then invocation of thé&pdate() method will perform the classification.

std::vector< MembershipFunctionType::Pointer > members hipFunctions;
MembershipFunctionType::OriginType origin(sample->Ge tMeasurementVectorSize());
int index = 0;
for (unsigned inti =0 ;i< 2;it+)
{

membershipFunctions.push_back(MembershipFunctionTyp e:New());

for (unsigned int j = 0 ; j < sample->GetMeasurementVectorSi ze(); j++)

{

originj] = estimatedMeans[index++];
membershipFunctions]i]->SetOrigin(origin);
classifier->AddMembershipFunction(membershipFunctio nsli].GetPointer());

}

classifier->Update();

The following code snippet prints out the measurement vecaod their class labels in the
sample .

398 Chapter 17. Classification

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();
ClassifierType::OutputType::Constlterator iter = membe rshipSample->Begin();

while (iter = membershipSample->End())

{
std::cout << "measurement vector = " << iter.GetMeasuremen tVector()
<< "class label = " << iter.GetClassLabel()
<< std::endl;
++iter;
}

17.1.2 K-Means Classification
Simple version

The source code for this example can be found in the file
Examples/Classification/ScalarimageKmeansClassifier CXX .

This example shows how to use the KMeans model for clasgjfifin pixel of a scalar image.

The itk::Statistics::ScalarimageKmeansimageFilter is used for taking a scalar image
and applying the K-Means algorithm in order to define clasisasrepresents statistical distri-
butions of intensity values in the pixels. The classes aa tised in this filter for generating a
labeled image where every pixel is assigned to one of theetas

#include "otblmage.h"

#include "otblmageFileReader.h"

#include "otbimageFileWriter.h"

#include "itkScalarimageKmeansimageFilter.h"

First we define the pixel type and dimension of the image thatimend to classify. With
this image type we can also declare tbtb::ImageFileReader needed for reading the input
image, create one and set its input filename.

typedef signed short PixelType;
const unsigned int Dimension = 2;

typedef otb::image<PixelType, Dimension > ImageType;
typedef oth::ImageFileReader< ImageType > ReaderType;

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputimageFileName);

With the ImageType we instantiate the type of thék::ScalarimageKmeansimageFilter
that will compute the K-Means model and then classify thegenpixels.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ScalarImageKmeansImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarImageKmeansImageFilter.html

17.1. Introduction 399

typedef itk::ScalarlmageKmeansimageFilter< ImageType > KMeansFilterType;
KMeansFilterType::Pointer kmeansFilter = KMeansFilterT ype::New();
kmeansFilter->Setlnput(reader->GetOutput());

const unsigned int numberOfinitialClasses = atoi(argv[4]);

In general the classification will produce as output an imabese pixel values are integers
associated to the labels of the classes. Since typicalsetmtegers will be generated in order
(0,1,2,...N), the output image will tend to look very darkemhdisplayed with naive viewers. It
is therefore convenient to have the option of spreadingahellvalues over the dynamic range
of the output image pixel type. When this is done, the dynaanige of the pixels is divided by
the number of classes in order to define the increment betlabefs. For example, an output
image of 8 bits will have a dynamic range of [0:255], and whieis iused for holding four
classes, the non-contiguous labels will be (0,64,128,198% selection of the mode to use is
done with the metho8etUseContiguousLabels()

const unsigned int useNonContiguousLabels = atoi(argv[3]);

kmeansFilter->SetUseNonContiguousLabels(useNonConti guousLabels);

For each one of the classes we must provide a tentativel ivdtiae for the mean of the class.
Given that this is a scalar image, each one of the means idysangzalar value. Note however
that in a general case of K-Means, the input image would bectowénage and therefore the
means will be vectors of the same dimension as the imagespixel

for(unsigned k=0; k < numberOfinitialClasses; k++)

{
const double userProvidedInitialMean = atof(argvk+argo ffset]);
kmeansFilter->AddClassWithinitialMean(userProvided| nitialMean);
}
The itk::ScalarimageKmeansimageFilter is predefined for producing an 8 bits scalar im-

age as output. This output image contains labels assodiateach one of the classes in the
K-Means algorithm. In the following lines we use tBetputimageType in order to instantiate
the type of a oth::ImageFileWriter . Then create one, and connect it to the output of the
classification filter.

typedef KMeansFilterType::OutputimageType Outputimage Type;
typedef oth::ImageFileWriter< OutputimageType > WriterT ype;

WriterType::Pointer writer = WriterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarImageKmeansImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

400 Chapter 17. Classification

writer->Setinput(kmeansFilter->GetOutput());

writer->SetFileName(outputimageFileName);

We are now ready for triggering the execution of the pipelifieis is done by simply invoking
theUpdate() method in the writer. This call will propagate the updateuess to the reader and
then to the classifier.

try
{
writer->Update();

}
catch(itk::ExceptionObject & excp)

{

std::cerr << "Problem encountered while writing "
std::icerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

At this point the classification is done, the labeled imagsaiged in a file, and we can take
a look at the means that were found as a result of the modehasbin performed inside the
classifier filter.

KMeansFilterType::ParametersType estimatedMeans =
kmeansFilter->GetFinalMeans();

const unsigned int numberOfClasses = estimatedMeans.Size 0;

for (unsigned int i = 0 ; i < numberOfClasses ; ++i)

{

std::cout << “cluster[" << i << '] "

std::cout << " estimated mean : " << estimatedMeans[i] << std =endl:
}

Figure 17.4 illustrates the effect of this filter with thrdasses. The means can be estimated by
ScalarimageKmeansModelEstimator.cxx.

The source code for this example can be found in the file
Examples/Classification/ScalarimageKmeansModelEstim ator.cxx

This example shows how to compute the KMeans model of an Sicaéme.

The itk::Statistics::KdTreeBasedKmeansEstimator is used for taking a scalar image
and applying the K-Means algorithm in order to define clashasrepresents statistical dis-
tributions of intensity values in the pixels. One of the dpawks of this technique is that the

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html

17.1. Introduction 401

Figure 17.4Effect of the KMeans classifier. Left: original image. Right: image of classes.

spatial distribution of the pixels is not considered at klis common therefore to combine the
classification resulting from K-Means with other segmeatatechniques that will use the clas-
sification as a prior and add spatial information to it in erleproduce a better segmentation.

Il Create a List from the scalar image
typedef itk::Statistics::ScalarimageToListAdaptor< Im ageType > AdaptorType;

AdaptorType::Pointer adaptor = AdaptorType::New();

adaptor->Setimage(reader->GetOutput());

/I Define the Measurement vector type from the AdaptorType
typedef AdaptorType::MeasurementVectorType Measuremen tVectorType;

/I Create the K-d tree structure

typedef itk::Statistics::WeightedCentroidKdTreeGener ator<
AdaptorType >
TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGenerat orType::New();

treeGenerator->SetSample(adaptor);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType> EstimatorType;

402 Chapter 17. Classification

EstimatorType::Pointer estimator = EstimatorType::New();
const unsigned int numberOfClasses = 4;
EstimatorType::ParametersType initialMeans(numberOfC lasses);
initialMeans[0] = 25.0;

initialMeans[1] = 125.0;

initialMeans[2] = 250.0;

estimator->SetParameters(initialMeans);

estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumlteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0) ;
estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimat or->GetParameters();

for (unsigned int i = 0 ; i < numberOfClasses ; ++i)

{

std::cout << “cluster[" << i << "] " << std:end|;

std::cout << " estimated mean : " << estimatedMeans][i] << std end;
}

General approach

The source code for this example can be found in the file

Examples/Classification/KMeansimageClassificationEx ample.cxx

The K-Means classification proposed by ITK for images is tgdi to scalar im-
ages and is not streamed. In this example, we show how the dsdheo
oth::KMeansImageClassificationFilter allows for a simple implementation of a K-

Means classification application. We will start by incluglithe appropirate header file.
#include "otbKMeansImageClassificationFilter.h"

We will assume double precision input images and will alsfinéethe type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process @nagth any number of bands. We
read the images asth::Vectorimage s. The labeled image will be a scalar image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1KMeansImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

17.1. Introduction 403

typedef otb::Vectorimage<PixelType,Dimension> ImageTy pe;
typedef otb::image<LabeledPixelType,Dimension> Labele dimageType;

We can now define the type for the classifier filter, which ispkted over its input and output
image types.

typedef otb::KMeansimageClassificationFilter<imageTy pe,LabeledimageType>
ClassificationFilterType;
typedef ClassificationFilterType::KMeansParametersTy pe KMeansParametersType;

And finally, we define the reader and the writer. Since the isag classify can be very big,
we will use a streamed writer which will trigger the streagability of the classifier.

typedef oth::imageFileReader<imageType> ReaderType;
typedef oth::StreaminglmageFileWriter<LabeledimageTy pe> WriterType;

We instantiate the classifier and the reader objects and itbeseparameters. Please note the
call of the GenerateOutputinformation() method on the reader in order to have available
the information about the input image (size, number of baetts) without needing to actually
read the image.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);
reader->GenerateOutputinformation();

The classifier needs as input the centroids of the classesle®are the parameter vector, and
we read the centroids from the arguments of the program.

const unsigned int sampleSize = ClassificationFilterType ::MaxSampleDimension;
const unsigned int parameterSize = nbClasses * sampleSize;
KMeansParametersType parameters;

parameters.SetSize(parameterSize);
parameters.Fill(0);

404 Chapter 17. Classification

for(unsigned int i = 0; i<nbClasses;++i)

for(unsigned int j = 0; j <

reader->GetOutput()->GetNumberOfComponentsPerPixel();+H)
{
parametersi*sampleSize+j]=
atof(argv[4+i*
reader->GetOutput()->GetNumberOfComponentsPerPixel()
+);
}
}

std::cout<<"Parameters: "<<parameters<<std::endl;

We set the parameters for the classifier, we plug the pipaliktrigger its execution by updat-
ing the output of the writer.

filter->SetCentroids(parameters);
filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

17.1.3 Bayesian Plug-In Classifier

The source code for this example can be found in the file
Examples/Classification/BayesianPluginClassifier.cx X.

In this example, we present a system that places measurgawots into two Gaussian classes.
The Figure 17.5 shows all the components of the classifi¢esyand the data flow. This system
differs with the previous k-means clustering algorithmseweral ways. The biggest difference
is that this classifier uses thig::Statistics::GaussianDensityFunction s as member-
ship functions instead of thétk::Statistics::EuclideanDistance . Since the member-
ship function is different, the membership function regaia different set of parameters, mean
vectors and covariance matrices. We chooseitthiStatistics::MeanCalculator (sam-
ple mean) and thetk::Statistics::CovarianceCalculator (sample covariance) for the
estimation algorithms of the two parameters. If we want molmist estimation algorithm, we
can replace these estimation algorithms with more alteestvithout changing other compo-
nents in the classifier system.

Itis a bad idea to use the same sample for test and trainimgr(igder estimation) of the param-
eters. However, for simplicity, in this example, we use aglanfor test and training.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1GaussianDensityFunction.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MeanCalculator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1CovarianceCalculator.html

17.1. Introduction 405

Sample (Training)
Sample size Sample size
4[Subsample (Class samp@) [Subsample (Class samplé)i

= Measurement =
2 vectors 2
'.C-‘ES ..- ------------------ it ..- N L - a
= L ' : Y s
Zo [MeanCalculator) . ' [MeanCalculator) g
D 1 1 1 @
5 Mean e ! ! Mean R T
@ ! CovarianceCalculator ; ' CovarianceCalculatol 1 ©
g | (y! P | 8
("E e - 4 L e - ’ E
© Covariance matrix Covariance matrix @
o o
= Y Y Y Y =
[GaussianDensityFunction] [GaussianDensityFuncticB1

Probability density

SampleClassifier

Index of winning
GaussianDensityFunction

[MaximumRatioDecisionRuIe]
A

A

Sample (Test)

Sample (Labeled)

Sample size

Figure 17.5:Bayesian plug-in classifier for two Gaussian classes.

406 Chapter 17. Classification

We use the itk:Statistics::ListSample as the sample (test and training). The
itk::Vector is our measurement vector class. To store measurementyéato two sep-
arate sample containers, we use itkeStatistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"
#include "itkSubsample.h"

The following two files provides us the parameter estimasilgorithms.

#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"

The following files define the components required by ITKistaal classification framework:
the decision rule, the membership function, and the classifi

#include "itkMaximumRatioDecisionRule.h"
#include "itkGaussianDensityFunction.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normaistdibution using the
itk::Statistics::NormalVariateGenerator

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports Webgefine our measurement vector
type as a one component vector. We then, create a ListSarbjelet for data inputs.

We also create two Subsample objects that will store the uneagent vectors isample into
two separate sample containers. Each Subsample objees stoly the measurement vectors
belonging to a single class. This class sample will be usethéyparameter estimation algo-
rithms.

typedef itk::Vector< double, 1 > MeasurementVectorType;

typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measu rement vectors

II'in the sample.

typedef itk::Statistics::Subsample< SampleType > ClassS ampleType;
std::vector< ClassSampleType::Pointer > classSamples;
for (unsigned int i =0 ;i< 2; ++)
{
classSamples.push_back(ClassSampleType::New());
classSamples]i]->SetSample(sample);

}

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1Subsample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

17.1. Introduction 407

The following code snippet creates a NormalVariateGeperddject. Since the random variable
generator returns values according to the standard noiistebdtion (the mean is zero, and the
standard deviation is one) before pushing random valuedfietsample , we change the mean
and standard deviation. We want two normal (Gaussian)illigton data. We have two for
loops. Each for loop uses different mean and standard dmviaBefore we fill thesample
with the second distribution data, we chitialize(random seed) method, to recreate the
pool of random variables in thermalGenerator . In the second for loop, we fill the two class
samples with measurement vectors usingAtiginstance() method.

To see the probability density plots from the two distribas, refer to Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma IGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;,

double mean = 100;

double standardDeviation = 30;
SampleType::Instanceldentifier id = OUL;
for (‘unsigned int i = 0 ; i < 100 ; ++i)

mv.Fill((normalGenerator->GetVariate() * standardDevi ation) + mean);
sample->PushBack(mv);

classSamples[0]->AddInstance(id);

++id;

}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i =0 ;i< 100 ; ++i)
{
mv.Fill((normalGenerator->GetVariate() * standardDevi ation) + mean);
sample->PushBack(mv);
classSamples[1]->AddInstance(id);
++id;

}

In the following code snippet, notice that the template argant for the MeanCalculator and
CovarianceCalculator i€lassSampleType (i.e., type of Subsample) instead of SampleType
(i.e., type of ListSample). This is because the paramet@naton algorithms are applied to
the class sample.

typedef itk::Statistics::MeanCalculator< ClassSampleT ype > MeanEstimatorType;
typedef itk::Statistics::CovarianceCalculator< ClassS ampleType >
CovarianceEstimatorType;

408 Chapter 17. Classification

std::vector< MeanEstimatorType::Pointer > meanEstimato rs;
std::vector< CovarianceEstimatorType::Pointer > covari anceEstimators;

for (unsigned int i =0 ;i< 2; ++)
{
meanEstimators.push_back(MeanEstimatorType::New());
meanEstimators[i]->SetinputSample(classSamples]i]);
meanEstimators|i]->Update();

covarianceEstimators.push_back(CovarianceEstimatorT ype::New());
covarianceEstimators|i]->SetlnputSample(classSample sfi]);
covarianceEstimators|i]->SetMean(meanEstimators[i]- >GetOutput());
covarianceEstimators]i]->Update();

}

We print out the estimated parameters.

for (unsigned int i =0 ;i< 2; ++)
{
std:cout << "class[' << i << "] " << std:endl;
std::cout << " estimated mean : "
<< *(meanEstimators]i]->GetOutput())
<«< " covariance matrix : "
<< *(covarianceEstimators[i]->GetOutput()) << std::end ;

After creating a SampleClassifier object and a MaximummagmsionRule object, we plug in
thedecisionRule and thesample to the classifier. Then, we specify the number of classes that
will be considered using th&etNumberOfClasses() = method.

The MaximumRatioDecisionRule requires a vectoagfriori probability values. Such priori
probability will be theP(wy) of the following variation of the Bayes decision rule:

Decidesy if PXI@) P(@)

p(7|mj) P(@) forall j #i (17.2)

The remainder of the code snippet shows how to use useffigglediass labels. The classifica-
tion result will be stored in a MembershipSample object, fametach measurement vector, its
class label will be one of the two class labels, 100 and 26€igned int).

typedef itk::Statistics::GaussianDensityFunction< Mea surementVectorType >
MembershipFunctionType;
typedef itk:MaximumRatioDecisionRule DecisionRuleTyp e;

DecisionRuleType::Pointer decisionRule = DecisionRuleT ype::New();

17.1. Introduction 409

DecisionRuleType::APrioriVectorType aPrioris;

aPrioris.push_back(classSamples[0]->GetTotalFrequen cy()
| sample->GetTotalFrequency()) ;
aPrioris.push_back(classSamples[1]->GetTotalFrequen cy()

| sample->GetTotalFrequency()) ;
decisionRule->SetAPriori(aPrioris);

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::N ew();
classifier->SetDecisionRule((itk::DecisionRuleBase: :Pointer) decisionRule);

classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;

classLabels.resize(2);

classLabels[0] = 100;

classLabels[1] = 200;
classifier->SetMembershipFunctionClassLabels(classL abels);

Theclassifier is almost ready to perform the classification except thatétds two member-
ship functions that represent the two clusters.

In this example, we can imagine that the two clusters are taddey two Euclidean dis-
tance functions. The distance function (model) has only pammeter, the mean (cen-
troid) set by theSetOrigin() method. To plug-in two distance functions, we call the
AddMembershipFunction() method. Then invocation of tHépdate() method will perform
the classification.

std::vector< MembershipFunctionType::Pointer > members hipFunctions;
for (‘unsigned int i =0 ;i< 2;i++)
{
membershipFunctions.push_back(MembershipFunctionTyp e::New());
membershipFunctions]i]->SetMean(meanEstimators]i]-> GetOutput());

membershipFunctions]i]->
SetCovariance(covarianceEstimators|i]->GetOutput()) ;
classifier->AddMembershipFunction(membershipFunctio ns[i].GetPointer());

}

classifier->Update();

The following code snippet prints out pairs of a measurementor and its class label in the
sample .

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();
ClassifierType::OutputType::Constlterator iter = membe rshipSample->Begin();

410 Chapter 17. Classification

while (iter = membershipSample->End())

{

std::cout << "measurement vector = " << iter.GetMeasuremen tVector()
<< "class label = " << iter.GetClassLabel() << std::endl;
++iter;

}

17.1.4 Expectation Maximization Mixture Model Estimation

The source code for this example can be found in the file
Examples/Classification/ExpectationMaximizationMixt ureModelEstimator.cxx

In this example, we present ITK's implementation of the extaon maximization (EM) pro-
cess to generate parameter estimates for a two Gaussiamoentpnixture model.

The Bayesian plug-in classifier example (see Section 1)7us&d two Gaussian probability
density functions (PDF) to model two Gaussian distributitasses (two models for two class).
However, in some cases, we want to model a distribution asxé&urei of several different

distributions. Therefore, the probability density fuocti(p(x)) of a mixture model can be

stated as follows :

C

p(x) = .Z)ai fi(X) (17.2)

wherei is the index of the component,is the number of components; is the proportion of
the component, and is the probability density function of the component.

Now the task is to find the parameters(the component PDFanpeters and the proportion
values) to maximize the likelihood of the parameters. If wew which component a measure-
ment vector belongs to, the solutions to this problem is éasplve. However, we don't know

the membership of each measurement vector. Therefore,ewbegxpectation of membership
instead of the exact membership. The EM process splitswicteps:

1. E step: calculate the expected membership values forraaelsurement vector to each
classes.

2. M step: find the next parameter sets that maximize thati&ed with the expected mem-
bership values and the current set of parameters.

The E step is basically a step that calculatesatip@sterioriprobability for each measurement
vector.

The M step is dependent on the type of each PDF. Most of digioiis be-
longing to exponential family such as Poisson, Binomial, péhential, and Nor-
mal distributions have analytical solutions for updatinge t parameter set. The
itk:: Statistics::ExpectationMaximizationMixtureMode |Estimator class assumes
that such type of components.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ExpectationMaximizationMixtureModelEstimator.html

17.1. Introduction 411

In the following example we use thigk::Statistics::ListSample as the sample (test and
training). Theitk::Vector::i S our measurement vector class. To store measurementyector
into two separate sample container, we useitkieStatistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"

The following two files provide us the parameter estimatilgoathms.

#include "itkGaussianMixtureModelComponent.h”
#include "itkExpectationMaximizationMixtureModelEsti mator.h"

We will fill the sample with random variables from two normaisttibution using the
itk::Statistics::NormalVariateGenerator

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports weDdefine our measurement vector
type as a one component vector. We then, create a ListSarbjelet for data inputs.

We also create two Subsample objects that will store the mneasent vectors in theample
into two separate sample containers. Each Subsample aljees only the measurement vec-
tors belonging to a single class. Thilass samplevill be used by the parameter estimation
algorithms.

unsigned int numberOfClasses = 2;
typedef itk::Vector< double, 1 > MeasurementVectorType;

typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measu rement vectors

/l'in the sample.

The following code snippet creates a NormalVariateGeoerdtject. Since the random variable
generator returns values according to the standard notistabdtion (the mean is zero, and the
standard deviation is one) before pushing random valueghitsample , we change the mean
and standard deviation. We want two normal (Gaussian)ildigion data. We have two for
loops. Each for loop uses different mean and standard dmviaBefore we fill thesample
with the second distribution data, we chitialize() method to recreate the pool of random
variables in thenormalGenerator . In the second for loop, we fill the two class samples with
measurement vectors using thadinstance() method.

To see the probability density plots from the two distribatirefer to Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma IGeneratorType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector_1_1i.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1Subsample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

412 Chapter 17. Classification

NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();
normalGenerator->Initialize(101);

MeasurementVectorType mv;

double mean = 100;

double standardDeviation = 30;

for (unsigned int i = 0 ;i< 100 ; ++)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);
}

normalGenerator->Initialize(3024),

mean = 200;

standardDeviation = 30;

for (unsigned int i =0 ;i< 100 ; ++)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);

}

In the following code snippet notice that the template argotrfor the MeanCalculator and
CovarianceCalculator i€lassSampleType (i.e., type of Subsample) instead ®mpleType
(i.e., type of ListSample). This is because the parametanaton algorithms are applied to
the class sample.

typedef itk::Array< double > ParametersType;
ParametersType params(2);

std::vector< ParametersType > initialParameters(number OfClasses);
params[0] = 110.0;

params[1] = 800.0;

initialParameters[0] = params;

params[0] = 210.0;
params[1] = 850.0;
initialParameters[1] = params;

typedef itk::Statistics::GaussianMixtureModelCompone nt< SampleType >
ComponentType;

std::vector< ComponentType::Pointer > components;

for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
components.push_back(ComponentType::New());
(components]i])->SetSample(sample);

17.1. Introduction

413

(components]i])->SetParameters(initialParametersi]

We run the estimator.

typedef itk::Statistics::ExpectationMaximizationMixt
SampleType > EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New(

estimator->SetSample(sample);
estimator->SetMaximumlteration(200);

itk::Array< double > initialProportions(numberOfClasse
initialProportions[0] = 0.5;
initialProportions[1] = 0.5;

estimator->SetlnitialProportions(initialProportions

for (unsigned int i = 0 ; i < numberOfClasses ; i++)

{

estimator->AddComponent((ComponentType::Superclass*
(components|i]).GetPointer());

}

estimator->Update();
We then print out the estimated parameters.

for (unsigned int i = 0 ; i < numberOfClasses ; i++)

{

std::cout << "Cluster[" << i << "|" << std::endl;
std::cout << " Parameters:" << std::endl;

ureModelEstimator<

)

std::cout << " " << (components]i])->GetFullParameters()

<< std:endl;
std::cout << " Proportion: ";

std::cout << " " << (*estimator->GetProportions())[i] << s td::endl;

}

17.1.5 Classification using Markov Random Fields

Markov Random Fields are probabilistic models that use tatstical dependency between
pixels in a neighborhood to infeer the value of a give pixel.

414 Chapter 17. Classification

ITK framework

The itk::Statistics::MRFImageFilter uses the maximum a posteriori (MAP) estimates
for modeling the MRF. The object traverses the data set aes tiie model generated by the
Mahalanobis distance classifier to get the the distancedmstweach pixel in the data set to a
set of known classes, updates the distances by evaluagngfthence of its neighboring pixels
(based on a MRF model) and finally, classifies each pixel tclies which has the minimum
distance to that pixel (taking the neighborhood influencdeurconsideration). The energy
function minimization is done using the iterated condiibmodes (ICM) algorithm [7].

The source code for this example can be found in the file
Examples/Classification/ScalarimageMarkovRandomFiel dl.cxx .

This example shows how to use the Markov Random Field apprimaclassifying the pixel of
a scalar image.

The itk::Statistics::MRFImageFilter is used for refining an initial classification by in-
troducing the spatial coherence of the labels. The useldlpoovide two images as input. The
first image is the one to be classified while the second image is1age of labels representing
an initial classification.

The following headers are related to reading input imagesing the output image, and making
the necessary conversions between scalar and vector images

#include "otbimage.h"

#include "itkFixedArray.h"

#include "otblmageFileReader.h"

#include "otblmageFileWriter.h"

#include "itkScalarToArrayCastimageFilter.h"

The following headers are related to the statistical di@ssion classes.

#include "itkMRFImageFilter.h"

#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkMinimumDecisionRule.h"

#include "itkimageClassifierBase.h"

First we define the pixel type and dimension of the image thatimend to classify. With
this image type we can also declare tbtb::ImageFileReader needed for reading the input
image, create one and set its input filename.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef oth::image<PixelType, Dimension > ImageType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

17.1. Introduction 415

typedef oth::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputimageFileName);

As a second step we define the pixel type and dimension of thgerof labels that provides
the initial classification of the pixels from the first imagkhis initial labeled image can be the
output of a K-Means method like the one illustrated in secfi@.1.2.

typedef unsigned char LabelPixelType;

typedef otb::image<LabelPixelType, Dimension > Labellma geType;
typedef oth::ImageFileReader< LabellmageType > LabelRea derType;
LabelReaderType::Pointer labelReader = LabelReaderType ::New();

labelReader->SetFileName(inputLabellmageFileName);

Since the Markov Random Field algorithm is defined in genéelimages whose pixels
have multiple components, that is, images of vector type nwest adapt our scalar image
in order to satisfy the interface expected by tRFImageFilter . We do this by using the
itk::ScalarToArrayCastimageFilter . With this filter we will present our scalar image as
a vector image whose vector pixels contain a single compgonen

typedef itk::FixedArray<LabelPixelType,1> ArrayPixelT ype;
typedef otb::Image< ArrayPixelType, Dimension > Arraylma geType;

typedef itk::ScalarToArrayCastimageFilter<
ImageType, ArraylmageType > ScalarToArrayFilterType;

ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();
scalarToArrayFilter->Setinput(reader->GetOutput());

With the input image typémageType and labeled image tydeabellmageType we instantiate
the type of theitk::MRFImageFilter that will apply the Markov Random Field algorithm in
order to refine the pixel classification.

typedef itk::MRFImageFilter< ArraylmageType, Labellmag eType > MRFFilterType;
MRFFilterType::Pointer mrfFilter = MRFFilterType::New();
mrfFilter->Setinput(scalarToArrayFilter->GetOutput());

We set now some of the parameters for the MRF filter. In pdgicthe number of classes to
be used during the classification, the maximum number ddtitans to be run in this filter and
the error tolerance that will be used as a criterion for coyeece.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarToArrayCastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MRFImageFilter.html

416 Chapter 17. Classification

mrfFilter->SetNumberOfClasses(numberOfClasses);
mrfFilter->SetMaximumNumberOfiterations(numberOfite rations);
mrfFilter->SetErrorTolerance(le-7);

The smoothing factor represents the tradeoff between tfidilithe observed image and the
smoothness of the segmented image. Typical smoothingrfalcéwve values between 1 5. This
factor will multiply the weights that define the influence aighbors on the classification of
a given pixel. The higher the value, the more uniform will he tegions resulting from the

classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

Given that the MRF filter needs to continually relabel theefsx it needs access to a set of
membership functions that will measure to what degree giggl belongs to a particular class.
The classification is performed by thtk::ImageClassifierBase class, that is instantiated
using the type of the input vector image and the type of thel&bimage.

typedef itk::imageClassifierBase<
ArraylmageType,
LabellmageType > SupervisedClassifierType;

SupervisedClassifierType::Pointer classifier =
SupervisedClassifierType::New();

The classifier needs a decision rule to be set by the user.tiNaitere must us€etPointer() in

the call of theSetDecisionRule() method because we are passing a SmartPointer, and smart
pointer cannot perform polymorphism, we must then extiaetraw pointer that is associated

to the smart pointer. This extraction is done with the Getfw() method.

typedef itk::MinimumDecisionRule DecisionRuleType;

DecisionRuleType::Pointer classifierDecisionRule = Dec isionRuleType::New();
classifier->SetDecisionRule(classifierDecisionRule. GetPointer());
We now instantiate the membership functions. In this case use the
itk::Statistics::Distance ToCentroidMembershipFuncti on class templated over

the pixel type of the vector image, which in our example hagge be a vector of dimension 1.

typedef itk::Statistics::Distance ToCentroidMembershi pFunction<
ArrayPixelType >
MembershipFunctionType;

typedef MembershipFunctionType::Pointer MembershipFun ctionPointer;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageClassifierBase.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html

17.1. Introduction 417

double meanDistance = 0;
vnl_vector<double> centroid(1);
for(unsigned int i=0; i < numberOfClasses; i++)
{
MembershipFunctionPointer membershipFunction =
MembershipFunctionType::New();

centroid[0] = atof(argv[i+numberOfArgumentsBeforeMean s]);
membershipFunction->SetCentroid(centroid);

classifier->AddMembershipFunction(membershipFunctio n);
meanDistance += static_cast< double > (centroid[0]);

}

meanDistance /= numberOfClasses;

and we set the neighborhood radius that will define the sizéhefclique to be used in the
computation of the neighbors’ influence in the classificatibany given pixel. Note that despite
the fact that we call this a radius, it is actually the halfesaf an hypercube. That is, the
actual region of influence will not be circular but rather aibbhnensional box. For example, a
neighborhood radius of 2 in a 3D image will result in a cligfisiae 5x5x5 pixels, and a radius
of 1 will result in a clique of size 3x3x3 pixels.

mrfFilter->SetNeighborhoodRadius(1);

We should now set the weights used for the neighbors. Thisris 8y passing an array of values
that contains the linear sequence of weights for the neighlsmr example, in a neighborhood
of size 3x3x3, we should provide a linear array of 9 weightieal The values are packaged in
a std::vector and are supposed to deuble . The following lines illustrate a typical set of
values for a 3x3x3 neighborhood. The array is arranged aaml plassed to the filter by using
the methodsetMRFNeighborhoodWeight()

std::vector< double > weights;
weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);

weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(1.5);

A A A A A A AN

We now scale weights so that the smoothing function and tlegénfidelity functions have
comparable value. This is necessary since the label imab#harinput image can have different

418 Chapter 17. Classification

dynamic ranges. The fidelity function is usually computedgsa distance function, such as the
itk::Distance ToCentroidMembershipFunction or one of the other membership functions.
They tend to have values in the order of the means specified.

double totalWeight = 0;
for(std::vector< double >:const_iterator wclt = weights .begin();
wclt = weights.end(); ++wclt)

{
totalWeight += *wclt;

}

for(std::vector< double >:iterator wit = weights.begin();
wit 1= weights.end(); wit++)

{

*wlt = static_cast< double > ((*wlt) * meanDistance / (2 * tot alWeight));

}

mrfFilter->SetMRFNeighborhoodWeight(weights);
Finally, the classifier class is connected to the Markov Raméields filter.
mrfFilter->SetClassifier(classifier);

The output image produced by thik::MRFImageFilter has the same pixel type as the
labeled input image. In the following lines we use GeputimageType in order to instantiate
the type of a oth::ImageFileWriter . Then create one, and connect it to the output of the
classification filter after passing it through an intenségaaler to rescale it to an 8 bit dynamic
range

typedef MRFFilterType::OutputimageType OutputimageTyp e;

typedef otb::ImageFileWriter< OutputimageType > WriterT ype;
WriterType::Pointer writer = WriterType::New();
writer->Setinput(intensityRescaler->GetOutput());

writer->SetFileName(outputimageFileName);

We are now ready for triggering the execution of the pipelifigis is done by simply invoking
theUpdate() method in the writer. This call will propagate the updateuesj to the reader and
then to the MRF filter.

try
{
writer->Update();

http://www.melaneum.com/OTB/doxygen/classitk_1_1DistanceToCentroidMembershipFunction.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

17.1. Introduction 419

Figure 17.6:Effect of the MRF filter.

}
catch(itk::ExceptionObject & excp)

{

std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

Figure 17.6 illustrates the effect of this filter with fouaskes. In this example the filter was run
with a smoothing factor of 3. The labeled image was produge8dalarimageKmeansClas-
sifier.cxx and the means were estimated by ScalarimageksheadelEstimator.cxx described
in section 17.1.2. The obtained result can be compared Wittohe of figure 17.4 to see the
interest of using the MRF approach in order to ensure thdaggation of the classified image.

OTB framework

The ITK approach was considered not to be flexible enoughdoresremote sensing applica-
tions. Therefore, we decided to implement our own framework

The source code for this example can be found in the file
Examples/Markov/MarkovClassification1Example.cxx

This example illustrates the details of theéh::MarkovRandomFieldFilter . This filter is an
application of the Markov Random Fields for classificatisegmentation or restauration.

This example applies theotb::MarkovRandomFieldFilter to classify an image into four
classes defined by their mean and variance. The optimiz&iolone using an Metropolis
algorithm with a random sampler. The regularization enésgyefined by a Potts model and
the fidelity by a Gaussian model.

The first step toward the use of this filter is the inclusionhaf proper header files.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

420 Chapter 17. Classification

Figure 17.7:0TB Markov Framework.

#include "otbMRFEnergyPotts.h"

#include "otbMRFEnergyGaussianClassification.h”
#include "otbMRFOptimizerMetropolis.h"

#include "otbMRFSamplerRandom.h"

Then we must decide what pixel type to use for the image. Wesdto make all computations
with double precision. The labelled image is of type unsijokar which allows up to 256
different classes.

const unsigned int Dimension = 2;

typedef double InternalPixelType;

typedef unsigned char LabelledPixelType;

typedef otb::image<internalPixelType, Dimension> Input ImageType;
typedef otb::image<LabelledPixelType, Dimension> Label ledimageType;

We define a reader for the image to be classified, an initiaisdor the classification (which
could be random) and a writer for the final classification.

typedef otb::imageFileReader< InputimageType > ReaderTy pe;
typedef otb::imageFileWriter< LabelledimageType > Write IType;

ReaderType::Pointer reader = ReaderType::New();

17.1. Introduction 421

WriterType::Pointer writer = WriterType::New();

const char * inputFilename = argv[1];
const char * outputFilename = argv[2];

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally, we define the different classes necessary for thekMa classification. A
oth::MarkovRandomFieldFilter is instanciated, this is the main class which connect the
other to do the Markov classification.

typedef otb::MarkovRandomFieldFilter
<InputimageType,LabelledimageType> MarkovRandomField FilterType;

An otb:MRFSamplerRandomMAP , which derives from the oth::MRFSampler , is instan-
ciated. The sampler is in charge of proposing a modification & given site. The
oth::MRFSamplerRandomMAP , randomly pick one possible value according to the MAP prob-
ability.

typedef otb::MRFSamplerRandom< InputimageType, Labelle dimageType> SamplerType;

An oth::MRFOptimizerMetropoli , Which derives from theoth::MRFOptimizer , is instan-
ciated. The optimizer is in charge of accepting or rejectimgvalue proposed by the sampler.
The oth::MRFSamplerRandomMAP , accept the proposal according to the variation of energy it
causes and a temperature parameter.

typedef otb::MRFOptimizerMetropolis OptimizerType;

Two energy, deriving from theotb::MRFEnergy class need to be instanciated. One energy is
required for the regularization, taking into account tHagkionship between neighborhing pix-
els in the classified image. Here it is done with tbib::MRFEnergyPotts which implement

a Potts model.

The second energy is for the fidelity to the original data. eHéris done with an
oth::MRFEnergyGaussianClassification class, which defines a gaussian model for the
data.

typedef oth::MRFEnergyPotts
<LabelledimageType, LabelledimageType> EnergyRegulari zationType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSampler.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizerMetropoli.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergy.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyPotts.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyGaussianClassification.html

422

Chapter 17. Classification

typedef otb::MRFEnergyGaussianClassification
<InputimageType, LabelledimageType> EnergyFidelityTyp

The different filters composing our pipeline are createdriwpking theirNew() methods, as-

signing the results to smart pointers.

MarkovRandomFieldFilterType::Pointer markovFilter = Ma
EnergyRegularizationType::Pointer energyRegularizati
EnergyFidelityType::Pointer energyFidelity = EnergyFid
OptimizerType::Pointer optimizer = OptimizerType::New(
SamplerType::Pointer sampler = SamplerType::New();

Parameter for theth::MRFEnergyGaussianClassification
viation are created.

unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(2*nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParam
parameters[0]=10.0; //Class 0 mean
parameters[1]=10.0; //Class 0 stdev
parameters[2]=80.0;//Class 1 mean
parameters[3]=10.0; //Class 1 stdev
parameters[4]=150.0; //Class 2 mean
parameters[5]=10.0; //Class 2 stdev
parameters[6]=220.0;//Class 3 mean
parameters[7]=10.0; //Class 3 stde
energyFidelity->SetParameters(parameters);

rkovRandomFieldFilterType::New();
on = EnergyRegularizationType::New();
elityType::New();

1

class, meand and standard de-

eters());

Parameters are given to the different class an the sampliminer and energies are connected

with the Markov filter.

OptimizerType::ParametersType param(1);
param.Fill(atof(argv[5]));
optimizer->SetParameters(param);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfiterations(atoi(arg
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[3]));
markovFilter->SetNeighborhoodRadius(1);

v[4D);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyGaussianClassification.html

17.1. Introduction 423

markovFilter->SetEnergyRegularization(energyRegular ization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);

markovFilter->SetSampler(sampler);

The pipeline is connected. Aiik::RescalelntensitylmageFilter rescale the classified
image before saving it.

markovFilter->Setlnput(reader->GetOutput());

typedef itk::RescalelntensitylmageFilter

< LabelledimageType, LabelledimageType > RescaleType;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);

rescaleFilter->SetInput(markovFilter->GetOutput());

writer->SetInput(rescaleFilter->GetOutput());

Finally, the pipeline execution is trigerred.

writer->Update();

Figure 17.8 shows the output of the Markov Random Field dlaason after 20 iterations with
a random sampler and a Metropolis optimizer.

The source code for this example can be found in the file
Examples/Markov/MarkovClassification2Example.cxx

Using a similar structure as the previous program and thes samrgy function, we are now
going to slightly alter the program to use a different sampled optimizer. The proposed
sample is proposed randomly according to the MAP probghalitd the optimizer is the ICM
which accept the proposed sample if it enable a reductioneoéhergy.

First, we need to include header specific to these class:

#include "otbMRFSamplerRandomMAP.h"
#include "otbMRFOptimizerlCM.h"

And to declare these new type:

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

424 Chapter 17. Classification

Figure 17.8:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-
bird image for classification. The result is obtained after 20 iterations with a random sampler and a Metropo-
lis optimizer. From left to right : original image, classification.

typedef oth::MRFSamplerRandomMAP< InputimageType, Labe lledimageType> SamplerType;
/I typedef otb::MRFSamplerRandom< InputimageType, Label ledimageType> SamplerType;

typedef otb::MRFOptimizerlCM OptimizerType;

As the oth::MRFOptimizerICM does not have any parameters, the call to
optimizer->SetParameters() must be removed

Apart from these, no further modification is required.

Figure 17.9 shows the output of the Markov Random Field dlaation after 5 iterations with
a MAP random sampler and an ICM optimizer.

The source code for this example can be found in the file
Examples/Markov/MarkovRegularizationExample.cxx

This example illustrates the use of theth::MarkovRandomFieldFilter . to regularize a
classification obtained previously by another classifi@reHve will apply the regularization to
the output of an SVM classifier presented in 17.3.5.

The reference image and the starting image are both goingttestoriginal classification. Both
regularization and fidelity energy are defined by Potts model

The convergence of the Markov Random Field is done with agansempler and a Metropolis
model as in example 1. As you should get use to the generalgrostructure to use the MRF
framework, we are not going to repeat the entire example.d¥ew remember you can find the
full source code for this example in your OTB source director

To find the number of classes available in the original image wse
the itk::LabelStatisticsimageFilter and more particularly the method

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizerICM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LabelStatisticsImageFilter.html

17.1. Introduction 425

Figure 17.9:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-
bird image for classification. The result is obtained after 5 iterations with a MAP random sampler and an
ICM optimizer. From left to right : original image, classification.

Figure 17.10:Result of applying the otb::MarkovRandomFieldFilter to regularized the result of
another classification. From left to right : original classification, regularized classification

GetNumberOfLabels()
typedef itk::LabelStatisticsimageFilter
<LabelledimageType, LabelledimageType> LabelledStatTy pe;
LabelledStatType::Pointer labelledStat = LabelledStatT ype::New();

labelledStat->SetInput(reader->GetOutput());
labelledStat->SetLabellnput(reader->GetOutput());
labelledStat->Update();

unsigned int nClass = labelledStat->GetNumberOfLabels()

Figure 17.10 shows the output of the Markov Random Fieldlegmation on the classification
output of another method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

426 Chapter 17. Classification

17.2 Statistical Segmentations

17.2.1 Stochastic Expectation Maximization

The Stochastic Expectation Maximization (SEM) approaca sgtochastic version of the EM
mixture estimation seen on section 17.1.4. It has beendated by [14] to prevent conver-
gence of the EM approach from local minima. It avoids the il maximization issued by
integrating a stochastic sampling procedure in the esimatocess. It induces an almost sure
(a.s.) convergence to the algorithm.

From the initial two step formulation of the EM mixture esétion, the SEM may be decom-
posed into 3 steps:

1. E-step, calculates the expected membership values for each nesasat vector to each
classes.

2. S-step performs a stochastic sampling of the membership vecteath classes, accord-
ing to the membership values computed in the E-step.

3. M-step, updates the parameters of the membership probabilitéearfeters to be defined
through the classtk::Statistics::ModelComponentBase and its inherited classes).

The implementation of the SEM has been turned to a conte®HM in the sense where the
evaluation of the membership parameters is conditionedaminership values of the spatial
neighborhood of each pixels.

The source code for this example can be found in the file
Examples/Learning/SEMModelEstimatorExample.cxx

In this example, we present OTB's implementation of SEM,otigh the class
oth::SEMClassifier . This class performs a stochastic version of the EM algoritbut
instead of inheriting fromitk::ExpectationMaximizationMixtureModelEstimator , we
choosed to inherit fromitk::Statistics::ListSample< TSample > , in the same way as
oth::SVMClassifier

The program begins withoth::Vectorimage and outputsitb::image . Then appropriate
header files have to be included:

#include "otblmage.h"

#include "otbVectorimage.h”
#include "otblmageFileReader.h"
#include "otblmageFileWriter.h"

oth::SEMClassifier performs estimation of mixture to fit the initial histogramAc-
tually, mixture of Gaussian pdf can be performed. Those genedf are treated in
oth::Statistics::ModelComponentBase . The Gaussian model is taken in charge with the
class oth::Statistics::GaussianModelComponent

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ModelComponentBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExpectationMaximizationMixtureModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample< TSample >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1ModelComponentBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1GaussianModelComponent.html

17.2. Statistical Segmentations 427
#include "otbGaussianModelComponent.h"
#include "otbSEMClassifier.n"
Input/Output images type are define in a classical way. In t, fac
a itk::VariableLengthVector is to be considered for the templated
MeasurementVectorType , which will be used in théistSample interface.
typedef double PixelType;
typedef otb::Vectorimage< PixelType, 2 > ImageType;
typedef otb::imageFileReader< ImageType > ReaderType;
typedef itk::Image< unsigned char, 2 > OutputimageType;
typedef otb::imageFileWriter< OutputimageType > WriterT ype;
Once the input image is opened, the classifier may be isigidIbySmartPointer
typedef oth::SEMClassifier< ImageType, OutputimageType > ClassifType;
ClassifType::Pointer classifier = ClassifType::New();
Then, it follows, classical initialisations of the pipetin
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetMaximumiteration(numberOflteration);
classifier->SetNeighborhood(neighborhood);
classifier->SetTerminationThreshold(terminationThre shold);
classifier->SetSample(reader->GetOutput());
When an initial segmentation is available, the classifier mase it as image
(of type OutputimageType) or as a itk:SampleClassifier result (of type
itk::Statistics::MembershipSample< SampleType >).
if (fileNamelmglnit '= NULL)
{
typedef oth::imageFileReader< OutputimageType > Imglnit ReaderType;
ImgInitReaderType::Pointer segReader = ImglnitReaderTy pe::New();
segReader->SetFileName(fileNamelmginit);
segReader->Update();
classifier->SetClassLabels(segReader->GetOutput());
}
By default, oth::SEMClassifier performs initialisation ofModelComponentBase by as
many instanciation of oth::Statistics::GaussianModelComponent as the number of

classes to estimate in the mixture. Nevertheless, the uagradd specific distribution into
the mixture estimation. It is permited by the useAdfiComponent for the given class number

and the specific distribution.

http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SampleClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample< SampleType >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1GaussianModelComponent.html

428 Chapter 17. Classification

typedef ClassifType::ClassSampleType ClassSampleType;
typedef otb::Statistics::GaussianModelComponent< Clas sSampleType >
GaussianType;

for (int i = 0; i < numberOfClasses; i++)
classifier->AddComponent(i, GaussianType::New());

Once the pipeline is instanciated. The segmentation bif its&y be launched by using the
Update function.

try {
classifier->Update() ;

}

The segmentation may outputs a result of tyigeStatistics::MembershipSample< SampleType >
as it is the case for theth::SVMClassifier . But when usindsetOutputimage the output is
directly an Image.

Only for visualization purposes, we choose to rescale ttagarof classes before saving itto a
file. We will use theitk::RescalelntensitylmageFilter for this purpose.

typedef itk::RescalelntensitylmageFilter< Outputimage Type,
OutputimageType > RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(itk::NumericTraits< unsig ned char >:min());
rescaler->SetOutputMaximum(itk::NumericTraits< unsig ned char >:max());

rescaler->Setlnput(classifier->GetOutputimage());

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(fileNameOut);
writer->Setinput(rescaler->GetOutput());
writer->Update();

Figure 17.11 shows the result of the SEM segmentation wiifferent classes and a contextual
neighborhood of 3 pixels.

As soon as the segmentation is performed by an iterativaastic process, it is worth verifying
the output status: does the segmentation ends when it hasrged or just at the limit of the
iteration numbers.

std::cerr << "Program terminated with a ";

if (classifier->GetTerminationCode() == ClassifType::C ONVERGED)
std::cerr << "converged ";

else
std::cerr << "not-converged ";

std::cerr << "code...\n";

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample< SampleType >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

17.3. Support Vector Machines 429

Figure 17.11:SEM Classification results.

The text output gives for each class the parameters of théepgif mean of each component of
the class and there covariance matrix, in the case of a Geusskture model).

classifier->Print(std::cerr);

17.3 Support Vector Machines

Kernel based learning methods in general and the SuppaidMéachines (SVM) in particular,
have been introduced in the last years in learning theorgléssification and regression tasks,
[88]. SVM have been successfully applied to text categtiona[48], and face recognition,
[67]. Recently, they have been successfully used for thesiflaation of hyperspectral remote-
sensing images, [8].

Simply stated, the approach consists in searching for ferang surface between 2 classes by
the determination of the subset of training samples whicth tescribes the boundary between
the 2 classes. These samples are called support vectors@updetely define the classification
system. In the case where the two classes are nonlineardyad®p, the method uses a kernel
expansion in order to make projections of the feature spatetigher dimensionality spaces
where the separation of the classes becomes linear.

17.3.1 Mathematical formulation

This section reminds the basic principles of SVM learning alassification. A good tutorial
on SVM can be found in, [10].

We haveN samples represented by the couflexi),i = 1...N wherey; € {—1,+1} is the

430 Chapter 17. Classification

class label andj € R" is the feature vector of dimension A classifier is a function
f(x,a) :X—y

wherea are the classifier parameters. The SVM finds the optimal atipgrhyperplane which
fulfills the following constraints :

e The samples with labels1 and—1 are on different sides of the hyperplane.

e The distance of the closest vectors to the hyperplane ismisad. These are the support
vectors (SV) and this distance is called the margin.

The separating hyperplane has the equation
w-x+b=0;

with w being its normal vector arxdbeing any point of the hyperplane. The orthogonal distance

to the origin is given by‘%. Vectors located outside the hyperplane have either+b > 0 or

w-X+b<0.

Therefore, the classifier function can be written as

f(x,w,b) = sgnw-x+b).

The SVs are placed on two hyperplanes which are paralleled®himal separating one. In
order to find the optimal hyperplane, one sstandb :

W-X+b==+1

Since there must not be any vector inside the margin, theviialig constraint can be used:
w-Xj+b>+1ifyi=+1;

w-Xi+b<-1ify,=-1,;
which can be rewritten as
yi(w-xj+b)—1>0 Vi.

The orthogonal distances of the 2 parallel hyperplanestotigin areﬁ and%. There-

fore the modulus of the margin is equalﬂgﬁH and it has to be maximised.

Thus, the problem to be solved is:

e Findw andb which minimise{ 3(/w/||2}

e under the constrainty;(w-x;+b) >1 i=1...N.

17.3. Support Vector Machines 431

This problem can be solved by using the Lagrange multipliétls one multiplier per sample.
It can be shown that only the support vectors will have a pasitagrange multiplier.

In the case where the two classes are not exactly linearlgrabfe, one can modify the con-
straints above by using
W-Xi+b>+1-§&if yi = +1;

Woxi+b < —1+5ify = —1;
& >0 Vi.

If & > 1, one considers that the sample is wrong. The function wiéchthen to be minimised
is 3[w||>+C(3;&);, whereC is a tolerance parameter. The optimisation problem is theesa
than in the linear case, but one multiplier has to be addeddoh new constrairg; > 0.

If the decision surface needs to be non-linear, this salutiannot be applied and the kernel
approach has to be adopted.

One drawback of the SVM is that, in their basic version, theayanly solve two-class problems.
Some works exist in the field of multi-class SVM (see [2, 91]ddahe comparison made by
[41]), but they are not used in our system.

For problems withiN > 2 classes, one can choose either to thi§VM (one class against all
the others), or to trailN x (N — 1) SVM (one class against each of the others). In the second
approach, which is the one that we use, the final decisiorkentay choosing the class which

is most often selected by the whole set of SVM.

17.3.2 Learning With PointSets

The source code for this example can be found in the file
Examples/Learning/SVMPointSetModelEstimatorExample. CXX .

This example illustrates the use of thoth::SVMPointSetModelEstimator in order to per-
form the SVM learning from aritk::PointSet data structure.

The first step required to use this filter is to include its eadite.
#include "otbSVMPointSetModelEstimator.h"

In the framework of supervised learning and classificatioa will always use feature vectors
for the characterization of the classes. On the other hdmadclass labels are scalar values.
Here, we start by defining the type of the features asPtheType , which will be used to
define the featurgectorType . We also declare the type for the labels.

typedef float PixelType;
typedef std::vector<PixelType> VectorType;
typedef int LabelPixelType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMPointSetModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

432 Chapter 17. Classification

We can now proceed to define the point sets used for storinig#teres and the labels.

typedef itk::PointSet< VectorType, Dimension > FeaturePo intSetType;
typedef itk::PointSet< LabelPixelType, Dimension > Label PointSetType;
FeaturePointSetType::Pointer fPSet = FeaturePointSetTy pe::New();
LabelPointSetType::Pointer IPSet = LabelPointSetType:: New();

We will need to get access to the data stored in the pointsetse define the appropriate for the
points and the points containers used by the point setsi{eesattion 5.2 for more information
oin haw to use point sets).

typedef FeaturePointSetType::PointType FeaturePointTy pe;

typedef LabelPointSetType::PointType LabelPointType;

typedef FeaturePointSetType::PointsContainer FeatureP ointsContainer;
typedef LabelPointSetType::PointsContainer LabelPoint sContainer;
FeaturePointsContainer::Pointer fCont = FeaturePointsC ontainer::New();

LabelPointsContainer::Pointer ICont = LabelPointsConta iner::New();

We need now to build the training set for the SVM learning. His tsimple example, we will
build a SVM who classes points depending on which side ofittex|=y they are located. We
start by generating 500 random points.

int lowest = 0;
int range = 1000;

for(unsigned int pointld = 0; pointld<500; pointld++)

FeaturePointType fP;
LabelPointType IP;

int x_coord
int y_coord

lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));
lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));

We set the coordinates of the points. They are the same fde#tere vector and for the label.

fP[0] = x_coord,;
fP[1] = y_coord;

IP[0] = x_coord;
IP[1] = y_coord;

17.3. Support Vector Machines 433

We push the features in the vector after a normalization visiziseful for SVM convergence.

VectorType feature;
feature.push_back(static_cast<PixelType>((x_coord*1 .0-lowest)/range))
feature.push_back(static_cast<PixelType>((y_coord*1 .0-lowest)/range))

1

1

We decide on the label for each point.

LabelPixelType label;

if(x_coord < y_coord)

label= -1,
else
label = 1;

And we insert the points in the points containers.

fCont->InsertElement(pointld , fP);
fPSet->SetPointData(pointld, feature);

|Cont->InsertElement(pointld , IP);
IPSet->SetPointData(pointld, label);

After the loop, we set the points containers to the point sets

fPSet->SetPoints(fCont);
IPSet->SetPoints(ICont);

Up to now, we have only prepared the data for the SVM learriig can now create the SVM
model estimator. This class is templated over the featuldtanlabel point set types.

typedef oth::SVMPointSetModelEstimator< FeaturePointS etType,
LabelPointSetType > EstimatorType;

EstimatorType::Pointer estimator = EstimatorType::New();

434 Chapter 17. Classification

The next step consists in setting the point sets for the astinrand the number of classes for
the model. The feture point set is set using$ktnputPointSet and the label point set is set
with the SetTrainingPointSet method.

estimator->SetlnputPointSet(fPSet);
estimator->SetTrainingPointSet(IPSet);
estimator->SetNumberOfClasses(2);

The model estimation is triggered by calling tgdate method.

estimator->Update();

Finally, we can save the result of the learning to a file.

estimator->SaveModel("svm_model.svm");

The otb::otbSVMModel class provides several accessors in order to get some iafiom
about the result of the learning step. For instance, one eathge number of support vec-
tors kept to define the separation surface by usingsgilumberOfSupportVectors() . This

can be very useful to detect some kind of overlearning (thmber of support vectors is
close to the number of examples). One can also get the SVssthees by calling the
GetSupportVectors() . Thea values for the support vectors can be accessed by using the
GetAlpha() method. Finally th&valuate() method will return the result of the classification

of a sample and thEvaluateHyperplaneDistance() will return the distance of the sample

to the separating surface (or surfaces in the case of maks@roblems).

17.3.3 PointSet Classification

The source code for this example can be found in the file
Examples/Learning/SVMPointSetClassificationExample. CXX .

This example illustrates the use of theth::SVMClassifier class for performing SVM
classification on pointsets. The first thing to do is include theader file for the
class. Since the oth::SVMClassifier takes itk::ListSample s as input, the class
itk::PointSetToListAdaptor is needed.

We start by including the needed header files.
#include "itkPointSetToListAdaptor.h"

#include "itkListSample.h"
#include "otbSVMClassifier.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1otbSVMModel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSetToListAdaptor.html

17.3. Support Vector Machines 435

In the framework of supervised learning and classificatioa will always use feature vectors
for the characterization of the classes. On the other hédmedclass labels are scalar values.
Here, we start by defining the type of the features asPikaType , which will be used to
define the featurgectorType . We also declare the type for the labels.

typedef float InputPixelType;
typedef std::vector<InputPixelType> InputVectorType;
typedef int LabelPixelType;

We can now proceed to define the point sets used for storinig#teres and the labels.

typedef itk::PointSet< InputVectorType, Dimension > Meas urePointSetType;

typedef itk::PointSet< LabelPixelType, Dimension > Label PointSetType;

We will need to get access to the data stored in the pointsetge define the appropriate for the
points and the points containers used by the point setsi{eesettion 5.2 for more information
on how to use point sets).

typedef MeasurePointSetType::PointType MeasurePointTy pe;

typedef LabelPointSetType::PointType LabelPointType;

typedef MeasurePointSetType::PointsContainer MeasureP ointsContainer;
typedef LabelPointSetType::PointsContainer LabelPoint sContainer;
MeasurePointSetType::Pointer tPSet = MeasurePointSetTy pe::New();
MeasurePointsContainer::Pointer tCont = MeasurePointsC ontainer::New();

We need now to build the test set for the SVM. In this simpleneple, we will build a SVM
who classes points depending on which side of the Xiney they are located. We start by
generating 500 random points.

int lowest = 0;
int range = 1000;

for(pointld = 0; pointld<100; pointld++)
{

MeasurePointType tP;

436 Chapter 17. Classification

int x_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));
int y_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));
std::cout << "coords : " << x_coord << " " <<y coord << std::en dl;

tP[0] = x_coord;
tP[1] = y_coord,;

We push the features in the vector after a normalization lwisiciseful for SVM convergence.

InputVectorType measure;
measure.push_back(static_cast<InputPixelType>((x_co ord*1.0-lowest)/range));
measure.push_back(static_cast<InputPixelType>((y_co ord*1.0-lowest)/range));

And we insert the points in the points container.

tCont->InsertElement(pointld , tP);
tPSet->SetPointData(pointld, measure);

}

After the loop, we set the points container to the point set.

tPSet->SetPoints(tCont);

Once the pointset is ready, we must transform it to a samplehnis compatible with the
classification framework. We will use &k::Statistics::PointSetToListAdaptor for
this task. This class is templated over the point set typd favestoring the measures.

typedef itk::Statistics::PointSetToListAdaptor< Measu rePointSetType >
SampleType;
SampleType::Pointer sample = SampleType::New();

After instantiation, we can set the point set as an imput ofsample adaptor.

sample->SetPointSet(tPSet);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics::PointSetToListAdaptor.html

17.3. Support Vector Machines 437

Now, we need to declare the SVM model which is to be used byldssiier. The SVM model
is templated over the type of value used for the measurestenty/pe of pixel used for the
labels.

typedef oth::SVMModel< SampleType::MeasurementVectorT ype::ValueType,
LabelPixelType > ModelType;

ModelType::Pointer model = ModelType::New();

After instantiation, we can load a model saved to a file (setm@el17.3.2 for an example of
model estimation and storage to a file).

model->LoadModel(argv[1]);

We have now all the elements to create a classifier. The fiezdsitemplated over the sample
type (the type of the data to be classified) and the label type type of the output of the
classifier).

typedef oth::SVMClassifier< SampleType, LabelPixelType > ClassifierType ;

ClassifierType::Pointer classifier = ClassifierType::N ew() ;

We set the classifier parameters : number of classes, SVMImbdesample data. And we
trigger the classification process by calling thmlate method.

int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetModel(model);
classifier->SetSample(sample.GetPointer()) ;
classifier->Update() ;

After the classification step, we usually want to get the ltesihe classifier gives an output
under the form of a sample list. This list supports the ctad<$TL iterators.

438 Chapter 17. Classification

ClassifierType::OutputType* membershipSample
classifier->GetOutput() ;

ClassifierType::OutputType::Constlterator m_iter =
membershipSample->Begin() ;

ClassifierType::OutputType::Constlterator m_last
membershipSample->End() ;

We will iterate through the list, get the labels and compb&edlassification error.

double error = 0.0;
pointld = 0;
while (m_iter = m_last)

{

We get the label for each point.

ClassifierType::ClassLabelType label = m_iter.GetClass Label();

And we compare it to the corresponding one of the test set.

InputVectorType measure;
tPSet->GetPointData(pointld, &measure);
ClassifierType::ClassLabelType expectedLabel;
if(measure[0] < measure[1])

expectedLabel= -1;
else

expectedLabel = 1;

double dist = fabs(measure[0] - measure[1]);

if(label = expectedLabel)
error++;

std::cout << int(label) << "/ << int(expectedLabel) << " -- - " << dist <<

std::endl;

17.3. Support Vector Machines 439

Figure 17.12:Images used for the estimation of the SVM model. Left: RGB image. Right: image of
labels.

++pointld;
++m_iter ;

}

std::cout << "Error = " << error/pointld << " % " << std:endl;

17.3.4 Learning With Images

The source code for this example can be found in the file
Examples/Learning/SVMImageModelEstimatorExample.cxx

This example illustrates the use of thab::SVMImageModelEstimator class. This class
allows the estimation of a SVM model (supervised learningifa feature image and an image
of labels. In this example, we will train an SVM to separateneeen water and non-water pixels
by using the RGB values only. The images used for this exammgeshown in figure 17.12.
The first thing to do is include the header file for the class.

#include "otbSVMImageModelEstimator.h"

We define the types for the input and training images. Evemeifiiput image will be an RGB
image, we can read it as a 3 component vector image. Thisifiesfihe interfacing with OTB's
SVM framework.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef otb::Vectorimage< InputPixelType, Dimension > In putimageType;

typedef otb::image< InputPixelType, Dimension > Training ImageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

440 Chapter 17. Classification

The otb::SVMImageModelEstimator class is templated over the input (features) and the train-
ing (labels) images.

typedef oth::SVMImageModelEstimator< InputimageType,
TraininglmageType > EstimatorType;

As usual, we define the readers for the images.

typedef oth::imageFileReader< InputimageType > InputRea derType;
typedef otb::ImageFileReader< TrainingimageType > Train ingReaderType;
InputReaderType::Pointer inputReader = InputReaderType :New();
TrainingReaderType::Pointer trainingReader = TrainingR eaderType::New();

We read the images. It is worth to note that, in order to enth@reipeline coherence, the output
of the objects which preceed the model estimator in the jpipeinust be up to date, so we call
the correspondingpdate methods.

inputReader->SetFileName(inputimageFileName);
trainingReader->SetFileName(traininglmageFileName);

inputReader->Update();
trainingReader->Update();

We can now instantiate the model estimator and set its paeasne

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();
svmEstimator->Setinputimage(inputReader->GetOutput())
svmEstimator->SetTrainingimage(trainingReader->GetO utput());

svmEstimator->SetNumberOfClasses(2);

The model estimation procedure is triggered by calling gtareator'sUpdate method.

svmEstimator->Update();

Finally, the estimated model can be saved to a file for later us

svmEstimator->SaveModel(outputModelFileName);

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

17.3. Support Vector Machines 441

17.3.5 Image Classification

The source code for this example can be found in the file
Examples/Classification/SVMImageClassificationExamp le.cxx

In previous examples, we have used tbib::SVMClassifier , Which uses the ITK classif-
cation framework. This good for compatibility with the ITKaimework, but introduces the
limitations of not being able to use streaming and being &bleow at compilation time the
number of bands of the image to be classified. In OTB we havielesidhis limitation by de-

velopping the oth::SVMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

#include "otbSVMImageClassificationFilter.h"

We will assume double precision input images and will alsfingethe type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process @nagth any number of bands. We
read the images agth::Vectorimage s. The labeled image will be a scalar image.

typedef otb::Vectorimage<PixelType,Dimension> ImageTy pe;
typedef oth::image<LabeledPixelType,Dimension> Labele dimageType;

We can now define the type for the classifier filter, which ispgkated over its input and output
image types.

typedef oth::SVMImageClassificationFilter<imageType, LabeledimageType>
ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType ;

And finally, we define the reader and the writer. Since the isag classify can be very big,
we will use a streamed writer which will trigger the streagability of the classifier.

typedef otb::imageFileReader<imageType> ReaderType;
typedef oth::StreaminglmageFileWriter<LabeledimageTy pe> WriterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

442

Chapter 17. Classification

We instantiate the classifier and the reader objects anditleesexisting SVM model obtained
in a previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

ModelType::Pointer model = ModelType::New();
model->LoadModel(modelfname);

filter->SetModel(model);

We plug the pipeline and trigger its execution by updatireggdhtput of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

The source code for this example can be found in the file
Examples/Learning/SVMImageEstimatorClassificationMu [tiExample.cxx

This example illustrates the OTB’s multi-class SVM capitibs. The theory behind this kind

of classification is out of the scope of this guide. In OTB, thdti-class SVM classification is

used in the same way as the two-class one. Figure 17.13 shevimage to be classified and
the associated ground truth, which is composed of 4 classes.

The following header files are needed for the program:

#include
#include
#include
#include

"otbSVMImageModelEstimator.h"
“itkimageToListAdaptor.h"
“itkListSample.h"
"otbSVMClassifier.h"

We define the types for the input and training images. Evemelfinput image will be an RGB
image, we can read it as a 3 component vector image. Thisifiespihe interfacing with OTB's
SVM framework.

typedef unsigned short InputPixelType;
const unsigned int Dimension = 2;

17.3. Support Vector Machines 443

Figure 17.13:Images used for the estimation of the SVM model. Left: RGB image. Right: image of
labels.

typedef otb::Vectorimage< InputPixelType, Dimension > In putimageType;

typedef otb::Image< InputPixelType, Dimension > Training ImageType;

The otb::SVMImageModelEstimator class is templated over the input (features) and the train-
ing (labels) images.

typedef otb::SVMImageModelEstimator< InputimageType,
TraininglmageType > EstimatorType;

As usual, we define the readers for the images.

typedef oth::ImageFileReader< InputimageType > InputRea derType;
typedef otb::ImageFileReader< TrainingimageType > Train ingReaderType;
InputReaderType::Pointer inputReader = InputReaderType ::New();
TrainingReaderType::Pointer trainingReader = TrainingR eaderType::New();

We read the images. It is worth to note that, in order to enthareipeline coherence, the output
of the objects which preceed the model estimator in the ppipeimust be up to date, so we call
the correspondingpdate methods.

inputReader->SetFileName(inputimageFileName);
trainingReader->SetFileName(traininglmageFileName);

inputReader->Update();
trainingReader->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

444 Chapter 17. Classification

We can now instantiate the model estimator and set its paeasne

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();
svmEstimator->Setinputimage(inputReader->GetOutput())
svmEstimator->SetTraininglmage(trainingReader->GetO utput());

svmEstimator->SetNumberOfClasses(4);
The model estimation procedure is triggered by calling 8tav@ator'sUpdate method.
svmEstimator->Update();

We can now proceed to the image classification. We start biadeg the type of the image to
be classified. ITK’s classification framework needs the typthe pixel to be of fixed type, so
we declare the following types.

typedef otb::Image< itk::FixedArray<InputPixelType,3> ,
Dimension > ClassifylmageType;

typedef otb::imageFileReader< ClassifylmageType > Class ifyReaderType;

We can now read the image by calling tgdate method of the reader.

ClassifyReaderType::Pointer cReader = ClassifyReaderTy pe::New();
cReader->SetFileName(inputimageFileName);
cReader->Update();

The image has now to be transformed to a sample which is cdngatith the classification

framework. We will use atk::Statistics::ImageToListAdaptor for this task. This class
is templated over the image type used for storing the measure

typedef itk::Statistics::ImageToListAdaptor< Classify ImageType > SampleType;
SampleType::Pointer sample = SampleType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics::ImageToListAdaptor.html

17.3. Support Vector Machines 445

After instantiation, we can set the image as an imput of oopda adaptor.

sample->Setlmage(cReader->GetOutput());

Now, we need to declare the SVM model which is to be used byl#ssiier. The SVM model
is templated over the type of value used for the measureshentype of pixel used for the
labels. The model is obtained from the model estimator biyngaithe GetModel method.

typedef InputPixelType LabelPixelType ;
typedef otb::SVMModel< InputPixelType, LabelPixelType > ModelType;

ModelType::Pointer model = svmEstimator->GetModel();

We have now all the elements to create a classifier. The fitagsitemplated over the sample
type (the type of the data to be classified) and the label tipe type of the output of the
classifier).

typedef otb::SVMClassifier< SampleType, LabelPixelType > ClassifierType ;

ClassifierType::Pointer classifier = ClassifierType:N ew() ;

We set the classifier parameters : number of classes, SVMImbdesample data. And we
trigger the classification process by calling thmlate method.

int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetModel(model);
classifier->SetSample(sample.GetPointer()) ;
classifier->Update() ;

After the classification step, we usually want to get the ltesu’he classifier gives an output
under the form of a sample list. This list supports the ctad<$$TL iterators. Therefore, we will
create an output image and fill it up with the results of thesification. The pixel type of the
output image is the same as the one used for the labels.

446 Chapter 17. Classification

typedef ClassifierType::ClassLabelType OutputPixelTyp e;
typedef otb::image< OutputPixelType, Dimension > Outputl mageType;
OutputimageType::Pointer outputimage = OutputimageType ::New();

We allocate the memory for the output image using the inféiongrom the input image.

typedef itk::Index<Dimension> mylndexType;
typedef itk::Size<Dimension> mySizeType;
typedef itk::lmageRegion<Dimension> myRegionType;

mySizeType size;

size[0] = cReader->GetOutput()->GetRequestedRegion(). GetSize()[0];
size[1] = cReader->GetOutput()->GetRequestedRegion(). GetSize()[1];
myIndexType start;

start[0] = 0;

start[1] = 0;

myRegionType region;
region.Setindex(start);
region.SetSize(size);

outputimage->SetRegions(region);
outputimage->Allocate();
std::cout << "---" << std:endl;

We can now declare the interators on the list that we get aiulut of the classifier as well as
the iterator to fill the output image.

ClassifierType::OutputType* membershipSample
classifier->GetOutput() ;

ClassifierType::OutputType::Constlterator m_iter =
membershipSample->Begin() ;

ClassifierType::OutputType::Constlterator m_last
membershipSample->End() ;

typedef itk::ImageRegionlterator< OutputimageType> Out putlteratorType;

17.3. Support Vector Machines 447

OutputlteratorType outlt(outputimage,
outputimage->GetBufferedRegion());

outlt.GoToBegin();

We will iterate through the list, get the labels and assigelpialues to the output image.

while (m_iter = m_last && !loutlt.ISAtEnd())

{
outlt.Set(m_iter.GetClassLabel());

++m_iter ;
++outlt;

}

std::cout << "---" << std:endl;

Only for visualization purposes, we choose a color mappintheé image of classes before

saving it to a file. Theitk::Functor::ScalarToRGBPixelFunctor class is a special function
object designed to hash a scalar value intoitarRGBPixel . Plugging this functor into the
itk::UnaryFunctorimageFilter creates an image filter for that converts scalar images to
RGB images.

typedef itk:RGBPixel<unsigned char> RGBPixelType;

typedef oth::Image<RGBPixelType, 2> RGBImageType;

typedef itk::Functor::ScalarToRGBPixelFunctor<unsign ed long>
ColorMapFunctorType;

typedef itk::UnaryFunctorimageFilter<OutputimageType ,

RGBImageType, ColorMapFunctorType> ColorMapFilterType ;

ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

colormapper->Setinput(outputimage);

We can now create an image file writer and save the image.

typedef oth::imageFileWriter<RGBImageType> WriterResc aledType;
WriterRescaledType::Pointer writerRescaled = WriterRes caledType::New();

writerRescaled->SetFileName(outputRescaledimageFile Name);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

448 Chapter 17. Classification

Figure 17.14Result of the SVM classification . Left: RGB image. Right: image of classes.

writerRescaled->Setinput(colormapper->GetOutput());

writerRescaled->Update();

Figure 17.14 shows the result of the SVM classification.

17.3.6 Generic Kernel SVM

OTB has developed a specific interface for user-defined kerAdunctionk(-, -) is considered
to be a kernel when:

vg(-) € L3(R") so that /g(x)zdxbe finite, (17.3)
then [K(xy) g3 g(y) dxdy> O,

which is known as th&lercer condition

When defined through the OTB, a kernel is a class that inheritem f
GenericKernelFunctorBase . Several virtual functions have to be overloaded:

e TheEvaluate function, which implements the behavior of the kernel fts€or instance,
the classical linear kernel could be re-implemented with:

double

MyOwnNewKernel

::Evaluate (const svm_node * x, const svm_node * vy,
const svm_parameter & param) const

{
}

return this->dot(x,y);

17.3. Support Vector Machines 449

This simple example shows that the classical dot produclréady implemented into
oth::GenericKernelFunctorBase::dot() as a protected function.

e TheUpdate() function which synchronizes local variables and theirgnéion into the
initial SVM procedure. The following examples will show thay to use it.

Some pre-defined generic kernels have already been imptethienOTB:

e oth::MixturePolyRBFKernelFunctor which implements a linear mixture of a polyno-
mial and a RBF kernel;

e oth::NonGaussianRBFKernelFunctor which implements a non gaussian RBF kernel;

e oth::SpectralAngleKernelFunctor , a kernel that integrates the Spectral Angle, in-
stead of the Euclidean distance, into an inverse multiqo&ernel. This kernel may be
appropriated when using multispectral data.

e oth::ChangeProfileKernelFunctor , a kernel which is dedicated to the supervized
classification of the multiscale change profile presentesgtion 16.5.1.

Learning with User Defined Kernels

The source code for this example can be found in the file
Examples/Learning/SVMGenericKernellmageModelEstimat orExample.cxx

This example illustrates the modifications to be added to these of
oth::SVMImageModelEstimator in order to add a user defined kernel. This initial pro-
gram has been explained in section 17.3.4.

The first thing to do is to include the header file for the newnkér

#include "otbSVMImageModelEstimator.h"
#include "otbMixturePolyRBFKernelFunctor.h"

Once theoth::SVMImageModelEstimator is instanciated, it is possible to add the new kernel
and its parameters.

Then in addition to the initial code:

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();

svmEstimator->SetSVMType(C_SVC);

svmEstimator->Setinputimage(inputReader->GetOutput());
svmEstimator->SetTraininglmage(trainingReader->GetO utput());
svmEstimator->SetNumberOfClasses(4);

http://www.melaneum.com/OTB/doxygen/classotb_1_1GenericKernelFunctorBase_1_1dot().html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MixturePolyRBFKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NonGaussianRBFKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SpectralAngleKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ChangeProfileKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

450 Chapter 17. Classification

The instanciation of the kernel is to be implemented. Thadlewhich is used here is a linear
combination of a polynomial kernel and an RBF one. It is w&ritas

Hke (X,Y) + (1 — pka(X,Y)

with ki (x,y) = (yix-y+ o) andka(x,y) = exp(—yz|x—y||?). Then, the specific parameters
of this kernel are:

e Mixture (),

e GammaPoly (y1),
e CoefPoly (cp),
e DegreePoly (d),
o GammaRBEy,).

Their instanciations are achieved through the use oS#tiéalue function.

otb::MixturePolyRBFKernelFunctor myKernel;
myKernel.SetValue("Mixture”, 0.5);
myKernel.SetValue("GammaPoly", 1.0);
myKernel.SetValue("CoefPoly", 0.0);
myKernel.SetValue("DegreePoly", 1);
myKernel.SetvValue("GammaRBF", 1.5);
myKernel.Update();

AN A~ A~

Once the kernel's parameters are affected and the kernehteghd the connection to
oth::SVMImageModelEstimator takes place here.

svmEstimator->SetKernelFunctor(&myKernel);
svmEstimator->SetKernelType(GENERIC);

The model estimation procedure is triggered by calling 8teveator'sUpdate method.

svmEstimator->Update();

The rest of the code remains unchanged...
svmEstimator->SaveModel(outputModelFileName);

In the file outputModelFileName a specific line will appear when using a generic kernel. It
gives the name of the kernel and its parameters name and value

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

17.3. Support Vector Machines 451

Classification with user defined kernel

The source code for this example can be found in the file
Examples/Learning/SVMGenericKernellmageClassificati onExample.cxx

This example illustrates the modifications to be added tahseth::SVMClassifier class
for performing SVM classification on images with a user-deditkkernel. In this example, we
will use an SVM model estimated in the previous section tassp between water and non-
water pixels by using the RGB values only. The images usethfsrexample are shown in
figure 17.12. The first thing to do is include the header filelerclass as well as the header of
the appropriated kernel to be used.

#include "otbSVMClassifier.n"
#include "otbMixturePolyRBFKernelFunctor.h"

We need to declare the SVM model which is to be used by theifilassThe SVM model is
templated over the type of value used for the measures anypbef pixel used for the labels.

typedef otb::SVMModel< PixelType, LabelPixelType > Model Type;
ModelType::Pointer model = ModelType::New();

After instantiation, we can load a model saved to a file (seé®e17.3.4 for an example of
model estimation and storage to a file).

When using a user defined kernel, an explicit instanciatietb®e performed.

otb::MixturePolyRBFKernelFunctor myKernel;
model->SetKernelFunctor(&myKernel);

Then, the rest of the classification program remains unawhng

model->LoadModel(modelFilename);

17.3.7 Multi-band, streamed classification

The source code for this example can be found in the file
Examples/Classification/SVMImageClassifierExample.c XX .

In previous examples, we have used tbib::SVMClassifier , which uses the ITK classif-
cation framework. This good for compatibility with the ITKaimework, but introduces the
limitations of not being able to use streaming and being &bleow at compilation time the
number of bands of the image to be classified. In OTB we havielesidhis limitation by de-

velopping the oth::SVMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageClassificationFilter.html

452 Chapter 17. Classification

#include "otbSVMImageClassificationFilter.n"

We will assume double precision input images and will alsfingethe type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process @nagth any number of bands. We
read the images agth::Vectorimage s. The labeled image will be a scalar image.

typedef oth::Vectorimage<PixelType,Dimension> ImageTy pe;
typedef oth::image<LabeledPixelType,Dimension> Labele dimageType;

We can now define the type for the classifier filter, which ispkated over its input and output
image types.

typedef otb::SVMImageClassificationFilter<imageType, LabeledimageType>
ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType ;

And finally, we define the reader and the writer. Since the isag classify can be very big,
we will use a streamed writer which will trigger the streagability of the classifier.

typedef otb::imageFileReader<imageType> ReaderType;
typedef oth::StreaminglmageFileWriter<LabeledimageTy pe> WriterType;

We instantiate the classifier and the reader objects andtieesexisting SVM model obtained
in a previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

ModelType::Pointer model = ModelType::New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

17.4. Kohonen’s Self Organizing Map 453

model->LoadModel(modelfname);

filter->SetModel(model);

We plug the pipeline and trigger its execution by updatiregdhtput of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

17.4 Kohonen's Self Organizing Map

The Self Organizing Map, SOM, introduced by Kohonen is a sopervised neural learning
algorithm. The map is composed of neighboring cells whigiarcompetition by means of
mutual interactions and they adapt in order to match chariatit patterns of the examples
given during the learning. The SOM is usually on a plane (2D).

The algorithm implements a nonlinear projection from a hifinensional feature space to a
lower dimension space, usually 2D. It is able to find the gpomdence between a set of struc-
tured data and a network of much lower dimension while kegfhe topological relationships
existing in the feature space. Thanks to this topologicgaoization, the final map presents
clusters and their relationships.

17.4.1 The algorithm

Kohonen’s SOM is usually represented as an array of cellsendgch cell isi, associated to a
feature (or weight) vectam, = [mz, my,---,mn]" € R" (figure 17.15).

A cell (or neuron) in the map is a good detector for a given ivgatorx = [X1, %o, - - - ,xn]T eR"
if the latter iscloseto the former. This distance between vectors can be repezséry the
scalar produck” - m;, but for most of the cases other distances can be used, astance the
Euclidean one. The cell having the weight vector closestaartput vector is called thginner.

Learning

The goal of the learning step is to get a map which is repratieatof an input example set. It
is an iterative procedure which consists in passing eaalt iegample to the map, testing the
response of each neuron and modifying the map to get it ctogbe examples.

454 Chapter 17. Classification

ml m2

mi /

mM

Figure 17.15Kohonen’s Self Organizing Map

Algorithm 1 SOM learning:

1. t=0.
2. Initialize the weight vectors of the map (randomly, fatance).
3. While t< number of iterations, do:

(@ k=0.

(b) While k< number of examples, do:

i. Find the vector nf{t) which minimizes the distanceg, m(t))
ii. For a neighborhood It) around the winner cell, apply the transformation:

m(t+1) =m(t) +B(t) X (t) —m(t)] (17.4)
iii. k=k+1
(c) t=t+1

In 17.4,B(t) is a decreasing function with the geometrical distance éovimner cell. For

instance:
lIrj —rell?

B(t)=Po(t)e 2O , (17.5)

with o(t) anda(t) decreasing functions with time amdhe cell coordinates in the output —
map — space.

Therefore the algorithm consists in getting the map closgh¢ learning set. The use of a
neighborhood around the winner cell allows the organiratibthe map into areas which spe-
cialize in the recognition of different patterns. This ridigrhood also ensures that cells which
are topologically close are also close in terms of the destatefined in the feature space.

17.4. Kohonen’s Self Organizing Map 455

17.4.2 Building a color table

The source code for this example can be found in the file
Examples/Learning/SOMExample.cxx

This example illustrates the use of théh::SOM class for building Kohonen’s Self Organizing
Maps.

We will use the SOM in order to build a color table from an inpugge. Our input image is
coded with 3x 8 bits and we would like to code it with only 16 levels. We wilaithe SOM in
order to learn which are the 16 most representative RGB salfithe input image and we will
assume that this is the optimal color table for the image.

The first thing to do is include the header file for the class. WNealso need the header files
for the map itself and the activation map builder whosetytiliill be explained at the end of
the example.

#include "otbSOMMap.h"
#include "otbSOM.h"
#include "otbSOMActivationBuilder.h"

Since the oth::SOM class uses a distance, we will need to include the headeofildé one
we want to use

#include "itkEuclideanDistance.h"

The Self Organizing Map itself is actually an N-dimensioimaage where each pixel contains
a neuron. In our case, we decide to build a 2-dimensional S@hdye the neurons store RGB
values with floating point precision.

const unsigned int Dimension = 2;

typedef double PixelType;

typedef otb::Vectorimage< PixelType, Dimension > ImageTy pe;
typedef ImageType::PixelType VectorType;

The distance that we want to apply between the RGB valueg iEtclidean one. Of course we
could choose to use other type of distance, as for instardistance defined in any other color
space.

typedef itk::Statistics::EuclideanDistance< VectorTyp e > DistanceType;
We can now define the type for the map. Thoth::SOMMap::c lass is templated over the

neuron type PixelType here —, the distance type and the number of dimensions. Natéte
number of dimensions of the map could be different from theafrthe images to be processed.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMMap_1_1c.html

456 Chapter 17. Classification

typedef otb::SOMMap< VectorType, DistanceType, Dimensio n > MapType;

We are going to perform the learning directly on the pixelshef input image. Therefore, the
image type is defined using the same pixel type as we useddondéip. We also define the type
for the imge file reader.

typedef otb::imageFileReader<imageType> ReaderType;

Since the oth::SOM class works on lists of samples, it will need to access theatiimpage
through an adaptor. Its type is defined as follows:

typedef itk::Statistics::ListSample< VectorType > Sampl eListType;

We can now define the type for the SOM, which is templated dweiriput sample list and the
type of the map to be produced and the two functors that heldr#tining behavior.

typedef otb::Functor::CzihoSOMLearningBehaviorFuncto r
LearningBehaviorFunctorType;
typedef otb::Functor::CzihoSOMNeighborhoodBehaviorFu nctor
NeighborhoodBehaviorFunctorType;
typedef oth::SOM< SampleListType, MapType,
LearningBehaviorFunctorType, NeighborhoodBehaviorFun ctorType >
SOMType;

As an alternative to standa8OMType one can decide to use amth::PeriodicSOM , which
behaves likeoth:SOM but is to be considered to as a torus instead of a simple mapcesle
the neighborhood behavior of the winning neuron does nogwign its location on the map...
oth::PeriodicSOM s defined in otbPeriodicSOM.h.

We can now start building the pipeline. The first step is tdansate the reader and pass its
output to the adaptor.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
reader->Update();

SampleListType::Pointer sampleList = SampleListType::N ew();

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PeriodicSOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PeriodicSOM.html

17.4. Kohonen’s Self Organizing Map 457

sampleList->SetMeasurementVectorSize(reader->GetOut put()->GetVectorLength());
itk::ImageRegionlterator< ImageType > imglter (reader-> GetOutputy(),
reader->GetOutput()->GetBufferedRegion());
imglter.GoToBegin();
itk::ImageRegionlterator< ImageType > imglterEnd (reade r->GetOutputy(),
reader->GetOutput()->GetBufferedRegion());
imglterEnd.GoToEnd();
do {
sampleList->PushBack(imglter.Get());
++imglter;

} while (imglter != imglterEnd);

We can now instantiate the SOM algorithm and set the sarngtladiinput.

SOMType::Pointer som = SOMType::New();
som->SetListSample(sampleList);

We use &80MType::SizeType array in order to set the sizes of the map.

SOMType::SizeType size;
size[0]=sizeX;
size[1]=sizeY;
som->SetMapSize(size);

The initial size of the neighborhood of each neuron is sdténsame way.

SOMType::SizeType radius;

radius[0] = neighinitX;

radius[1] = neighinitY;
som->SetNeighborhoodSizelnit(radius);

The other parameters are the number of iterations, thaliaitid the final values for the learning
rate -3 — and the maximum initial value for the neurons (the map véltdndomly initialized).

458 Chapter 17. Classification

Figure 17.16Result of the SOM learning. Left: RGB image. Center: SOM. Right: Activation map

som->SetNumberOfiterations(nblterations);
som->SetBetalnit(betalnit);

som->SetBetaEnd(betaEnd);
som->SetMaxWeight(static_cast<PixelType>(initValue));

Now comes the intialisation of the functors.

LearningBehaviorFunctorType learningFunctor;
learningFunctor.SetlterationThreshold(radius, nblter ations);
som->SetBetaFunctor(learningFunctor);

NeighborhoodBehaviorFunctorType neighborFunctor;
som->SetNeighborhoodSizeFunctor(neighborFunctor);
som->Update();

Finally, we set up the las part of the pipeline where the pheydutput of the SOM into the
writer. The learning procedure is triggered by calling thlate() method on the writer.
Since the map is itself an image, we can write it to disk withaéim:ImageFileWriter

Figure 17.16 shows the result of the SOM learning. Since we Iparformed a learning on
RGB pixel values, the produced SOM can be interpreted as @malcolor table for the input
image. It can be observed that the obtained colors are tgigalty organised, so similar colors
are also close in the map. This topological organisationbeaaxploited to further reduce the
number of coding levels of the pixels without performing arearning: we can subsample the
map to get a new color table. Also, a bilinear interpolatietnween the neurons can be used to
increase the number of coding levels.

We can now compute the activation map for the input image. adtigation map tells us how
many times a given neuron is activated for the set of exangies to the map. The activation
map is stored as a scalar image and an integer pixel type a&lysmough.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

17.4. Kohonen’s Self Organizing Map 459

typedef unsigned char OutputPixelType;

typedef otb::image<OutputPixelType,Dimension> Outputl mageType;
typedef oth::ImageFileWriter<OutputimageType> Activat ionWriterType;
In a similar way to theotb::SOM class theoth::SOMActivationBuilder is templated over

the sample list given as input, the SOM map type and the dictivenap to be built as output.

typedef oth::SOMActivationBuilder< SampleListType, Map Type,
OutputimageType> SOMActivationBuilderType;

We instantiate the activation map builder and set as inpuS®M map build before and the
image (using the adaptor).

SOMActivationBuilderType::Pointer somAct
= SOMActivationBuilderType::New();
somAct->Setlnput(som->GetOutput());
somAct->SetListSample(sampleList);
somAct->Update();

The final step is to write the activation map to a file.

if (actMapFileName != NULL)

ActivationWriterType::Pointer actWriter = ActivationWr iterType::New();
actWriter->SetFileName(actMapFileName);

The righthand side of figure 17.16 shows the activation magioéd.

17.4.3 SOM Classification

The source code for this example can be found in the file
Examples/Learning/SOMClassifierExample.cxx

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMActivationBuilder.html

460 Chapter 17. Classification

This example illustrates the use of trath:: SOMClassifier class for performing a classifi-
cation using an existing Kohonen'’s Self Organizing. Adiydhe SOM classification consists
only in the attribution of the winner neuron index to a giveature vector.

We will use the SOM created in section 17.4.2 and we will agstimat each neuron represents
a class in the image.

The first thing to do is include the header file for the class.

#include "otbSOMClassifier.h"

As for the SOM learning step, we must define the types fortbheSOMMap , and therefore,
also for the distance to be used. We will also define the type¢hi® SOM reader, which is

actually anotb::ImageFileReader::w hich the appropiate image type.
typedef itk::Statistics::EuclideanDistance<PixelType > DistanceType;
typedef oth::SOMMap<PixelType,DistanceType,Dimension > SOMMapType;

typedef otb::ImageFileReader<SOMMapType> SOMReaderTyp e

The classification will be performed by theth::SOMClassifier::, which, as most of the
classifiers, works oritk::Statistics::ListSample s. In order to be able to perform an im-
age classification, we will need to use tlik:Statistics::ImageToListAdaptor which

is templated over the type of image to be adapted. SOMClassifier is templated over the
sample type, the SOMMap type and the pixel type for the labels

typedef itk::Statistics::ListSample< PixelType> Sample Type;
typedef oth::SOMClassifier<SampleType,SOMMapType,Lab elPixelType>
ClassifierType;

The result of the classification will be stored on an image sagked to a file. Therefore, we
define the types needed for this step.

typedef otb::Image<LabelPixelType, Dimension > Outputim ageType;
typedef oth::ImageFileWriter<OutputimageType> WriterT ype,

We can now start reading the input image and the SOM givenmgsrio the program. We
instantiate the readers as usual.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader_1_1w.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier_1_1,.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ImageToListAdaptor.html

17.4. Kohonen’s Self Organizing Map 461

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(imageFilename);
reader->Update();

SOMReaderType::Pointer somreader = SOMReaderType::New();
somreader->SetFileName(mapFilename);
somreader->Update();

The conversion of the input data from image to list samplesslg done using the adaptor.

SampleType::Pointer sample = SampleType::New();
itk::ImageRegionlterator<InputimageType> it(reader-> GetOutput(),reader->GetOutput()->GetLargestPossible
it.GoToBegin();

while(lit.ISAtEnd())

{
sample->PushBack(it.Get());
+Hit;

}

The classifier can now be instantiated. The input data isysesimg theSetSample() method
and the SOM si set using tt8etMap() method. The classification is triggered by using the
Update() method.

ClassifierType::Pointer classifier = ClassifierType::N ew() ;
classifier->SetSample(sample.GetPointer());
classifier->SetMap(somreader->GetOutput());

classifier->Update() ;

Once the classification has been performed, the samplétained at the output of the classifier
must be converted into an image. We create the image as follow

OutputimageType::Pointer outputimage = OutputimageType :New();
outputimage->SetRegions(reader->GetOutput()->GetLar gestPossibleRegion());
outputimage->Allocate();

We can now get a pointer to the classification result.

462 Chapter 17. Classification

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();

And we can declare the iterators pointing to the front andotinek of the sample list.

ClassifierType::OutputType::Constlterator m_iter = mem bershipSample->Begin();
ClassifierType::OutputType::Constlterator m_last = mem bershipSample->End();
We also declare aritk::ImageRegionlterator::i n order to fill the output image with the
class labels.
typedef itk::ImageRegionlterator< OutputimageType> Out putlteratorType;
OutputlteratorType outlt(outputimage,outputimage->Ge tLargestPossibleRegion());

We iterate through the sample list and the output image asidrathe label values to the image
pixels.

outlt.GoToBegin();

while (m_iter = m_last && !outlt.ISAtEnd())
{
outlt.Set(m_iter.GetClassLabel());
++m_iter ;
++outlt;

}

Finally, we write the classified image to a file.

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(outputimage);

writer->Update();

Figure 17.17 shows the result of the SOM classification.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator_1_1i.html

17.4. Kohonen’s Self Organizing Map 463

Figure 17.17 Result of the SOM learning. Left: RGB image. Center: SOM. Right: Classified Image

17.4.4 Multi-band, streamed classification

The source code for this example can be found in the file
Examples/Classification/SOMImageClassificationExamp le.cxx

In previous examples, we have used thth::SOMClassifier , which uses the ITK classi-
fication framework. This good for compatibility with the ITKamework, but introduces the
limitations of not being able to use streaming and being &bleow at compilation time the
number of bands of the image to be classified. In OTB we havielesidhis limitation by de-

velopping the oth::SOMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

#include "otbSOMImageClassificationFilter.h"

We will assume double precision input images and will alsfingethe type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process @nagth any number of bands. We
read the images asth::Vectorimage s. The labeled image will be a scalar image.

typedef oth::Vectorimage<PixelType,Dimension> ImageTy pe;
typedef otb::image<LabeledPixelType,Dimension> Labele dimageType;

We can now define the type for the classifier filter, which isglated over its input and output
image types and the SOM type.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

464 Chapter 17. Classification

typedef oth::SOMMap<ImageType::PixelType> SOMMapType;
typedef otb::SOMImageClassificationFilter<imageType,
LabeledimageType,SOMMapType> ClassificationFilterTyp e;

And finally, we define the readers (for the input image and @y and the writer. Since
the images, to classify can be very big, we will use a streawréter which will trigger the
streaming ability of the classifier.

typedef oth::imageFileReader<imageType> ReaderType;
typedef otb::ImageFileReader<SOMMapType> SOMReaderTyp e
typedef otb::StreaminglmageFileWriter<LabeledimageTy pe> WriterType;

We instantiate the classifier and the reader objects and wbesexisting SOM obtained in a
previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

SOMReaderType::Pointer somreader = SOMReaderType::New();
somreader->SetFileName(somfname);
somreader->Update();

filter->SetMap(somreader->GetOutput());

We plug the pipeline and trigger its execution by updatirgdhtput of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

CHAPTER

EIGHTEEN

Image Visualization

Even if OTB is not a visualization toolkit as for instance VTKhe Visualization Toolkit
http://www.vtk.org), some simple functionnalities for image visualizatior given in the
toolbox. Indeed, for algorithm prototyping, it is sometsnmaore useful taeethe result on the
screen, than saving it to a file and then open in with an extereaer.

OTB provides the oth::ImageViewer class which is compatible with the pipeline and can
therefore replace thetb::ImageFileWriter::d uring proto-typing phases.

The source code for this example can be found in the file
Examples/Visu/VisuExamplel.cxx

This example shows the use of th#::ImageViewer class for image visualization. As usual,
we start by including the header file for the class.

#include "otblmageViewer.h"

We will build a very simple pipeline where a reader gets angenfrom a file and gives it to
the viewer. We define the types for the pixel, the image anddhder. The viewer class is
templated over the scalar component of the pixel type.

typedef int PixelType;

typedef otb::Vectorimage< PixelType, 2 > ImageType;
typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::lmageViewer< PixelType > ViewerType;

We create the objects.

ViewerType::Pointer |Viewer = ViewerType::New();
ReaderType::Pointer IReader = ReaderType::New();
IReader->SetFileName(inputFilename);

IReader->Update();

http://www.vtk.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb::ImageFileWriter_1_1d.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

466 Chapter 18. Image Visualization

~ | My Image - Scroll win_|= |8 | ®

v | My Image - Zoom = /[3[*

Figure 18.1:Example of image visualization.

We can choose a label for the windows created by the viewer.
[Viewer->SetLabel("My Image");

We can now plug the pipeline and trigger the visualizatioubiyng theShow method.

[Viewer->Setlmage(IReader->GetOutput());

[Viewer->Show();

The last step consists in starting the GUI event loop byrugihe appropiate FLTK method.

Flz:run();

The the oth::ImageViewer class creates 3 windows (see figure 18.1) for an improved visu
alization of large images. This procedure is inspired fromavigation window of the Gimp
and other image visualization tools. The navigation windswalled herescroll window and

it shows the complete image but subsampled to a lower résoluthe pricipal window shows

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

467

the region marked by a red rectangle in the scroll windowgitfire real resolution of the im-
age. Finally, a zoom window displays the region inside tliereetangle shown in the principal
window. A mouse click on a pixel of the scroll (respectivahe pricipal window) updates the
rectangle prosition and, therefore, the region viewed éghncipal (respectively, the zoom)
window. The zoom rate can be modified by using the mous wheel.

Part IV

Developper’s guide

CHAPTER

NINETEEN

Ilterators

This chapter introduces theage iterator an important generic programming construct for
image processing in ITK. An iterator is a generalizatiornaftamiliar C programming language
pointer used to reference data in memory. ITK has a wide tyagkimage iterators, some of
which are highly specialized to simplify common image pasieg tasks.

The next section is a brief introduction that defines iteato the context of ITK. Section 19.2
describes the programming interface common to most ITK anitgators. Sections 19.3-19.4
document specific ITK iterator types and provide exampldsowf they are used.

19.1 Introduction

Generic programming models define functionally indepehdemponents calledontainers
andalgorithms Container objects store data and algorithms operate @n dlataccess data in
containers, algorithms use a third class of objects catégdtors An iterator is an abstraction
of a memory pointer. Every container type must define its dewrator type, but all iterators are
written to provide a common interface so that algorithm code reference data in a generic
way and maintain functional independence from containers.

The iterator is so named because it is useditinative, sequential access of container val-
ues. lterators appear for andwhile loop constructs, visiting each data point in turn. A C
pointer, for example, is a type of iterator. It can be movewérd (incremented) and backward
(decremented) through memory to sequentially refereremehts of an array. Many iterator
implementations have an interface similar to a C pointer.

In ITK we use iterators to write generic image processingecfmt images instantiated with
different combinations of pixel type, pixel container ty@ad dimensionality. Because ITK
image iterators are specifically designed to work wittage containers, their interface and
implementation is optimized for image processing tasksingJthe ITK iterators instead of
accessing data directly through théh::Image interface has many advantages. Code is more
compact and often generalizes automatically to higher dgioms, algorithms run much faster,

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

472 Chapter 19. lterators

and iterators simplify tasks such as multithreading andhtsrhood-based image processing.

19.2 Programming Interface

This section describes the standard ITK image iteratormaragiing interface. Some special-
ized image iterators may deviate from this standard or peoadditional methods.

19.2.1 Creating lterators

All image iterators have at least one template parameteéighiae image type over which they
iterate. There is no restriction on the dimensionality @& timage or on the pixel type of the
image.

An iterator constructor requires at least two argumentsnarspointer to the image to iterate
across, and an image region. The image region, calledté¢hagtion region is a rectilinear
area in which iteration is constrained. The iteration ragioust be wholly contained within
the image. More specifically, a valid iteration region is ampregion of the image within the
currentBufferedRegion . See Section 5.1 for more information on image regions.

There is a const and a non-const version of most ITK imagatiies. A non-const iterator
cannot be instantiated on a non-const image pointer. Cemnstons of iterators may read, but
may not write pixel values.

Here is a simple example that defines and constructs a simplgsiiterator for artb::Image

typedef oth::image<float, 3> ImageType;
typedef itk::lmageRegionConstlterator< ImageType > Cons titeratorType;
typedef itk::lmageRegionlterator< ImageType > lIteratorT ype;

ImageType::Pointer image = SomeFilter->GetOutput();

ConstlteratorType constlterator(image, image->GetRequ estedRegion());
IteratorType iterator(image, image->GetRequestedRegio n());

19.2.2 Moving Iterators

An iterator is described asalkingits iteration region. At any time, the iterator will refeism
or “point to”, one pixel location in the N-dimensional (NDhage.Forward iterationgoes from
the beginning of the iteration region to the end of the iferategion. Reverse iterationgoes
from just past the end of the region back to the beginningr& hee two corresponding starting
positions for iterators, thieeginposition and thendposition. An iterator can be moved directly
to either of these two positions using the following methods

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

19.2. Programming Interface 473

| I I
|_itk::Image

L
| BEGIN Position

— > — > — > — > —

N
L]
|

A
v
|

» [teration regior-» —

g
> — > — > —
g
-

dp 1o—p—p—tp—p— A

END Positior

Figure 19.1:Normal path of an iterator through a 2D image. The iteration region is shown in a darker
shade. An arrow denotes a single iterator step, the result of one ++ operation.

e GoToBegi n() Points the iterator to the first valid data element in theargi

e GoToEnd() Points the iterator tone position paste last valid element in the region.

Note that the end position is not actually located withinitegation region. This is important to
remember because attempting to dereference an iteratsreatd position will have undefined
results.

ITK iterators are moved back and forth across their iteretiagsing the decrement and increment
operators.

e oper at or ++() Increments the iterator one position in the positive dicgctOnly the
prefix increment operator is defined for ITK image iterators.

e operator--() Decrements the iterator one position in the negative daectOnly
the prefix decrement operator is defined for ITK image itegato

Figure 19.1 illustrates typical iteration over an imageigag Most iterators increment and
decrement in the direction of the fastest increasing imageasion, wrapping to the first po-
sition in the next higher dimension at region boundariesther words, an iterator first moves
across columns, then down rows, then from slice to slice sanzh.

In addition to sequential iteration through the image, s@srators may define random access
operators. Unlike the increment operators, random acqesstwrs may not be optimized for
speed and require some knowledge of the dimensionalityeofritage and the extent of the
iteration region to use properly.

e operator+=(O fset Type) Moves the iterator to the pixel position at the current
index plus specifiedtk::Offset

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

474 Chapter 19. lterators

e operator-=(OfsetType) Moves the iterator to the pixel position at the current
index minus specified Offset.

e Set Position(| ndexType) Moves the iterator to the giverik::Index posi-
tion.

The SetPosition() method may be extremely slow for more complicated iteratpes. In
general, it should only be used for setting a starting itemnaposition, like you would use
GoToBegin() or GoToEnd() .

Some iterators do not follow a predictable path throughrthieration regions and have no
fixed beginning or ending pixel locations. A conditional&tor, for example, visits pixels only

if they have certain values or connectivities. Random itgsa increment and decrement to
random locations and may even visit a given pixel locatiomentban once.

An iterator can be queried to determine if it is at the end ertdbginning of its iteration region.
e bool | sAt End() True ifthe iterator points tone position paghe end of the iteration
region.
e bool | sAtBegin() True if the iterator points to the first position in the itéoat
region. The method is typically used to test for the end ofrsw iteration.

An iterator can also report its current image index position

e | ndexType Getl ndex() Returns the Index of the image pixel that the iterator cur-
rently points to.

For efficiency, most ITK image iterators do not perform basiotiecking. It is possible to
move an iterator outside of its valid iteration region. Oerencing an out-of-bounds iterator
will produce undefined results.

19.2.3 Accessing Data
ITK image iterators define two basic methods for reading ariting pixel values.

e Pi xel Type Get () Returns the value of the pixel at the iterator position.

e void Set(Pixel Type) Sets the value of the pixel at the iterator position. Not
defined for const versions of iterators.

TheGet() andSet() methods are inlined and optimized for speed so that theiistesguivalent

to dereferencing the image buffer directly. There are a fewrmon cases, however, where using
Get() andSet() doincura penalty. Consider the following code, which feghmodifies, and
then writes a value back to the same pixel location.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

19.2. Programming Interface 475

it.Set(it.Get() + 1);

As written, this code requires one more memory dereferdmae is necessary. Some iterators
define a third data access method that avoids this penalty.

e Pi xel Type &Val ue() Returns areference to the pixel at the iterator position.

TheValue() method can be used as either an Ival or an rval in an expreshitias all the
properties obperator* . TheValue() method makes it possible to rewrite our example code
more efficiently.

it. Value()++;

Consider using th&alue() method instead dget() orSet() when a call tmperator= ona
pixel is non-trivial, such as when working with vector pigeand operations are done in-place
in the image. The disadvantage of usMaue is that it cannot support image adapters (see
Section 20 on page 505 for more information about image ads)pt

19.2.4 Iteration Loops

Using the methods described in the previous sections, wa@anwrite a simple example to
do pixel-wise operations on an image. The following codewates the squares of all values
in an input image and writes them to an output image.

ConstlteratorType in(inputimage, inputimage->GetReque stedRegion());
IteratorType out(outputimage, inputimage->GetRequeste dRegion());
for (in.GoToBegin(), out.GoToBegin(); !in.ISAtEnd(); ++ in, ++out)

{
out.Set(in.Get() * in.Get());

}

Notice that both the input and output iterators are initeedi over the same region, the
RequestedRegion of inputimage . This is good practice because it ensures that the output
iterator walks exactly the same set of pixel indices as tpatiiterator, but does not require
that the output and input be the same size. The only requiteim¢hat the input image must
contain a region (a starting index and size) that matche®&eheestedRegion of the output
image.

Equivalent code can be written by iterating through the ieniagreverse. The syntax is slightly
more awkward because tleadof the iteration region is not a valid position and we can only
test whether the iterator is strictiqualto its beginning position. It is often more convenient to
write reverse iteration in ahile loop.

476 Chapter 19. lterators

in.GoToEnd();
out.GoToEnd();
while (! in.IsAtBegin())
{ .
--in;
--out;
out.Set(in.Get() * in.Get());

}

19.3 Image Iterators

This section describes iterators that walk rectilineargemeegions and reference a single pixel
at a time. The itk::iImageRegionlterator is the most basic ITK image iterator and the
first choice for most applications. The rest of the iteratorihis section are specializations of
ImageRegionlterator that are designed make common imagegsing tasks more efficient or
easier to implement.

19.3.1 ImageRegionlterator

The source code for this example can be found in the file
Examples/Iterators/ImageRegionlterator.cxx

The itk::lmageRegionlterator is optimized for iteration speed and is the first choice for
iterative, pixel-wise operations when location in the imagnot important. ImageRegionlter-
ator is the least specialized of the ITK image iterator dasst implements all of the methods
described in the preceding section.

The following example illustrates the use dfk::imageRegionConstlterator and Im-
ageRegionlterator. Most of the code constructs introdaqegydy to other ITK iterators as well.
This simple application crops a subregion from an image lpyicg its pixel values into to a
second, smaller image.

We begin by including the appropriate header files.

#include "itkimageRegionConstlterator.h"
#include "itkimageRegionlterator.h"

Next we define a pixel type and corresponding image type. [Ekator classes expect the
image type as their template parameter.

const unsigned int Dimension = 2;

typedef unsigned char PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionConstIterator.html

19.3. Image lIterators 477

typedef otb::image< PixelType, Dimension > ImageType;

typedef itk::ImageRegionConstlterator< ImageType > Cons titeratorType;
typedef itk::ImageRegionlterator< ImageType> IteratorT ype;

Information about the subregion to copy is read from the camunline. The subregion is
defined by anitk::ImageRegion object, with a starting grid index and a size (Section 5.1).

ImageType::RegionType inputRegion;

ImageType::RegionType::IndexType inputStart;
ImageType::RegionType::SizeType size;

inputStart[0] = :atoi(argv[3]);
inputStart[1] = :atoi(argv(4]);

::atoi(argv[s]);
::atoi(argv[6]);

size[0]
size[1]

inputRegion.SetSize(size);
inputRegion.Setindex(inputStart);

The destination region in the output image is defined usiadrthut region size, but a different
start index. The starting index for the destination reg®thie corner of the newly generated
image.

ImageType::RegionType outputRegion;
ImageType::RegionType::IndexType outputStart;

outputStart[0] = 0;
outputStart[1] = 0;

outputRegion.SetSize(size);
outputRegion.Setindex(outputStart);

After reading the input image and checking that the desivdaegjion is, in fact, contained in
the input, we allocate an output image. It is fundamentaétwalid values to some of the basic
image information during the copying process. In particuflae starting index of the output
region is now filled up with zero values and the coordinatebefphysical origin are computed
as a shift from the origin of the input image. This is quite ortant since it will allow us to
later register the extracted region against the originalgen

ImageType::Pointer outputimage = ImageType::New();
outputimage->SetRegions(outputRegion);

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegion.html

478 Chapter 19. lterators

const ImageType::SpacingType& spacing = reader->GetOutp ut()->GetSpacing();
const ImageType::PointType& inputOrigin = reader->GetOu tput()->GetOrigin();
double outputOrigin[Dimension ;

for(unsigned int i=0; i< Dimension; i++)
{
outputOrigin[i] = inputOrigin[i] + spacing[i] * inputStar t[il;
}

outputimage->SetSpacing(spacing);
outputimage->SetOrigin(outputOrigin);
outputimage->Allocate();

The necessary images and region definitions are now in phdtthat is left to do is to create
the iterators and perform the copy. Note that image itesaoe not accessed via smart pointers
so they are light-weight objects that are instantiated enstiack. Also notice how the input
and output iterators are defined over g@mme corresponding regioriThough the images are
different sizes, they both contain the same target submegio

ConstlteratorType inputlt(reader->GetOutput(), inputR egion);
IteratorType outputlt(outputimage, outputRegion);
for (inputit.GoToBegin(), outputlt.GoToBegin(); linput It.ISAtEnd();
++inputlt, ++outputlt)
{
outputit.Set(inputlt.Get());
}

Thefor loop above is a common construct in ITK/OTB. The beauty o$é&eur lines of code
is that they are equally valid for one, two, three, or everdierensional data, and no knowledge
of the size of the image is necessary. Consider the uglynaltiee of ten nestefbr loops for
traversing an image.

Let's run this example on the ima@®8 _Suburb.png found inExamples/Data . The command
line arguments specify the input and output file names, themr,ty origin and thex, y size of
the cropped subregion.

ImageRegionlterator QB_Suburb.png ImageRegionlterator Output.png 20 70 210 140

The output is the cropped subregion shown in Figure 19.2.

19.3.2 ImageRegionlteratorWithindex

The source code for this example can be found in the file
Examples/Iterators/ImageRegionlteratorWithindex.cxx

19.3. Image lIterators 479

Figure 19.2:Cropping a region from an image. The original image is shown at left. The image on the
right is the result of applying the ImageRegionlterator example code.

The “Withindex” family of iterators was designed for algbrins that use both the value and
the location of image pixels in calculations. Unliktk::ImageRegionlterator , Which cal-
culates an index only when asked fatk::ImageRegionlteratorWithindex maintains its
index location as a member variable that is updated duri@gitrement or decrement process.
Iteration speed is penalized, but the index queries are eficéent.

The following example illustrates the use of ImageRegenaitorWithindex. The algorithm
mirrors a 2D image across itsaxis (seeitk::FlipimageFilter for an ND version). The
algorithm makes extensive use of tBetindex() method.

We start by including the proper header file.
#include "itkimageRegionlteratorWithindex.h"

For this example, we will use an RGB pixel type so that we catgss color images. Like
most other ITK image iterator, ImageRegionlteratorWittdr class expects the image type as
its single template parameter.

const unsigned int Dimension = 2;

typedef itk::RGBPixel< unsigned char > RGBPixelType;
typedef otb:lmage< RGBPixelType, Dimension > ImageType;

typedef itk::ImageRegionlteratorWithindex< ImageType > lteratorType;

An ImageType smart pointer callechputimage points to the output of the image reader. After
updating the image reader, we can allocate an output iméatye shme size, spacing, and origin
as the input image.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIteratorWithIndex.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FlipImageFilter.html

480 Chapter 19. lterators

Figure 19.3:Results of using ImageRegionlteratorWithindex to mirror an image across an axis. The
original image is shown at left. The mirrored output is shown at right.

ImageType::Pointer outputimage = ImageType::New();
outputimage->SetRegions(inputimage->GetRequestedReg ion());
outputimage->Copylnformation(inputimage);

outputimage->Allocate();

Next we create the iterator that walks the output image. @lgsrithm requires no iterator for
the input image.

IteratorType outputlt(outputimage, outputimage->GetRe questedRegion());

This axis flipping algorithm works by iterating through thetput image, querying the iterator
for its index, and copying the value from the input at an indesxored across the-axis.

ImageType::IndexType requestedindex =
outputimage->GetRequestedRegion().GetIndex();

ImageType::SizeType requestedSize =
outputimage->GetRequestedRegion().GetSize();

for (outputit.GoToBegin(); loutputlt.ISAtEnd(); ++outp utlt)

{
ImageType::IndexType idx = outputlt.Getindex();

idx[0] = requestedindex[0] + requestedSize[0] - 1 - idx[0];
outputlt.Set(inputimage->GetPixel(idx));
}

Let’s run this example on the imadg®!_QB MUL 2.tif found in theExamples/Data direc-
tory. Figure 19.3 shows how the original image has been neidracross itg-axis in the output.

19.3.3 ImageLinearlteratorWithindex

The source code for this example can be found in the file
Examples/iterators/imageLinearlteratorWithindex.cxx

19.3. Image lIterators 481

The itk::ImageLinearlteratorWithindex is designed for line-by-line processing of an
image. It walks a linear path along a selected image dinegtarallel to one of the coordinate
axes of the image. This iterator conceptually breaks an émaip a set of parallel lines that
span the selected image dimension.

Like all image iterators, movement of the ImageLinearli@i&/ithindex is constrained within
an image regiomR. The line/ through which the iterator moves is defined by selecting ecdir
tion and an origin. The liné extends from the origin to the upper boundarnRofThe origin
can be moved to any position along the lower boundari. of

Several additional methods are defined for this iteratootdrol movement of the iterator along
the line/ and movement of the origin &f

e Next Li ne() Moves the iterator to the beginning pixel location of the trlme in the
image. The origin of the next line is determined by incrermenthe current origin along
the fastest increasing dimension of the subspace of thedrteg excludes the selected
dimension.

e Previ ousLi ne() Moves the iterator to théast valid pixel locationin the previous
line. The origin of the previous line is determined by deceeting the current origin
along the fastest increasing dimension of the subspaceeointhge that excludes the
selected dimension.

e GoToBegi nOf Li ne() Moves the iterator to the beginning pixel of the currentline
e GOToEndO Li ne() Move the iterator tmne pasthe last valid pixel of the current line.

e | sAt Rever seEndOF Li ne() Returns true if the iterator points tme position before
the beginning pixel of the current line.

e | SAt EndOf Li ne() Returns true if the iterator points tme position pagthe last valid
pixel of the current line.

The following code example shows how to use the ImageLiteratorWithindex. It imple-
ments the same algorithm as in the previous example, flippinighage across itsaxis. Two
line iterators are iterated in opposite directions acrbssdaxis. After each line is traversed,
the iterator origins are stepped along thaxis to the next line.

Headers for both the const and non-const versions are needed

#include "itkimageLinearConstlteratorWithindex.h"
#include "itkimageLinearlteratorWithindex.h"

The RGB image and pixel types are defined as in the previoun@ra The ImageLinearlt-
eratorWithindex class and its const version each haveesiteghplate parameters, the image

type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageLinearIteratorWithIndex.html

482 Chapter 19. lterators

typedef itk::lmageLinearlteratorWithindex< ImageType > IteratorType;
typedef itk::ImageLinearConstlteratorWithindex< Image Type > ConstlteratorType;

After reading the input image, we allocate an output image dfithe same size, spacing, and
origin.

ImageType::Pointer outputimage = ImageType::New();
outputimage->SetRegions(inputimage->GetRequestedReg ion());
outputimage->Copylnformation(inputimage);

outputimage->Allocate();

Next we create the two iterators. The const iterator walksitiput image, and the non-const
iterator walks the output image. The iterators are initedi over the same region. The direction
of iteration is set to 0, the dimension.

ConstlteratorType inputlt(inputimage, inputimage->Get RequestedRegion());
IteratorType outputlt(outputimage, inputimage->GetReq uestedRegion());
inputlt.SetDirection(0);

outputlt.SetDirection(0);

Each line in the input is copied to the output. The input il@ranoves forward across columns
while the output iterator moves backwards.

for (inputlt.GoToBegin(), outputit.GoToBegin(); ! input It.ISAtEnd();
outputlt.NextLine(), inputlt.NextLine())

{
inputlt. GoToBeginOfLine();

outputlt. GoToEndOfLine();
--outputlt;
while (! inputlt.ISAtEndOfLine())

{
outputlt.Set(inputlt.Get());
++inputlt;
--outputlt;
}
}

Running this example oROI_QB_MUL 1.tif produces the same output image shown in Fig-
ure 19.3.

19.4 Neighborhood Iterators

In ITK, a pixel neighborhood is loosely defined as a small §gixels that are locally adjacent
to one another in an image. The size and shape of a neighlshrhsavell the connectivity

19.4. Neighborhood lterators 483

]
| itk::Image
T

| BEGIN Position

—_— - — — — — — - — — -

A
]
|

™

=
N

E=

> — > — > —> —> »>—> —>

=
H

~
=

> = — > — > — > — > —

A
L]
|

~

7

C-> —_ = — — > — > — — > .

-l
e

Neighborhood
Iteration Region Iterator

A

END |505iti0n

Figure 19.4:Path of a 3x3 neighborhood iterator through a 2D image region. The extent of the neighbor-
hood is indicated by the hashing around the iterator position. Pixels that lie within this extent are accessible
through the iterator. An arrow denotes a single iterator step, the result of one ++ operation.

among pixels in a neighborhood, may vary with the applicatio

Many image processing algorithms are neighborhood-bdbatljs, the result at a pixelis
computed from the values of pixels in the ND neighborhood. o€onsider finite difference
operations in 2D. A derivative at pixel indéx= (j,k), for example, is taken as a weighted
difference of the values &f + 1,k) and(j — 1,k). Other common examples of neighborhood
operations include convolution filtering and image morpkg!

This section describes a class of ITK image iterators tretdasigned for working with pixel
neighborhoods. An ITK neighborhood iterator walks an imagggon just like a normal image
iterator, but instead of only referencing a single pixelattestep, it simultaneously points to the
entire ND neighborhood of pixels. Extensions to the stashdtarator interface provide read and
write access to all neighborhood pixels and informatiorhaagthe size, extent, and location of
the neighborhood.

Neighborhood iterators use the same operators defined tin8d©.2 and the same code con-
structs as normal iterators for looping through an imagegufé 19.4 shows a neighborhood
iterator moving through an iteration region. This iteradefines a 83 neighborhood around
each pixel that it visits. Theenterof the neighborhood iterator is always positioned over its
current index and all other neighborhood pixel indices aferenced as offsets from the center
index. The pixel under the center of the neighborhood iberand all pixels under the shaded
area, orextent of the iterator can be dereferenced.

484 Chapter 19. lterators

0 1 2 0 1 2 0 1 2
(-1,-1) (0,-1) (1,-1 (-1,-2) (0,-2)| (1,-2 (-1,0) (0,0)] (1,0)
3 4 5 3 4 5 radius = [1,0]
10| 0,0 (1.0 (-1-1) (0-1) (1,-1 size =[3.1]

6 7 8 6 7 8
(-1,1)| 0,1)| (1,2 (-1,0)| (0,00 (1,0)
radius = [1,1] 9 10 11 0
size = [3,3] -1,1)| (0,1) | (1,2) (0,-2)
12 13| 14 1
(-1,2) (0,2)| (1,2) (0,-1)
radius = [1,2] 2
size = [3,5] (0,0)
0 1 2 3 4 5 6 3
(-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,71) (0,1)
7 8 9 10 11| 12| 13 4
(-3,0) (-2,0)| (-1,0f (0,0) (1,0) (2,0) (3,0 0,2)
14 | 15| 16| 17| 18, 19 20 radius = [0,2]
-3,1) (-2,1) (-1,1) (01 (11 @1) @1 size =[1,5]
radius = [3,1]
size = [7,3]

Figure 19.5:Several possible 2D neighborhood iterator shapes are shown along with their radii and sizes.
A neighborhood pixel can be dereferenced by its integer index (top) or its offset from the center (bottom).
The center pixel of each iterator is shaded.

In addition to the standard image pointer and iterationaediSection 19.2), neighborhood
iterator constructors require an argument that specifeesttent of the neighborhood to cover.
Neighborhood extent is symmetric across its center in eachaad is given as an array bf
distances that are collectively called tlaelius Each elemerd of the radius, where @ d < N
andN is the dimensionality of the neighborhood, gives the exdétite neighborhood in pixels
for dimensionN. The length of each face of the resulting ND hypercubeds-2A pixels, a
distance ofd on either side of the single pixel at the neighbor centeruigdl9.5 shows the
relationship between the radius of the iterator and thedfizke neighborhood for a variety of
2D iterator shapes.

The radius of the neighborhood iterator is queried afterstootion by calling the
GetRadius() method. Some other methods provide some useful informatimut the iter-
ator and its underlying image.

19.4. Neighborhood lterators 485

e Si zeType Get Radi us() Returns the ND radius of the neighborhood as an
itk::Size

e const | mageType *Cetl magePoi nt er () Returns the pointer to the image ref-
erenced by the iterator.

e unsi gned | ong Size() Returns the size in number of pixels of the neighborhood.

The neighborhood iterator interface extends the normal ikEKator interface for setting and
getting pixel values. One way to dereference pixels is toktlof the neighborhood as a linear
array where each pixel has a unique integer index. The inflexpixel in the array is deter-
mined by incrementing from the upper-left-forward cornithe neighborhood along the fastest
increasing image dimension: first column, then row, theresland so on. In Figure 19.5, the
unique integer index is shown at the top of each pixel. Theecgrixel is always at position
n/2, wheren is the size of the array.

e Pi xel Type Get Pi xel (const unsigned int i) Returns the value of the
pixel at neighborhood positian

e void SetPixel (const unsigned int i, Pixel Type p) Setsthe value of
the pixel at position to p.

Another way to think about a pixel location in a neighborhases an ND offset from the
neighborhood center. The upper-left-forward corner at2x3 neighborhood, for example, can
be described by offs€t-1,—1, —1). The bottom-right-back corner of the same neighborhood
is at offset(1,1,1). In Figure 19.5, the offset from center is shown at the bottdneach
neighborhood pixel.

e Pi xel Type Get Pi xel (const O f set Type &o0) Get the value of the pixel at
the position offseb from the neighborhood center.
e void SetPixel (const OfsetType &o, Pixel Type p) Set the value at

the position offseb from the neighborhood center to the vajue

The neighborhood iterators also provide a shorthand fdingeand getting the value at the
center of the neighborhood.
e Pi xel Type Get Cent er Pi xel () Gets the value at the center of the neighborhood.
e voi d Set Cent er Pi xel (Pi xel Type p) Sets the value at the center of the neigh-

borhood to the valup

There is another shorthand for setting and getting valugsifels that lie some integer distance
from the neighborhood center along one of the image axes.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

486

Chapter 19. lterators

Pi xel Type Get Next (unsigned int d) Getthe value immediately adjacent to
the neighborhood center in the positive direction alongithgis.

voi d Set Next (unsigned int d, Pixel Type p) Setthe value immediately
adjacent to the neighborhood center in the positive dmaaiong thel axis to the value

p.

Pi xel Type Get Previ ous(unsi gned int d) Getthe value immediately adja-
cent to the neighborhood center in the negative directiongathed axis.

voi d Set Previous(unsigned int d, Pixel Type p) Setthe value imme-
diately adjacent to the neighborhood center in the negdineztion along thel axis to
the valuep.

Pi xel Type Get Next (unsigned int d, unsigned int s) Get the value
of the pixel located pixels from the neighborhood center in the positive diat@long
thed axis.

voi d Set Next (unsigned int d, unsigned int s, PixelType p)
Set the value of the pixel locatedpixels from the neighborhood center in the positive
direction along thel axis to valuep.

Pi xel Type CGet Previ ous(unsigned int d, unsigned int s) Get the
value of the pixel located pixels from the neighborhood center in the positive direc-
tion along thel axis.

voi d Set Previous(unsigned int d, unsigned int s, PixelType
p) Setthe value of the pixel locatedixels from the neighborhood center in the positive
direction along thel axis to value.

It is also possible to extract or set all of the neighborhoaldies from an iterator at once using
a regular ITK neighborhood object. This may be useful in atgms that perform a particu-
larly large number of calculations in the neighborhood amdild otherwise require multiple
dereferences of the same pixels.

e Nei ghbor hoodType Get Nei ghbor hood() Return aitk::Neighborhood ofthe

same size and shape as the neighborhood iterator and coathof the values at the
iterator position.

e voi d Set Nei ghbor hood(Nei ghbor hoodType &N) Set all of the values in the

neighborhood at the iterator position to those containeddighborhood\, which must
be the same size and shape as the iterator.

Several methods are defined to provide information aboutdiighborhood.

e | ndexType Cet | ndex() Returnthe image index of the center pixel of the neighbor-

hood iterator.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Neighborhood.html

19.4. Neighborhood lterators 487

e | ndexType Getl ndex(Of f set Type o) Return the image index of the pixel at
offseto from the neighborhood center.

e | ndexType Cetl ndex(unsigned int i) Return the image index of the pixel
at array position .

e O fset Type Get O fset(unsigned int i) Return the offset from the neigh-
borhood center of the pixel at array position

e unsi gned | ong Get Nei ghbor hoodl ndex(O f set Type 0) Return the array
position of the pixel at offsai from the neighborhood center.

e std::slice GetSlice(unsigned int n) Return astd:slice through the
iterator neighborhood along axis

A neighborhood-based calculation in a neighborhood closmtimage boundary may require
data that falls outside the boundary. The iterator in Fidi@el, for example, is centered on
a boundary pixel such that three of its neighbors actuallpatoexist in the image. When the

extent of a neighborhood falls outside the image, pixelesfor missing neighbors are supplied
according to a rule, usually chosen to satisfy the numeragiirements of the algorithm. A

rule for supplying out-of-bounds values is called@indary condition

ITK neighborhood iterators automatically detect out-ofibhds dereferences and will return val-
ues according to boundary conditions. The boundary canditipe is specified by the second,
optional template parameter of the iterator. By defauligimeorhood iterators use a Neumann
condition where the first derivative across the boundargis.zThe Neumann rule simply re-
turns the closest in-bounds pixel value to the requestesd®bibunds location. Several other
common boundary conditions can be found in the ITK toolkfie¥ include a periodic condition
that returns the pixel value from the opposite side of tha dat, and is useful when working
with periodic data such as Fourier transforms, and a cohggme condition that returns a set
valuev for all out-of-bounds pixel dereferences. The constaniegondition is equivalent to
padding the image with value

Bounds checking is a computationally expensive operatiecabse it occurs each time the
iterator is incremented. To increase efficiency, a neigihbod iterator automatically disables
bounds checking when it detects that it is not necessary. e sy also explicitly disable
or enable bounds checking. Most neighborhood based digmitan minimize the need for
bounds checking through clever definition of iteration o&gi. These techniques are explored
in Section 19.4.1.

e voi d NeedToUseBoundar yCondi ti onOn() Explicitly turn bounds checking on.
This method should be used with caution because unnedgsaabling bounds check-
ing may result in a significant performance decrease. Inrgéyeu should allow the
iterator to automatically determine this setting.

e voi d NeedToUseBoundar yCondi ti onOf f () Explicitly disable bounds check-
ing. This method should be used with caution because digabbunds checking when
it is needed will result in out-of-bounds reads and undefiesdlts.

488 Chapter 19. lterators

e void Overri deBoundaryConditi on(BoundaryConditi onType =*b)
Overrides the templated boundary condition, using boyndandition object instead.
Objectb should not be deleted until it has been released by theaterBlhis method can
be used to change iterator behavior at run-time.

e voi d Reset Boundar yCondi ti on() Discontinues the use of any run-time speci-
fied boundary condition and returns to using the conditiecjgd in the template argu-
ment.

e void SetPixel (unsigned int i, Pixel Type p, bool status) Sets
the value at neighborhood array positioto valuep. If the positioni is out-of-bounds,
status is set tofalse , otherwisestatus is set totrue .

The following sections describe the two ITK neighborhooderator classes,
itk::NeighborhoodlIterator and itk::ShapedNeighborhoodIterator . Each has a
const and a non-const version. The shaped iterator is a mefimeof the standard Neighbor-
hoodlterator that supports an arbitrarily-shaped (natitieear) neighborhood.

19.4.1 Neighborhoodlterator

The standard neighborhood iterator class in ITK is ttkeNeighborhoodlterator . To-
gether with itsconst version, itk::ConstNeighborhoodlterator , it implements the com-
plete API described above. This section provides seveeahples to illustrate the use of Neigh-
borhoodlterator.

Basic neighborhood techniques: edge detection

The source code for this example can be found in the file
Examples/Iterators/Neighborhoodlteratorsl.cxx

This example uses thék::Neighborhoodlterator to implement a simple Sobel edge de-
tection algorithm [35]. The algorithm uses the neighborhiterator to iterate through an input
image and calculate a series of finite difference derivati&nce the derivative results cannot
be written back to the input image without affecting latelcatations, they are written instead
to a second, output image. Most neighborhood processirgitiims follow this read-only
model on their inputs.

We begin by including the proper header files. TitkelmageRegionlterator will be used
to write the results of computations to the output image. Astwersion of the neighborhood
iterator is used because the input image is read-only.

#include "itkConstNeighborhoodlterator.h"
#include "itkimageRegionlterator.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html

19.4. Neighborhood lterators 489

The finite difference calculations in this algorithm reguftoating point values. Hence, we
define the image pixel type to lfleat and the file reader will automatically cast fixed-point
data tofloat

We declare the iterator types using the image type as theldéenparameter. The second
template parameter of the neighborhood iterator, whicltifipe the boundary condition, has
been omitted because the default condition is appropriaténis algorithm.

typedef float PixelType;
typedef otb::image< PixelType, 2 > ImageType;
typedef oth::imageFileReader< ImageType > ReaderType;

typedef itk::ConstNeighborhoodlterator< ImageType > Nei ghborhoodlteratorType;
typedef itk::ImageRegionlterator< ImageType> [teratorT ype;

The following code creates and executes the OTB image re@tetpdate call on the reader
object is surrounded by the standamdcatch ~ blocks to handle any exceptions that may be
thrown by the reader.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
catch (itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std:endl;
return -1;

}

We can now create a neighborhood iterator to range over ttpubaf the reader. For Sobel
edge-detection in 2D, we need a square iterator that extamelpixel away from the neighbor-
hood center in every dimension.

NeighborhoodlteratorType::RadiusType radius;

radius.Fill(1);

NeighborhooditeratorType it(radius, reader->GetOutput 0,
reader->GetOutput()->GetRequestedRegion());

The following code creates an output image and iterator.

ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequeste dRegion());

490 Chapter 19. lterators

output->Allocate();

lteratorType out(output, reader->GetOutput()->GetRequ estedRegion());

Sobel edge detection uses weighted finite difference alionls to construct an edge magnitude
image. Normally the edge magnitude is the root sum of squafrgsirtial derivatives in all
directions, but for simplicity this example only calculgtdex component. The result is a
derivative image biased toward maximally vertical edges.

The finite differences are computed from pixels at six lanadiin the neighborhood. In this
example, we use the iteratBetPixel() method to query the values from their offsets in the
neighborhood. The example in Section 19.4.1 uses conwaluiith a Sobel kernel instead.

Six positions in the neighborhood are necessary for theeflifference calculations. These
positions are recorded oifsetl throughoffseté

NeighborhoodlteratorType::OffsetType offsetl = {{-1,-1 I
NeighborhoodlteratorType::OffsetType offset2 = {{1,-1} L
NeighborhoodlteratorType::OffsetType offset3 = {{-1,0 } I
NeighborhoodlteratorType::OffsetType offsetd = {{1,0}} ;

NeighborhoodlteratorType::OffsetType offsets = {{-1,1} L

NeighborhooditeratorType::OffsetType offset6 = {{1,1}}

It is equivalent to use the six corresponding integer arnaljces instead. For example, the
offsets(-1,-1) and(l, -1) are equivalent to the integer indicésind2, respectively.

The calculations are done irf@ loop that moves the input and output iterators synchroousl
across their respective images. Tue variable is used to sum the results of the finite differ-
ences.

for (it.GoToBegin(), out.GoToBegin(); 'it.ISAtEnd(); ++ it, ++out)
{
float sum;
sum = it.GetPixel(offset2) - it.GetPixel(offsetl);
sum += 2.0 * it.GetPixel(offsetd) - 2.0 * it.GetPixel(offse t3);

sum += it.GetPixel(offset6) - it.GetPixel(offset5);
out.Set(sum);

}

The last step is to write the output buffer to an image file. iMgifs done inside &y/catch
block to handle any exceptions. The output is rescaled &nsity rangg0,255 and cast to
unsigned char so that it can be saved and visualized as a PAig&gim

typedef unsigned char WritePixelType;
typedef otb::image< WritePixelType, 2 > WritelmageType;
typedef oth::ImageFileWriter< WritelmageType > WriterTy pe;

19.4. Neighborhood lterators 491

Figure 19.6:Applying the Sobel operator to an image (left) produces X (right) derivative image.

typedef itk::RescalelntensitylmageFilter<
ImageType, WritelmageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterTyp e:New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->Setlnput(output);

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescaler->GetOutput());
try

{

writer->Update();

}
catch (itk::ExceptionObject &err)

{

std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;

}

The center image of Figure 19.6 shows the output of the Solggdribam applied to
Examples/Data/ROI _QB_PAN_L.tif

Convolution filtering: Sobel operator

The source code for this example can be found in the file
Examples/Iterators/Neighborhoodlterators2.cxx

In this example, the Sobel edge-detection routine is reswriising convolution filtering. Con-

492 Chapter 19. lterators

volution filtering is a standard image processing technthaecan be implemented numerically
as the inner product of all image neighborhoods with a carian kernel [35] [13]. In ITK,
we use a class of objects calladighborhood operatoras convolution kernels and a special
function object calleditk::NeighborhoodInnerProduct to calculate inner products.

The basic ITK convolution filtering routine is to step thréuthe image with a neighborhood
iterator and use NeighborhoodInnerProduct to find the iqgmeduct of each neighborhood
with the desired kernel. The resulting values are writtermatooutput image. This exam-
ple uses a neighborhood operator called thie:SobelOperator , but all neighborhood
operators can be convolved with images using this basiéneutOther examples of neigh-
borhood operators include derivative kernels, Gaussiameke and morphological operators.
itk::NeighborhoodOperatorimageFilter is a generalization of the code in this section to
ND images and arbitrary convolution kernels.

We start writing this example by including the header filastfe Sobel kernel and the inner
product function.

#include "itkSobelOperator.h"
#include "itkNeighborhoodInnerProduct.h"

Refer to the previous example for a description of readimgitiput image and setting up the
output image and iterator.

The following code creates a Sobel operator. The Sobel tgreraquires a direction for its
partial derivatives. This direction is read from the comohéine. Changing the direction of
the derivatives changes the bias of the edge detectionpiaximally vertical or maximally
horizontal.

itk::SobelOperator<PixelType, 2> sobelOperator;
sobelOperator.SetDirection(::atoi(argv[3]));
sobelOperator.CreateDirectional();

The neighborhood iterator is initialized as before, exdbpt now it takes its radius directly
from the radius of the Sobel operator. The inner product tfancobject is templated over
image type and requires no initialization.

NeighborhooditeratorType::RadiusType radius = sobelOpe rator.GetRadius();
NeighborhoodlteratorType it(radius, reader->GetOutput 0,
reader->GetOutput()->GetRequestedRegion());

itk::NeighborhoodInnerProduct<imageType> innerProduc t;

Using the Sobel operator, inner product, and neighborhtavdtor objects, we can now write
a very simplefor loop for performing convolution filtering. As before, outdoounds pixel
values are supplied automatically by the iterator.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodInnerProduct.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SobelOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperatorImageFilter.html

19.4. Neighborhood lterators 493

for (it.GoToBegin(), out.GoToBegin(); lit.ISAtEnd(); ++ it, ++out)
{

out.Set(innerProduct(it, sobelOperator));

}

The output is rescaled and written as in the previous exanfgelying this example in the
andy directions produces the images at the center and right of &it9.6. Note that x-direction
operator produces the same output image as in the previansgpds.

Optimizing iteration speed

The source code for this example can be found in the file
Examples/Iterators/Neighborhoodlterators3.cxx

This example illustrates a technique for improving the &fficy of neighborhood calculations
by eliminating unnecessary bounds checking. As describ&gction 19.4, the neighborhood
iterator automatically enables or disables bounds chgckased on the iteration region in
which itis initialized. By splitting our image into boundeand non-boundary regions, and then
processing each region using a different neighborhoodtterthe algorithm will only perform
bounds-checking on those pixels for which it is actuallyuieed. This trick can provide a sig-
nificant speedup for simple algorithms such as our Sobel ddtgetion, where iteration speed
is a critical.

Splitting the image into the necessary regions is an eask twsen you use the
itk::ImageBoundaryFacesCalculator . The face calculator is so named because it returns
a list of the “faces” of the ND dataset. Faces are those regigmose pixels all lie within a
distanced from the boundary, wherd is the radius of the neighborhood stencil used for the
numerical calculations. In other words, faces are thosemsgvhere a neighborhood iterator
of radiusd will always overlap the boundary of the image. The face datou also returns the
singleinner region, in which out-of-bounds values are never requiratilasunds checking is
not necessary.

The face calculator object is definediikNeighborhoodAlgorithm.h . We include this file
in addition to those from the previous two examples.

#include "itkNeighborhoodAlgorithm.h"

First we load the input image and create the output imageraret product function as in the

previous examples. The image iterators will be created mter Istep. Next we create a face
calculator object. An empty list is created to hold the regithat will later on be returned by

the face calculator.

typedef itk::NeighborhoodAlgorithm
::ImageBoundaryFacesCalculator< ImageType > FaceCalcul atorType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageBoundaryFacesCalculator.html

494 Chapter 19. lterators

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;

The face calculator function is invoked by passing it an ienpginter, an image region, and a
neighborhood radius. The image pointer is the same imagktaseitialize the neighborhood
iterator, and the image region is the region that the aligarits going to process. The radius is
the radius of the iterator.

Notice that in this case the image region is given as the negfahe outputimage and the
image pointer is given as that of tleput image. This is important if the input and output
images differ in size, i.e. the input image is larger than dbgout image. ITK and OTB
image filters, for example, operate on data from the inpugeraut only generate results in the
RequestedRegion of the output image, which may be smaller than the full exténhe input.

faceList = faceCalculator(reader->GetOutput(), output- >GetRequestedRegion(),
sobelOperator.GetRadius());

The face calculator has returned a list &f 2 1 regions. The first element in the list is always
the inner region, which may or may not be important dependimghe application. For our
purposes it does not matter because all regions are practtessame way. We use an iterator
to traverse the list of faces.

FaceCalculatorType::FaceListType::iterator fit;

We now rewrite the main loop of the previous example so thett eegion in the list is processed
by a separate iterator. The iteratérsandout are reinitialized over each region in turn. Bounds
checking is automatically enabled for those regions thauire it, and disabled for the region
that does not.

[teratorType out;
NeighborhooditeratorType fit;

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
it = NeighborhoodlteratorType(sobelOperator.GetRadius 0,
reader->GetOutput(), *fit);
out = lteratorType(output, *it);

for (it.GoToBegin(), out.GoToBegin(); ! it.ISAtENd(); ++ it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}

}

The output is written as before. Results for this exampldlaesame as the previous example.
You may not notice the speedup except on larger images. Whemagto 3D and higher

19.4. Neighborhood lterators 495

dimensions, the effects are greater because the volumefé@sarea ratio is usually larger. In
other words, as the number of interior pixels increasesivelto the number of face pixels, there
is a corresponding increase in efficiency from disablingratsuichecking on interior pixels.

Separable convolution: Gaussian filtering

The source code for this example can be found in the file
Examples/Iterators/Neighborhoodlterators4.cxx

We now introduce a variation on convolution filtering thatig®ful when a convolution kernel is
separable. In this example, we create a different neigldmatliterator for each axial direction
of the image and then take separate inner products with adddadée Gaussian kernel. The idea
of using several neighborhood iterators at once has apiplitsabeyond convolution filtering
and may improve efficiency when the size of the whole neigihbaod relative to the portion of
the neighborhood used in calculations becomes large.

The only new class necessary for this example is the Gauspenator.
#include "itkGaussianOperator.h"

The Gaussian operator, like the Sobel operator, is instiativith a pixel type and a dimension-
ality. Additionally, we set the variance of the Gaussianichthas been read from the command
line as standard deviation.

itk::GaussianOperator< PixelType, 2 > gaussianOperator;
gaussianOperator.SetVariance(::atof(argv[3]) * ::atof (argv(3]));

The only further changes from the previous example are imthim loop. Once again we use
the results from face calculator to construct a loop that@sses boundary and non-boundary
image regions separately. Separable convolution, howesguires an additional, outer loop
over all the image dimensions. The direction of the Gaussiramnator is reset at each iteration
of the outer loop using the new dimension. The iterators gbalirection to match because they
are initialized with the radius of the Gaussian operator.

Input and output buffers are swapped at each iteration sehtb@utput of the previous iteration
becomes the input for the current iteration. The swap is adfbpmed on the last iteration.

ImageType::Pointer input = reader->GetOutput();

for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)
{
gaussianOperator.SetDirection(i);
gaussianOperator.CreateDirectional();

faceList = faceCalculator(input, output->GetRequestedR egion(),
gaussianOperator.GetRadius());

496 Chapter 19. lterators

Figure 19.7:Results of convolution filtering with a Gaussian kernel of increasing standard deviation 0
(from left to right, 0 =0, 0 =1, 0 =2, 0 =5). Increased blurring reduces contrast and changes the
average intensity value of the image, which causes the image to appear brighter when rescaled.

for (fit=faceList.begin(); fit != faceList.end(); ++fit)

i{t = NeighborhoodlteratorType(gaussianOperator.GetRad ius(),
input, *fit);
out = lteratorType(output, *fit);
for (it.GoToBegin(), out.GoToBegin(); ! it.ISAtENd(); ++ it, ++out)
E)ut.Set(innerProduct(it, gaussianOperator));
}

}

/I Swap the input and output buffers

if (i != ImageType:ImageDimension - 1)
{
ImageType::Pointer tmp = input;
input = output;
output = tmp;
}

}

The output is rescaled and written as in the previous exampigure 19.7 shows the results of
Gaussian blurring the imadeamples/Data/QB _Suburb.png using increasing kernel widths.

Random access iteration

The source code for this example can be found in the file
Examples/iterators/Neighborhoodlterators6.cxx

Some image processing routines do not need to visit evesl pixan image. Flood-fill and
connected-component algorithms, for example, only visiéls that are locally connected to
one another. Algorithms such as these can be efficientlyemriising the random access capa-
bilities of the neighborhood iterator.

19.4. Neighborhood lterators 497

The following example finds local minima. Given a seed pairg,can search the neighborhood
of that point and pick the smallest valae While mis not at the center of our current neigh-
borhood, we move in the direction ofand repeat the analysis. Eventually we discover a local
minimum and stop. This algorithm is made trivially simpleND using an ITK neighborhood
iterator.

To illustrate the process, we create an image that descerdprhere to a single minimum:
a positive distance transform to a point. The details oftargahe distance transform are not
relevant to the discussion of neighborhood iterators, antte found in the source code of this
example. Some noise has been added to the distance trarisfaga for additional interest.

The variablenput is the pointer to the distance transform image. The localrmim algorithm
is initialized with a seed point read from the command line.

ImageType::IndexType index;
index[0] = ::atoi(argv[2]);
index[1] = ::atoi(argv(3]);

Next we create the neighborhood iterator and position ti@seed point.

NeighborhoodliteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodlteratorType it(radius, input, input->GetR equestedRegion());

it.SetLocation(index);

Searching for the local minimum involves finding the minimimrthe current neighborhood,
then shifting the neighborhood in the direction of that minm. Thefor loop below records
the itk::Offset of the minimum neighborhood pixel. The neighborhood iteras then
moved using that offset. When a local minimum is detectied, will remain false and the
while loop will exit. Note that this code is valid for an image of aiynensionality.

bool flag = true;
while (flag == true)

NeighborhoodlteratorType::OffsetType nextMove;
nextMove.Fill(0);

flag = false;

PixelType min = it.GetCenterPixel();

for (unsigned i = 0; i < it.Size(); i++)
{
if (it.GetPixel(i) < min)
{

min = it.GetPixel(i);
nextMove = it.GetOffset(i);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

498 Chapter 19. lterators

Figure 19.8:Paths traversed by the neighborhood iterator from different seed points to the local minimum.
The true minimum is at the center of the image. The path of the iterator is shown in white. The effect of
noise in the image is seen as small perturbations in each path.

flag = true;
}

}
it.SetCenterPixel(255.0);

it += nextMove;

}

Figure 19.8 shows the results of the algorithm for severd goints. The white line is the path
of the iterator from the seed point to the minimum in the ceatehe image. The effect of the
additive noise is visible as the small perturbations in tathg.

19.4.2 ShapedNeighborhooditerator

This section describes a variation on the neighborhoodtitercalled ashapedneigh-

borhood iterator. A shaped neighborhood is defined like anidisk, orstenci| with

different offsets in the rectilinear neighborhood of thermal neighborhood itera-
tor turned off or on to create a pattern. Inactive positiotisoge not in the sten-
cil) are not updated during iteration and their values cénm® read or written. The
shaped iterator is implemented in the classtk::ShapedNeighborhoodlterator ,

which is a subclass of itk::Neighborhoodlterator . A const version,
itk::ConstShapedNeighborhooditerator , Is also available.

Like a regular neighborhood iterator, a shaped neighbatlitecator must be initialized with an

ND radius object, but the radius of the neighborhood of a stiagerator only defines the set
of possibleneighbors. Any number of possible neighbors can then beadetl or deactivated.

The shaped neighborhood iterator defines an API for aatigateighbors. When a neighbor
location, defined relative to the center of the neighborhasdctivated, it is placed on the
active listand is then part of the stencil. An iterator can be “reshapé¢dhy time by adding or

removing offsets from the active list.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstShapedNeighborhoodIterator.html

19.4. Neighborhood lterators 499

e void ActivateO fset (O fset Type &o) Include the offseb in the stencil of
active neighborhood positions. Offsets are relative taighborhood center.

e void DeactivateOfset (O fset Type &) Remove the offset from the sten-
cil of active neighborhood positions. Offsets are relatovéhe neighborhood center.

e void Cl earActivelList() Deactivate all positions in the iterator stencil by clear-
ing the active list.

e unsigned int GetActivel ndexLi stSi ze() Returnthe number of pixel loca-
tions that are currently active in the shaped iterator stenc

Because the neighborhood is less rigidly defined in the shderator, the set of pixel access
methods is restricted. Only ti&=tPixel() andSetPixel) methods are available, and calling
these methods on an inactive neighborhood offset will retundefined results.

For the common case of traversing all pixel offsets in a nedghood, the shaped iterator class
provides an iterator through the active offsets in its sterfitis stencil iteratorcan be incre-
mented or decremented and defiGeH) andSet() for reading and writing the values in the
neighborhood.

e ShapedNei ghborhoodlterator::Iterator Begi n() Returnaconstornon-
const iterator through the shaped iterator stencil thattpdd the first valid location in
the stencil.

e ShapedNei ghborhoodl terator::Iterator End() Return a const or non-
const iterator through the shaped iterator stencil thattpaine position pasthe last
valid location in the stencil.

The functionality and interface of the shaped neighborhiterdtor is best described by exam-
ple. We will use the ShapedNeighborhoodilterator to impl#reeme binary image morphology
algorithms (see [35], [13], et al.). The examples that fellmplement erosion and dilation.

Shaped neighborhoods: morphological operations

The source code for this example can be found in the file
Examples/iterators/ShapedNeighborhoodlterators1.cxx

This example usestk::ShapedNeighborhoodlterator to implement a binary erosion al-
gorithm. If we think of an imagé as a set of pixel indices, then erosionldfy a smaller set
E, called thestructuring elemenis the set of all indices at locatiomsn | such that whelk is
positioned ak, every elementifk is also contained ih.

This type of algorithm is easy to implement with shaped nieaghood iterators because we
can use the iterator itself as the structuring elenter@nd move it sequentially through all

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html

500 Chapter 19. lterators

positionsx. The result ak is obtained by checking values in a simple iteration looptigh the
neighborhood stencil.

We need two iterators, a shaped iterator for the input imagkaaregular image iterator for
writing results to the output image.

#include "itkConstShapedNeighborhoodlterator.h"
#include "itkimageRegionlterator.h"

Since we are working with binary images in this exampleysigned char pixel type will
do. The image and iterator types are defined using the pigel ty

typedef unsigned char PixelType;
typedef otb::image< PixelType, 2 > ImageType;

typedef itk::ConstShapedNeighborhoodlterator<
ImageType
> ShapedNeighborhoodlteratorType;

typedef itk::lmageRegionlterator< ImageType> lteratorT ype;

Refer to the examples in Section 19.4.1 or the source codeéxample for a description of
how to read the input image and allocate a matching outpujéma

The size of the structuring element is read from the commanadand used to define a radius
for the shaped neighborhood iterator. Using the methoddpeed in section 19.4.1 to minimize
bounds checking, the iterator itself is not initializedilentering the main processing loop.

unsigned int element_radius = :atoi(argv(3]);
ShapedNeighborhoodlteratorType::RadiusType radius;
radius.Fill(element_radius);

The face calculator object introduced in Section 19.4.téated and used as before.

typedef itk::NeighborhoodAlgorithm::ImageBoundaryFac esCalculator<
ImageType > FaceCalculatorType;

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;

faceList = faceCalculator(reader->GetOutput(),

output->GetRequestedRegion(),
radius);

Now we initialize some variables and constants.

19.4. Neighborhood lterators 501

[teratorType out;

const PixelType background_value = 0;
const PixelType foreground_value = 255;
const float rad = static_cast<float>(element_radius);

The outer loop of the algorithm is structured as in previoeggborhood iterator examples.
Each region in the face list is processed in turn. As each egion is processed, the input and
output iterators are initialized on that region.

The shaped iterator that ranges over the input is our stingtelement and its active stencil
must be created accordingly. For this example, the stringfuelement is shaped like a circle
of radiuselement _radius . Each of the appropriate neighborhood offsets is activatdtie
doublefor loop.

for (fit=faceList.begin(); fit != faceList.end(); ++fit)

{
ShapedNeighborhoodlteratorType it(radius, reader->Get Output(), *fit);
out = lteratorType(output, *fit);

/I Creates a circular structuring element by activating all the pixels less
/I than radius distance from the center of the neighborhood.

for (float y = -rad; y <= rad; y++)
{

for (float x = -rad; x <= rad; x++)
{
ShapedNeighborhooditeratorType::OffsetType off;

float dis = :sqrt(x*x + y*y);

if (dis <= rad)
{
off[0] = static_cast<int>(x);
off{1] = static_cast<int>(y);
it. ActivateOffset(off);
}

}

1

The inner loop, which implements the erosion algorithmaigly simple. Thefor loop steps
the input and output iterators through their respectivegiesa At each step, the active stencil
of the shaped iterator is traversed to determine whethebals underneath the stencil contain
the foreground value, i.e. are contained within thel sétote the use of the stencil iterator,,

in performing this check.

/I Implements erosion

502 Chapter 19. lterators

for (it.GoToBegin(), out.GoToBegin(); lit.ISAtEnd(); ++ it, ++out)
ShapedNeighborhoodlteratorType::Constlterator ci;

bool flag = true;
for (ci = it.Begin(); ci != it.End(); ci++)

{
if (ci.Get() == background_value)
{
flag = false;
break;
}
}
if (flag == true)
{
out.Set(foreground_value);
1
else

out.Set(background_value);

}
}
}

The source code for this example can be found in the file
Examples/iterators/ShapedNeighborhoodlterators2.cxx

The logic of the inner loop can be rewritten to perform ddati Dilation of the set by E is the
set of allx such thak& positioned ak contains at least one elementlin

/I Implements dilation
for (it.GoToBegin(), out.GoToBegin(); lit.ISAtEnd(); ++ it, ++out)

ShapedNeighborhoodlteratorType::Constlterator ci;

bool flag = false;
for (ci = it.Begin(); ci != it.End(); ci++)

{

if (ci.Get() != background_value)
{
flag = true;
break;
}

1

if (flag == true)

ut.Set(foreground_value);

—~— o —

19.4. Neighborhood lterators 503

g

Figure 19.9:The effects of morphological operations on a binary image using a circular structuring ele-
ment of size 4. Left: original image. Right: dilation.

else
{
out.Set(background_value);
}
}
1

The output image is written and visualized directly as a tyirimage ofunsigned chars
Figure 19.9 illustrates the results of dilation on the imBrgnples/Data/Binarylmage.png
Applying erosion and dilation in sequence effects the molgdical operations of opening and
closing.

CHAPTER

TWENTY

Image Adaptors

The purpose of aimage adaptois to make one image appear like another image, possibly of
a different pixel type. A typical example is to take an imageizel typeunsigned char and
present it as an image of pixel tyfleat . The motivation for using image adaptors in this
case is to avoid the extra memory resources required by asiagting filter. When we use the
itk::CastimageFilter for the conversion, the filter creates a memory buffer langeugh

to store thefloat image. Thefloat image requires four times the memory of the original
image and contains no useful additional information. Imadgptors, on the other hand, do not
require the extra memory as pixels are converted only wheyndhe read using image iterators
(see Chapter 19).

Image adaptors are particularly useful when there is infead pixel access, since the actual
conversion occurs on the fly during the access operationudh sases the use of image adap-
tors may reduce overall computation time as well as redugaangusage. The use of image
adaptors, however, can be disadvantageous in some sitslai@r example, when the down-
stream filter is executed multiple times, a CastimageFiltércache its output after the first
execution and will not re-execute when the filter downstréaopdated. Conversely, an image
adaptor will compute the cast every time.

Another application for image adaptors is to perform lighityht pixel-wise operations replac-
ing the need for a filter. In the toolkit, adaptors are defimadnfiany single valued and single
parameter functions such as trigonometric, exponentilagarithmic functions. For example,

o itk::ExplmageAdaptor
e itk::SinlmageAdaptor

o itk::CoslmageAdaptor

The following examples illustrate common applicationsroage adaptors.

http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExpImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SinImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CosImageAdaptor.html

506 Chapter 20. Image Adaptors

S

Filter
B

Casting| Image
Filter Y
-)

P———
. Adaptor
Filter | Image v
ALX —— |
N ——

Figure 20.1: The difference between using a CastimageFilter and an ImageAdaptor. ImageAdaptors
convert pixel values when they are accessed by iterators. Thus, they do not produces an intermediate
image. In the example illustrated by this figure, the Image Y is not created by the ImageAdaptor; instead,
the image is simulated on the fly each time an iterator from the filter downstream attempts to access the
image data.

Image
z

Filter
B

Image
Z

20.1 Image Casting

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptorl.cxx

This example illustrates how thik::imageAdaptor can be used to cast an image from one
pixel type to another. In particular, we wadldaptanunsigned char image to make it appear
as an image of pixel typ#oat

We begin by including the relevant headers.

#include "otbimage.h"
#include "itkimageAdaptor.h"

First, we need to define pixel accessoclass that does the actual conversion. Note that in
general, the only valid operations for pixel accessors laosé that only require the value of
the input pixel. As such, neighborhood type operations atepossible. A pixel accessor
must provide methodSet() andGet() , and define the types dfiternalPixelType and
ExternalPixelType . ThelnternalPixelType corresponds to the pixel type of the image to
be adaptedufisigned char in this example). ThéxternalPixelType corresponds to the
pixel type we wish to emulate with the ImageAdaptiivat in this case).

class CastPixelAccessor

{

public:
typedef unsigned char InternalType;
typedef float ExternalType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html

20.1. Image Casting 507

static void Set(InternalType & output, const ExternalType & input)
{

output = static_cast<InternalType>(input);

}

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input);

}
h

The CastPixelAccessor class simply appliegatic _cast to the pixel values. We now use
this pixel accessor to define the image adaptor type andecagainstance using the standard
New() method.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;

typedef otb::image< InputPixelType, Dimension > ImageTyp e;
typedef itk::ImageAdaptor< ImageType, CastPixelAccesso r > ImageAdaptorType;
ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

We also create an image reader templated over the input itgpgeand read the input image
from file.

typedef oth::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

The output of the reader is then connected as the input tarthge adaptor.
adaptor->Setimage(reader->GetOutput());

In the following code, we visit the image using an iteratatantiated using the adapted image
type and compute the sum of the pixel values.

typedef itk::ImageRegionlteratorWithindex< ImageAdapt orType > lteratorType;
IteratorType it(adaptor, adaptor->GetBufferedRegion());

double sum = 0.0;
it. GoToBegin();
while(lit.ISAtEnd())
{
float value = it.Get();
sum += value;
+Hit;

}

508 Chapter 20. Image Adaptors

Although in this example, we are just performing a simple sation, the key concept is that
access to pixels is performed as if the pixel is of tflpat . Additionally, it should be noted

that the adaptor is used as if it was an actual image and ndfilteralmageAdaptors conform

to the same API as theth::lmage class.

20.2 Adapting RGB Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor2.cxx

This example illustrates how to use tlitk::ImageAdaptor to access the individual compo-
nents of an RGB image. In this case, we create an ImageAddyatowill accept a RGB image
as input and presents it as a scalar image. The pixel datdo&viihken directly from the red
channel of the original image.

As with the previous example, the bulk of the effort in cregtihe image adaptor is associated
with the definition of the pixel accessor class. In this céise accessor converts a RGB vector
to a scalar containing the red channel component. Noterthbeifollowing, we do not need to
define theSet() method since we only expect the adaptor to be used for readitagfrom the
image.

class RedChannelPixelAccessor

{

public:
typedef itk:RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input.GetRed());

}
%
TheGet() method simply calls th€etRed() method defined in thatk::RGBPixel class.

Now we use the internal pixel type of the pixel accessor tomedfie input image type, and then
proceed to instantiate the ImageAdaptor type.

typedef RedChannelPixelAccessor::InternalType InputPi xelType;
const unsigned int Dimension = 2;
typedef otb::image< InputPixelType, Dimension > ImageTyp e;

typedef itk::ImageAdaptor< ImageType,
RedChannelPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html

20.2. Adapting RGB Images 509

We create an image reader and connect the output to the adaptefore.

typedef otb::imageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

adaptor->Setimage(reader->GetOutput());

We create anitk::RescalelntensitylmageFilter and an oth::ImageFileWriter to
rescale the dynamic range of the pixel values and send thacéed channel to an image file.
Note that the image type used for the rescaling filter isittegeAdaptorType itself. That is,
the adaptor type is used in the same context as an image type.

typedef otb::Image< unsigned char, Dimension > Outputimag eType;
typedef itk::RescalelntensitylmageFilter< ImageAdapto rType,
OutputimageType
> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();
typedef otb::imageFileWriter< OutputimageType > WriterT ype;
WriterType::Pointer writer = WriterType::New();

Now we connect the adaptor as the input to the rescaler atldesparameters for the intensity
rescaling.

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

rescaler->Setlnput(adaptor);
writer->Setinput(rescaler->GetOutput());

Finally, we invoke theJpdate() method on the writer and take precautions to catch any excep-
tion that may be thrown during the execution of the pipeline.

try
{
writer->Update();

}
catch(itk::ExceptionObject & excp)

{

std::cerr << "Exception caught " << excp << std:endl
return 1,

}

ImageAdaptors for the green and blue channels can easimplerented by modifying the
pixel accessor of the red channel and then using the newauixelssor for instantiating the type
of an image adaptor. The following define a green channel po@essor.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

510 Chapter 20. Image Adaptors

class GreenChannelPixelAccessor

{

public:
typedef itk:RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

}

return static_cast<ExternalType>(input.GetGreen());

A blue channel pixel accessor is similarly defined.

class BlueChannelPixelAccessor

{

public:
typedef itk:RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

}

return static_cast<ExternalType>(input.GetBlue());

20.3 Adapting Vector Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor3.cxx

This example illustrates the use dk::ImageAdaptor to obtain access to the components
of a vector image. Specifically, it shows how to manage pixekasors containing internal
parameters. In this example we create an image of vectorsibyg a gradient filter. Then, we
use an image adaptor to extract one of the components of ttervenage. The vector type
used by the gradient filter is thigk::CovariantVector class.

We start by including the relevant headers.

#include "itkCovariantVector.h"
#include "itkGradientRecursiveGaussianimageFilter.n"

A pixel accessors class may have internal parameters tleat dfie operations performed on
input pixel data. Image adaptors support parameters inititernal pixel accessor by using the

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html

20.3. Adapting Vector Images 511

assignment operator. Any pixel accessor which has intgra@meters must therefore imple-
ment the assignment operator. The following defines a poadssor for extracting components
from a vector pixel. Then_Index member variable is used to select the vector component to
be returned.

class VectorPixelAccessor

{
public:
typedef itk::CovariantVector<float,2> InternalType;
typedef float ExternalType;
void operator=(const VectorPixelAccessor & vpa)
{
m_Index = vpa.m_Index;
}
ExternalType Get(const InternalType & input) const
{
return static_cast<ExternalType>(input[m_Index]);
}
void Setindex(unsigned int index)
{
m_Index = index;
}
private:
unsigned int m_Index;

h

TheGet() method simply returns thieth component of the vector as indicated by the index.
The assignment operator transfers the value of the indextreewariable from one instance of
the pixel accessor to another.

In order to test the pixel accessor, we generate an image oforge using the
itk::GradientRecursiveGaussianimageFilter . This filter produces an output image of
itk::CovariantVector pixel type. Covariant vectors are the natural represemtddr gradi-
ents since they are the equivalent of normals to iso-valumsfoids.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;

typedef oth::image< InputPixelType, Dimension > Inputima geType;
typedef itk::CovariantVector< float, Dimension > VectorP ixelType;
typedef otb::image< VectorPixelType, Dimension > Vectorl mageType;
typedef itk::GradientRecursiveGaussianimageFilter< In putimageType,

VectorlmageType> GradientFilterType;
GradientFilterType::Pointer gradient = GradientFilterT ype::New();

We instantiate the ImageAdaptor using the vector imageaggie first template parameter and
the pixel accessor as the second template parameter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html

512 Chapter 20. Image Adaptors

typedef itk::lmageAdaptor< VectorlmageType,
VectorPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

The index of the component to be extracted is specified frenttimmand line. In the follow-
ing, we create the accessor, set the index and connect thesacdo the image adaptor using
the SetPixelAccessor() method.

VectorPixelAccessor accessor;
accessor.SetIindex(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

We create a reader to load the image specified from the comlimenand pass its output as the
input to the gradient filter.

typedef oth::imageFileReader< InputimageType > ReaderTy pe;
ReaderType::Pointer reader = ReaderType::New();
gradient->SetInput(reader->GetOutput());

reader->SetFileName(argv[1]);
gradient->Update();

We now connect the output of the gradient filter as input toithege adaptor. The adaptor
emulates a scalar image whose pixel values are taken frogetbeted component of the vector
image.

adaptor->Setimage(gradient->GetOutput());

20.4 Adaptors for Simple Computation

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor4.cxx

Image adaptors can also be used to perform simple pixelegiggutations on image data. The
following example illustrates how to use titk::ImageAdaptor for image thresholding.

A pixel accessor for image thresholding requires that tlees&or maintain the threshold value.
Therefore, it must also implement the assignment operategttthis internal parameter.

class ThresholdingPixelAccessor

{
public:

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html

20.4. Adaptors for Simple Computation 513

typedef unsigned char InternalType;
typedef unsigned char ExternalType;

ExternalType Get(const InternalType & input) const

{
return (input > m_Threshold) ? 1 : 0;
}
void SetThreshold(const InternalType threshold)
{
m_Threshold = threshold;
}
void operator=(const ThresholdingPixelAccessor & vpa)
{
m_Threshold = vpa.m_Threshold;
}
private:

InternalType m_Threshold;
3

TheGet() method returns one if the input pixel is above the threshottizero otherwise. The
assignment operator transfers the value of the threshotdbmevariable from one instance of
the pixel accessor to another.

To create an image adaptor, we first instantiate an imagevijyose pixel type is the same as
the internal pixel type of the pixel accessor.

typedef ThresholdingPixelAccessor::InternalType Pixel Type;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

We instantiate the ImageAdaptor using the image type asttedimplate parameter and the
pixel accessor as the second template parameter.

typedef itk::imageAdaptor< ImageType,
ThresholdingPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

The threshold value is set from the command line. A threspoldl accessor is created and
connected to the image adaptor in the same manner as in theygexample.

ThresholdingPixelAccessor — accessor;
accessor.SetThreshold(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

514 Chapter 20. Image Adaptors

Figure 20.2:Using ImageAdaptor to perform a simple image computation. An ImageAdaptor is used to
perform binary thresholding on the input image on the left. The center image was created using a threshold
of 100, while the image on the right corresponds to a threshold of 200.

We create a reader to load the input image and connect thataftthe reader as the input to
the adaptor.

typedef oth::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

reader->Update();

adaptor->Setimage(reader->GetOutput());

As before, we rescale the emulated scalar image beforengittout to file. Figure 20.2 illus-
trates the result of applying the thresholding adaptor tgpécal gray scale image using two
different threshold values. Note that the same effect chalee been achieved by using the
itk::BinaryThresholdimageFilter but at the price of holding an extra copy of the image
in memory.

20.5 Adaptors and Writers

Image adaptors will not behave correctly when connecteectlir to a writer. The reason is

that writers tend to get direct access to the image buffen fiteeir input, since image adaptors
do not have a real buffer their behavior in this circumstariseincorrect. You should avoid

instantiating thémageFileWriter or thelmageSeriesWriter over an image adaptor type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html

CHAPTER

TWENTYONE

Streaming and Threading

Streaming and threading are a complex issue in computingmermgl. This chapter provides
the keys to help you understand how it is working so you canentlaé right choices later.

21.1 Introduction

First, you have to be aware that streaming and threadingraralifferent things even if they
are linked to a certain extent. In OTB:

e Streaming describes the ability to combine the processfrgeeeral portion of a big
image and to make the output identical as what you would havter if the whole

image was processed at once. Streaming is compulsory whene ywocessing gigabyte
images.

e Threading is the ability to process simultaneously diffégarts of the image. Threading
will give you some benefits only if you have a fairly recent ggssor (dual, quad core
and some older P4).

To sum up: streaming is good if you have big images, threadirgpod if you have several
processing units.

However, these two properties are not unrelated. Both nelthe filter ability to process parts
of the image and combine the result, that what the Threadeei@eData() method can do.

21.2 Streaming and threading in OTB

For OTB, streaming is pipeline related while threading iefitelated. If you build a pipeline
where one filter is not streamable, the whole pipeline is ttemable: at one point, you would
hold the entire image in memory. Whereas you will benefit frothraaded filter even if the

516 Chapter 21. Streaming and Threading

rest of the pipeline is made of non-threadable filters (tleeg@ssing time will be shorter for this
particular filter).

Even if you use a non streamed writer, each filter which hasradedGenerateData() will
split the image into two and send each part to one thread andvitbnotice two calls to the
function.

If you have some particular requirement and want to use ondy thread, you can call the
SetNumberOfThreads() method on each of your filter.

When you are writing your own filter, you have to follow somessito make your filter stream-
able and threadable. Some details are provided in sectihsapd 22.4.

21.3 Division strategies

The division of the image occurs generally at the writer leldéfferent strategies are available
and can be specified explicitly. In OTB, these are referrezspéiger. Several available splitters
are:

o itk::iImageRegionSplitter

o itk::iImageRegionMultidimensionalSplitter

¢ oth::ImageRegionNonUniformMultidimensionalSplitter

You can add your own strategies based on these examples.

To change the splitting strategy of the writer, you can usddiiowing model:

typedef oth::ImageRegionNonUniformMultidimensionalSp litter<3> splitterType;
splitterType::Pointer splitter=splitterType::New() ;
writer->SetRegionSplitter(splitter);

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionSplitter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionMultidimensionalSplitter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageRegionNonUniformMultidimensionalSplitter.html

CHAPTER

TWENTYTWO

How To Write A Filter

This purpose of this chapter is help developers create twair filter (process object). This
chapter is divided into four major parts. An initial defioiti of terms is followed by an overview
of the filter creation process. Next, data streaming is dised. The way data is streamed in
ITK must be understood in order to write correct filters. Hina section on multithreading
describes what you must do in order to take advantage ofdnaeenory parallel processing.

22.1 Terminology

The following is some basic terminology for the discussibattfollows. Chapter 3 provides
additional background information.

e The data processing pipelineis a directed graph gbrocessand data objects The
pipeline inputs, operators on, and outputs data.
e A filter, or process objecthas one or more inputs, and one or more outputs.

e A source or source process object, initiates the data processpadipe, and has one or
more outputs.

e A mapper, or mapper process object, terminates the data processgieline. The map-
per has one or more outputs, and may write data to disk, atenvith a display system,
or interface to any other system.

e A data objectrepresents and provides access to data. In ITK, the datatdbj& class
itk::DataObject) is typically of type otb::lmage or itk::Mesh

e Aregion (ITK class itk:Region) represents a piece, or subset of the entire data set.

e Animage region(ITK classitk:ImageRegion) represents a structured portion of data.
ImageRegion is implemented using titke:Index and itk::Size classes

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Region.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegion.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

518 Chapter 22. How To Write A Filter

A mesh region(ITK class itk:MeshRegion) represents an unstructured portion of
data.

e ThelargestPossibleRegiofis the theoretical single, largest piece (region) thatdoep-
resent the entire dataset. The LargestPossibleRegiordsimshe system as the measure
of the largest possible data size.

e TheBufferedRegionis a contiguous block of memory that is less than or equal Sivie
to the LargestPossibleRegion. The buffered region is wastctually been allocated by
a filter to hold its output.

e TheRequestedRegions the piece of the dataset that a filter is required to prodiibe
RequestedRegion is less than or equal in size to the Buffagidn. The Requeste-
dRegion may differ in size from the BufferedRegion due tof@anance reasons. The
RequestedRegion may be set by a user, or by an applicatibnébds just a portion of
the data.

e Themodified time (represented by ITK clasgk::TimeStamp) is a monotonically in-
creasing integer value that characterizes a point in timenvem object was last modified.

e Downstreamis the direction of dataflow, from sources to mappers.
e Upstreamis the opposite of downstream, from mappers to sources.

e Thepipeline modified timefor a particular data object is the maximum modified time of
all upstream data objects and process objects.

e The terminformation refers to metadata that characterizes data. For examgkx and
dimensions are information characterizing an image region

22.2 Overview of Filter Creation

Filters are defined with respect to the type

of data they input (if any), and the type Image

of data they output (if any). The key to
writing a ITK filter is to identify the num- _ Filter

ber and types of input and output. Having ~ ProcessObject ~ P380PIECt progessopject
done so, there are often superclasses that

simplify this task via class derivation. ForFigure 22.1: Relationship between DataObject and
example, most filters in ITK take a SingqurocessObject.

image as input, and produce a single im-

age on output. The superclaitis:ImageTolmageFilter is a convenience class that provide
most of the functionality needed for such a filter.

Some common base classes for new filters include:

http://www.melaneum.com/OTB/doxygen/classitk_1_1MeshRegion.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TimeStamp.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

22.3. Streaming Large Data 519

e ImageTolmageFilter : the most common filter base for segmentation algorithmkega
an image and produces a new image, by default of the same sibmsn Override

GenerateOutputinformation to produce a different size.

e UnaryFunctorimageFilter . used when defining a filter that applies a function to an
image.

e BinaryFunctorimageFilter : used when defining a filter that applies an operation to
two images.

e ImageFunction : a functor that can be applied to an image, evaluafipg at each point
in the image.

e MeshToMeshFilter : afilter that transforms meshes, such as tessellationgpolyeduc-
tion, and so on.

e LightObject : abstract base for filters that don't fit well anywhere elsthanclass hierar-
chy. Also useful for “calculator” filters; ie. a sink filterdihtakes an input and calculates
a result which is retrieved usingGet() method.

Once the appropriate superclass is identified, the filtelewinplements the class defining the
methods required by most all ITK objecthew() , PrintSelf() , and protected constructor,

copy constructor, delete, and operator=, and so on. Also} flarget standard typedefs like

Self , Superclass , Pointer , andConstPointer . Then the filter writer can focus on the most
important parts of the implementation: defining the APl adaiembers, and other implemen-
tation details of the algorithm. In particular, the filteriter will have to implement either a

GenerateData() (non-threaded) ofhreadedGenerateData() method. (See Section 3.2.7
for an overview of multi-threading in ITK.)

An important note: the GenerateData() method is requirealkocate memory for the
output. The ThreadedGenerateData() method is not. In Wefayplementation (see
itk::ImageSource , a superclass aofk::ImageTolmageFilter) GenerateData() allocates
memory and then invokeBhreadedGenerateData()

One of the most important decisions that the developer magiens whether the filter can

stream data; that is, process just a portion of the inputadyze a portion of the output. Often
superclass behavior works well: if the filter processes ttipati using single pixel access, then
the default behavior is adequate. If not, then the user mag twa) find a more specialized
superclass to derive from, or b) override one or more metti@<ontrol how the filter operates
during pipeline execution. The next section describesethesthods.

22.3 Streaming Large Data

The data associated with multi-dimensional images is large becoming larger. This trend
is due to advances in scanning resolution, as well as ineseiascomputing capability. Any

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageSource.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

520 Chapter 22. How To Write A Filter

Display

Image Image
Gaussian

Image
File

Image
File

Figure 22.2:The Data Pipeline

practical segmentation and registration software systerst @ddress this fact in order to be
useful in application. ITK addresses this problem via iteddreaming facility.

In ITK, streaming is the process of dividing data into piea@segions, and then processing this
data through the data pipeline. Recall that the pipelinsistéof process objects that generate
data objects, connected into a pipeline topology. The itpatprocess object is a data object
(unless the process initiates the pipeline and then it isuaceoprocess object). These data
objects in turn are consumed by other process objects, aod, amtil a directed graph of data
flow is constructed. Eventually the pipeline is terminatgdobe or more mappers, that may
write data to storage, or interface with a graphics or otlgstesn. This is illustrated in figures
22.1 and 22.2.

A significant benefit of this architecture is that the releliyvcomplex process of managing
pipeline execution is designed into the system. This melaskeeping the pipeline up to
date, executing only those portions of the pipeline thaelenanged, multithreading execution,
managing memory allocation, and streaming is all built itit® architecture. However, these
features do introduce complexity into the system, the blilkloch is seen by class developers.
The purpose of this chapter is to describe the pipeline @i@tprocess in detail, with a focus
on data streaming.

22.3.1 Overview of Pipeline Execution

The pipeline execution process performs several impoftenttions.

1. It determines which filters, in a pipeline of filters, needekecute. This prevents redun-
dant execution and minimizes overall execution time.

22.3. Streaming Large Data 521

Image Image Image
' Filter

Update()

: Update()
Update() :

. GenerateData()

. GenerateData()
: - GenerateData()

Figure 22.3:Sequence of the Data Pipeline updating mechanism

2. ltinitializes the (filter's) output data objects, preipgrthem for new data. In addition, it
determines how much memory each filter must allocate forutput, and allocates it.

3. The execution process determines how much data a filterpracess in order to produce
an output of sufficient size for downstream filters; it aldeetinto account any limits on
memory or special filter requirements. Other factors ineltite size of data processing
kernels, that affect how much data input data (extra paddsmgquired.

4. It subdivides data into subpieces for multithreadingotéN\that the division of data into
subpieces is exactly same problem as dividing data intepiéar streaming; hence mul-
tithreading comes for free as part of the streaming arditeg

5. It may free (or release) output data if filters no longerchiéeo compute, and the user
requests that data is to be released. (Note: a filter's odigat object may be considered
a “cache”. If the cache is allowed to remakRe({easeDataFlagOff()) between pipeline
execution, and the filter, or the input to the filter, neverrgdes, then process objects
downstream of the filter just reuse the filter's cache to recase.)

To perform these functions, the execution process negstiaith the filters that define the
pipeline. Only each filter can know how much data is requineihput to produce a particular
output. For example, a shrink filter with a shrink factor ofotwequires an image twice as
large (in terms of its x-y dimensions) on input to produce Hipalar size output. An image
convolution filter would require extra input (boundary pady) depending on the size of the
convolution kernel. Some filters require the entire inpuptoduce an output (for example, a
histogram), and have the option of requesting the entiretinfin this case streaming does not
work unless the developer creates a filter that can requdtptagieces, caching state between
each piece to assemble the final output.)

Ultimately the negotiation process is controlled by theuesi for data of a particular size (i.e.,
region). It may be that the user asks to process a regionexgistt within a large image, or that

522 Chapter 22. How To Write A Filter

memory limitations result in processing the data in seveiedes. For example, an application
may compute the memory required by a pipeline, and thentlkas&reamingimageFilter

to break the data processing into several pieces. The dat@stis propagated through the
pipeline in the upstream direction, and the negotiatiorc@ss configures each filter to produce
output data of a particular size.

The secret to creating a streaming filter is to understand th@awnegotiation process works,
and how to override its default behavior by using the appab@virtual functions defined in
itk::ProcessObject . The next section describes the specifics of these methodsylzen to
override them. Examples are provided along the way to idistconcepts.

22.3.2 Details of Pipeline Execution

Typically pipeline execution is initiated when a process jeob receives the
ProcessObject::Update() method invocation. This method is simply delegated to the
output of the filter, invoking thé®ataObject::Update() method. Note that this behavior is
typical of the interaction between ProcessObject and DajssD a method invoked on one is
eventually delegated to the other. In this way the data r&duem the pipeline is propagated
upstream, initiating data flow that returns downstream.

The DataObject::Update() method in turn invokes three other methods:

e DataObject::UpdateOutputinformation()
e DataObject::PropagateRequestedRegion()
e DataObject::UpdateOutputData()

UpdateOutputinformation()

The UpdateOutputinformation() method determines the pipeline modified time. It may set
the RequestedRegion and the LargestPossibleRegion degemtdhow the filters are config-
ured. (The RequestedRegion is set to process all the datathie LargestPossibleRegion, if
it has not been set.) The UpdateOutputinformation() praEgupstream through the entire
pipeline and terminates at the sources.

During UpdateOutputinformation() , fiters have a chance to over-
ride the ProcessObject::GenerateOutputinformation() method
(GenerateQutputinformation() is invoked by UpdateOutputinformation()). The
default behavior is for th&enerateOutputinformation() to copy the metadata describing
the input to the output (vi@ataObject::CopyInformation()). Remember, information is
metadata describing the output, such as the origin, spaamg LargestPossibleRegion (i.e.,
largest possible size) of an image.

A good example of this behavior itk::ShrinkimageFilter . This filter takes an inputimage
and shrinks it by some integral value. The result is that faeing and LargestPossibleRegion

http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ProcessObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShrinkImageFilter.html

22.3. Streaming Large Data 523

of the output will be different to that of the input. ThuGenerateOutputinformation() is
overloaded.

PropagateRequestedRegion()

The PropagateRequestedRegion() call propagates upstream to satisfy a data request. In
typical application this data request is usually the La@essibleRegion, but if streaming is
necessary, or the user is interested in updating just aopoofi the data, the RequestedRegion
may be any valid region within the LargestPossibleRegion.

The function ofPropagateRequestedRegion() is, given a request for data (the amount is
specified by RequestedRegion), propagate upstream cdnfjgtine filter's input and output
process object’s to the correct size. Eventually, this meanfiguring the BufferedRegion, that
is the amount of data actually allocated.

The reason for the buffered region is this: the output of arfithay be consumed by more than
one downstream filter. If these consumers each requestatiffamounts of input (say due to

kernel requirements or other padding needs), then theagrstrgenerating filter produces the
data to satisfy both consumers, that may mean it produces data than one of the consumers
needs.

The ProcessObject::PropagateRequestedRegion() method invokes three methods that
the filter developer may choose to overload.

e EnlargeOutputRequestedRegion(DataObject *output) gives the (filter) subclass a
chance to indicate that it will provide more data than reeglifor the output. This can
happen, for example, when a source can only produce the whipet (i.e., the Largest-
PossibleRegion).

e GenerateOutputRequestedRegion(DataObject *output) gives the subclass a
chance to define how to set the requested regions for each adtiputs, given this out-
put’s requested region. The default implementation is t&erell the output requested
regions the same. A subclass may need to override this mithach output is a different
resolution. This method is only overridden if a filter has tipl¢ outputs.

e GeneratelnputRequestedRegion() gives the subclass a chance to request a larger re-
guested region on the inputs. This is necessary when, fongbea a filter requires more
data at the “internal” boundaries to produce the bounddnega due to kernel operations
or other region boundary effects.

itk::RGBGibbsPriorFilter is an example of a filter that needs to invoke
EnlargeOutputRequestedRegion() . The designer of this filter decided that the fil-
ter should operate on all the data. Note that a subtle irterpletween this method
and GeneratelnputRequestedRegion() is occurring here. The default behavior of
GeneratelnputRequestedRegion() (at least for itk::ImageTolmageFilter) is to set the

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBGibbsPriorFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

524 Chapter 22. How To Write A Filter

input RequestedRegion to the output’s ReqgestedRegion.ce{dwy overriding the method
EnlargeOutputRequestedRegion() to set the output to the LargestPossibleRegion, ef-
fectively sets the input to this filter to the LargestPosft#gion (and probably causing all
upstream filters to process their LargestPossibleRegiovelis This means that the filter, and
therefore the pipeline, does not stream. This could be fixecelmplementing the filter with
the notion of streaming built in to the algorithm.)

itk::GradientMagnitudelmageFilter is an example of a filter that needs to invoke
GeneratelnputRequestedRegion() . It needs a larger input requested region because a kernel
is required to compute the gradient at a pixel. Hence thetinpeds to be “padded out” so the
filter has enough data to compute the gradient at each ouit p

UpdateOutputData()

UpdateOutputData() is the third and final method as a result of thmlate() method. The
purpose of this method is to determine whether a particutar fieeds to execute in order to
bring its output up to date. (A filter executes whenGenerateData() method is invoked.)
Filter execution occurs when a) the filter is modified as altegumodifying an instance vari-
able; b) the input to the filter changes; c) the input data lesbreleased; or d) an invalid
RequestedRegion was set previously and the filter did nalym® data. Filters execute in or-
der in the downstream direction. Once a filter executes, ledtdi downstream of it must also
execute.

DataObject::UpdateQutputData() is delegated to the DataObject’s source (i.e., the Pro-
cessObject that generated it) only if the DataObject needset updated. A comparison
of modified time, pipeline time, release data flag, and vadiguested region is made. If
any one of these conditions indicate that the data needseesf®on, then the source’s
ProcessObject::UpdateOutputData) is invoked. These calls are made recursively up the
pipeline until a source filter object is encountered, or tipelne is determined to be up to date
and valid. At this point, the recursion unrolls, and the esten of the filter proceeds. (This
means that the output data is initialized, StartEvent i®ked, the filtersGenerateData()

is called, EndEvent is invoked, and input data to this filtetynbe released, if requested. In
addition, this filter's InformationTime is updated to ther@nt time.)

The developer will never overridépdateOutputData() . The developer need only write the
GenerateData() method (non-threaded) ®@hreadedGenerateData() method. A discussion
of threading follows in the next section.

22.4 Threaded Filter Execution

Filters that can process data in pieces can typically nmuticess using the data parallel, shared
memory implementation built into the pipeline executioogass. To create a multithreaded
filter, simply define and implement &hreadedGenerateData() method. For example, a

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

22.5. Filter Conventions 525

itk::ImageTolmageFilter would create the method:

void ThreadedGenerateData(const OutputimageRegionType &
outputRegionForThread, int threadld)

The key to threading is to generate output for the outpubregiven (as the first parameter in
the argument list above). In ITK, this is simple to do becaas®utput iterator can be created
using the region provided. Hence the output can be iterated accessing the corresponding
input pixels as necessary to compute the value of the outpelt p

Multi-threading requires caution when performing 1/O {uding usingcout or cerr) or in-
voking events. A safe practice is to allow only thread id zerperform 1/O or generate events.
(The thread id is passed as argument fit@adedGenerateData()). If more than one thread
tries to write to the same place at the same time, the progeambehave badly, and possibly
even deadlock or crash.

22.5 Filter Conventions

In order to fully participate in the ITK pipeline, filters aexpected to follow certain conven-
tions, and provide certain interfaces. This section dbssrthe minimum requirements for a
filter to integrate into the ITK framework.

The class declaration for a filter should include the mditka EXPORT so that on certain plat-
forms an export declaration can be included.

A filter should define public types for the class itse3&lf) and itsSuperclass , andconst
and noneonst smart pointers, thus:

typedef ExamplelmageFilter Self;
typedef ImageTolmageFilter<TImage, Timage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

ThePointer type is particularly useful, as it is a smart pointer thatl \wé used by all client
code to hold a reference-counted instantiation of the filter

Once the above types have been defined, you can use the faloanvenience macros, which
permit your filter to participate in the object factory menlsan, and to be created using the
canonicat:New()

[** Method for creation through the object factory. */
itkNewMacro(Self);

[* Run-time type information (and related methods). */
itkTypeMacro(ExamplelmageFilter, ImageTolmageFilter) ;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

526 Chapter 22. How To Write A Filter

The default constructor should beotected , and provide sensible defaults (usually zero) for
all parameters. The copy constructor and assignment apestabuld be declareativate and
not implemented, to prevent instantiating the filter withtine factory methods (above).

Finally, the template implementation code (in tix& file) should be included, bracketed by a
test for manual instantiation, thus:

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkExampleFilter.txx"
#endif

22.5.1 Optional

Afilter can be printed to astd::ostream (such astd::cout) by implementing the following
method:

void PrintSelf(std::ostreamé& os, Indent indent) const;

and writing the name-value pairs of the filter parametersi¢osupplied output stream. This is
particularly useful for debugging.

22.5.2 Useful Macros

Many convenience macros are provided by ITK, to simplifyefiltoding. Some of these are
described below:

itkStaticConstMacro Declares a static variable of the given type, with the spatifiitial
value.

itkGetMacro Defines an accessor method for the specified scalar data memiigeconven-
tion is for data members to have a prefixnof.

itkSetMacro Defines a mutator method for the specified scalar data membtre supplied
type. This will automatically set thilodified flag, so the filter stage will be executed
on the nextJpdate()

itkBooleanMacro Defines a pair ofOnFlag and OffFlag methods for a boolean variable
m_Flag .

itkGetObjectMacro, itkSetObjectMacro Defines an accessor and mutator for an ITK object.
The Get form returns a smart pointer to the object.

Much more useful information can be learned from browsinge tlsource in
Code/Common/itkMacro.h and for theitk::Object and itk::LightObject classes.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Object.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html

22.6. How To Write A Composite Filter 527

Composite

(Souee)—- -4 ey~ &~ 503y~ &)~ (50e.)

Figure 22.4:A Composite filter encapsulates a number of other filters.

22.6 How To Write A Composite Filter

In general, most ITK/OTB filters implement one particulaga@ithm, whether it be image fil-
tering, an information metric, or a segmentation algorittmthe previous section, we saw how
to write new filters from scratch. However, it is often veryefid to be able to make a new
filter by combining two or more existing filters, which can thige used as a building block in
a complex pipeline. This approach follows the Compositégpaf33], whereby the composite
filter itself behaves just as a regular filter, providing itgno(potentially higher level) interface
and using other filters (whose detail is hidden to users oflds) for the implementation. This
composite structure is shown in Figure 22.4, where the uar$tage-n filters are combined
into one by theComposite filter. TheSource andSink filters only see the interface published
by theComposite . Using the Composite pattern, a composite filter can endaigsa pipeline
of arbitrary complexity. These can in turn be nested insitieopipelines.

22.6.1 Implementing a Composite Filter

There are a few considerations to take into account whereimghting a composite filter. All
the usual requirements for filters apply (as discussed gblourethe following guidelines should
be considered:

1. The template arguments it takes must be sufficient toritiata all of the component
filters. Each component filter needs a type supplied by eiteerimplementor or the
enclosing class. For example, &mageTolmageFilter normally takes an input and
output image type (which may be the same). But if the outpth@fcomposite filter is a
classified image, we need to either decide on the output hgidd the composite filter,
or restrict the choices of the user when she/he instantila¢efiiter.

2. The types of the component filters should be declared irhdaeler, preferably with
protected visibility. This is because the internal structure normyatould not be visible
to users of the class, but should be to descendent clasgamdlyaneed to modify or
customize the behavior.

3. The component filters should be private data members otdngposite class, as in
FilterType::Pointer

528 Chapter 22. How To Write A Filter

CompositeExamplelmageFilter

&~ Crresnidy—~ &~ (Fesead)

Figure 22.5:Example of a typical composite filter. Note that the output of the last filter in the internal
pipeline must be grafted into the output of the composite filter.

4. The default constructor should build the pipeline by tingethe stages and connect them
together, along with any default parameter settings, asogpipte.

5. The input and output of the composite filter need to be gdafin to the head and tail
(respectively) of the component filters.

This grafting process is illustrated in Figure 22.5.

22.6.2 A Simple Example

The source code for this example can be found in the file
Examples/Filtering/CompositeFilterExample.cxx

The composite filter we will build combines three filters: adjent magnitude operator, which
will calculate the first-order derivative of the image; aetsinolding step to select edges over
a given strength; and finally a rescaling filter, to ensureréseilting image data is visible by
scaling the intensity to the full spectrum of the output im&gpe.

Since this filter takes an image and produces another im&gkefdical type), we will specialize
the ImageTolmageFilter:

#include "itkimageTolmageFilter.n"
Next we include headers for the component filters:

#include "itkGradientMagnitudelmageFilter.h"
#include "itkThresholdimageFilter.h"
#include "itkRescalelntensitylmageFilter.h"

Now we can declare the filter itself. It is within the OTB namase, and we decide to make
it use the same image type for both input and output, thusstimplate declaration needs only
one parameter. Deriving froimageTolmageFilter provides default behavior for several im-
portant aspects, notably allocating the output image (aakimg it the same dimensions as the
input).

22.6. How To Write A Composite Filter 529

namespace otb {

template <class TimageType>
class ITK_EXPORT CompositeExamplelmageFilter :
public itk::imageTolmageFilter<TImageType, TIimageType >

{
public:

Next we have the standard declarations, used for objedi@neaith the object factory:

typedef CompositeExamplelmageFilter Self;

typedef itk::imageTolmageFilter<TimageType, TimageTyp e> Superclass;
typedef itk::SmartPointer<Self> Pointer;

typedef itk::SmartPointer<const Self> ConstPointer;

Here we declare an alias (to save typing) for the image’d pyxe, which determines the type
of the threshold value. We then use the convenience maciefitee the Get and Set methods
for this parameter.

typedef typename TImageType::PixelType PixelType;

itkGetMacro(Threshold, PixelType);
itkSetMacro(Threshold, PixelType);

Now we can declare the component filter types, templatedtbesenclosing image type:

protected:
typedef itk::ThresholdimageFilter< TIimageType > Thresho ldType;
typedef itk::GradientMagnitudelmageFilter< TimageType , TimageType >
GradientType;
typedef itk::RescalelntensitylmageFilter< TImageType, TimageType >
RescalerType;

The component filters are declared as data members, all trgrggnart pointer types.

typename GradientType::Pointer m_GradientFilter;
typename ThresholdType::Pointer m_ThresholdFilter;
typename RescalerType::Pointer m_RescaleFilter;

PixelType m_Threshold;
)

} I* namespace otb */

530 Chapter 22. How To Write A Filter

The constructor sets up the pipeline, which involves cneatine stages, connecting them to-
gether, and setting default parameters.

template <class TimageType>
CompositeExamplelmageFilter<TImageType>
::CompositeExamplelmageFilter()

{
m_GradientFilter = GradientType::New();
m_ThresholdFilter = ThresholdType::New();
m_RescaleFilter = RescalerType::New();

m_ThresholdFilter->Setinput(m_GradientFilter->GetOu tput());
m_RescaleFilter->Setinput(m_ThresholdFilter->GetOut put());

m_Threshold = 1;

m_RescaleFilter->SetOutputMinimum(
itk::NumericTraits<PixelType>::NonpositiveMin());
m_RescaleFilter->SetOutputMaximum(itk::NumericTrait s<PixelType>::max());

}

TheGenerateData() is where the composite magic happens. First, we connectrtiedm-
ponent filter to the inputs of the composite filter (the actuaut, supplied by the upstream
stage). Then we graft the output of the last stage onto theubof the composite, which en-
sures the filter regions are updated. We force the compagiédie to be processed by calling
Update() on the final stage, then graft the output back onto the outptiteoenclosing filter,
so it has the result available to the downstream filter.

template <class TimageType>

void
CompositeExamplelmageFilter<TImageType>::
GenerateData()

{
m_GradientFilter->Setlnput(this->Getlnput());

m_ThresholdFilter->ThresholdBelow(this->m_Threshold);

m_RescaleFilter->GraftOutput(this->GetOutput());

m_RescaleFilter->Update();

this->GraftOutput(m_RescaleFilter->GetOutput());
}

Finally we define thérintSelf method, which (by convention) prints the filter parameters.
Note how it invokes the superclass to print itself first, alst &#ow the indentation prefixes each
line.

22.6. How To Write A Composite Filter 531

template <class TImageType>

void

CompositeExamplelmageFilter<TImageType>::
PrintSelf(std::ostream& os, itk::Indent indent) const

{

Superclass::PrintSelf(os,indent);

0s
<< indent << "Threshold:" << this->m_Threshold
<< std:endl;

}

} ¥ end namespace oth */

It is important to note that in the above example, none of titerhal details of the pipeline
were exposed to users of the class. The interface consikthd @hreshold parameter (which
happened to change the value in the component filter) andetipdar ImageTolmageFilter
interface. This example pipeline is illustrated in Figugex

Part V

Appendix

CHAPTER

TWENTYTHREE

Frequently Asked Questions

23.1 Introduction

23.1.1 Whatis OTB?

OTB, the ORFEO Toolbox is a library of image processing atbors developed by CNES

in the frame of the ORFEO Accompaniment Program. OTB is basethe medical image

processing library ITKhttp://www.itk.org , and offers particular functionalities for remote
sensing image processing in general and for high spatialutien images in particular.

OTB provides:

e image access: optimized read/write access for most of eesetsing image formats,
meta-data access, simple visualization;

e sensor geometry: sensor models, cartographic projections
e radiometry: atmospheric corrections, vegetation indices

o filtering: blurring, denoising, enhancement;

¢ fusion: image pansharpening;

o feature extraction: interest points, alignments, lines;

e image segmentation: region growing, watershed, leve] sets
e classification: K-means, SVM, Markov random fields;

e change detection.

Many of these functionalities are provided by ITK and haverbested and documented for the
use with remote sensing data.

http://www.itk.org

536 Chapter 23. Frequently Asked Questions

23.1.2 What is ORFEO?

ORFEO stands for Optical and Radar Federated Earth Obgervat 2001 a cooperation pro-
gram was set between France and Italy to develop ORFEO, dh &aservation dual system
with metric resolution: Italy is in charge of COSMO-Skyméuektradar component develop-
ment, and France of PLEIADES the optic component.

The PLEIADES optic component is composed of two "small $isesl' (mass of one ton) of-
fering a spatial resolution at nadir of 0.7 m and a field of vigi®20 km. Their great agility
enables a daily access all over the world, essentially flarde and civil security applications,
and a coverage capacity necessary for the cartography kimgptications at scales better than
those accessible to SPOT family satellites. Moreover, RCHS will have stereoscopic acqui-
sition capacity to meet the fine cartography needs, notahlyban regions, and to bring more
information when used with aerial photography.

The ORFEO "targeted” acquisition capacities made it a sygiarticularly adapted to defense
or civil security missions, as well as critical geophysipaenomena survey such as volcanic
eruptions, which require a priority use of the system resesir

With respect to the constraints of the franco-italian agret, cooperations have been set up
for the PLEIADES optical component with Sweden, BelgiumaiBmnd Austria.

Where can | get more information about ORFEO?

At the PLEIADES HR web sitehttp://smsc.cnes.frlPLEIADES/

23.1.3 What is the ORFEO Accompaniment Program?

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systarakbgenents forming ORFEO,
the dual and bilateral system (France - Italy) for Earth @leg®on, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and proneoteseéhand the exploitation of
the images derived from these sensors.

The creation of a preparatory program is needed because of :

e the new capabilities and performances of the ORFEO systepi&él and radar high
resolution, access capability, data quality, possibtiityacquire simultaneously in optic
and radar),

¢ the implied need of new methodological developments : nevegssing methods, or
adaptation of existing methods,

¢ the need to realize those new developments in very closeecatipn with the final users,
the integration of new products in their systems.

http://smsc.cnes.fr/PLEIADES/

23.2. Licence 537

This program was initiated by CNES mid-2003 and will lastill2@09. It consists in two parts,
between which it is necessary to keep a strong interaction:

e A Methodological part,

e A Thematic part.

This Accompaniment Program uses simulated data (acquirgdgdairborne campaigns) and
satellite images quite similar to Pleiades (as QuickBird Bonos), used in a communal way
on a set of special sites. The validation of specified pradaoct services will be realized with
those simulated data

Apart from the initial cooperation with Italy, the ORFEO Amuopaniment Program enlarged to
Belgium, with integration of Belgian experts in the diffataNVG as well as a participation to
the methodological part.

Where can | get more information about the ORFEO Accompaniment Program?

Go to the following web sitehttp://smsc.cnes.fr/PLEIADES/A _prog _accomp.htm .

23.1.4 Who is responsible for the OTB development?
The French Centre National EEfudes Spatiales, CNES, initiated the ORFEO Toolbox and is

responsible for the specification of the library. CNES futi@sindustrial development contracts
and research contracts needed for the evolution of OTB.

23.2 Licence

23.2.1 Which is the OTB licence?

OTB is distributed under a free software licence:
http://iwww.cecill.info/licences/Licence _CeCILL _V2-en.html

23.2.2 If | write an application using OTB am | forced to distribute that applica-
tion?

No. The license gives you the option to distribute your agatlon if you want to. You do not
have to exercise this option in the license.

http://smsc.cnes.fr/PLEIADES/A_prog_accomp.htm
http://www.cecill.info/licences/Licence_CeCILL_V2-en.html

538 Chapter 23. Frequently Asked Questions

23.2.3 If | wanted to distribute an application using OTB what license would |
need to use?

The CeCILL licence.

23.2.4 | am a commercial user. Is there any restriction on the use of OTB?

OTB can be used internally ("in-house”) without restrictidout only redistributed in other
software that is under the CeCILL licence.

23.3 Getting OTB

23.3.1 Who can download the OTB?

Anybody can download the OTB at no cost.

23.3.2 Where can | download the OTB?

Go tohttp:/lotb.cnes.fr and follow the "download OTB” link. You will have access taeth
OTB source code and to the Software User’s Guide.

23.4 Installing OTB

23.4.1 Which platforms are supported

OTB is a multi-platform library. It has successfully beestalled on the following platforms:

Linux/Unix with GCC (2.95.X, 3.3.X, 4.1.X, 4.2.X).
Windows with Microsoft Visual Studio C++ 7.1 .NET 2003.

e Windows with Microsoft Visual Studio C++ 8.0 .NET 2005.

Windows with MinGW. (mingw + msys atttp://www.mingw.org)

Cygwin. (http://www.cygwin.com)

Support for the following platforms is planned:

e Windows with Microsoft Visual Studio C++ 6.0.

http://otb.cnes.fr
http://www.mingw.org
http://www.cygwin.com

23.4. Installing OTB 539

23.4.2 Which libraries/packages are needed before installing OTB?

e CMake fttp://www.cmake.org)
e GDAL (http://www.gdal.org)
o Fltk (http://www. fltk.org)

23.4.3 Main steps

In order to install OTB on your system follow these steps liie given order):

1. Install CMake.
2. Install GDAL.

3. Install Fltk using the CMake scripts. Do not use thafigure approach or the project
files for Microsoft Visual Studio shipped with Fltk.

4. Install OTB using CMake for the configuration.

We assume that you will install everything on a directoryedhINSTALL _DIR, which usually
is lusr/local , lnomefjordi/local or whatever you want. Make sure that you have down-
loaded the source code for:

e CMake fttp:/lwww.cmake.org)
e GDAL (http://lwww.gdal.org)
o Fltk (http:/iwww.fltk.org)

Unix/Linux Platforms

Important note: on some Linux distributions (eg. Debian, Ubuntu, Fedoyaly may use the
official packages for CMake, GDAL and Fltk. Once you haveatetl these packages, you can
skip to step 4.

1. Install GDAL

cd INSTALL DIR

gunzip gdal.1.4.2.tar.gz

tar xvf gdal.1.4.2.tar

cd gdal.1.4.2

Jconfigure --prefix=INSTALL_DIR
make

make install

http://www.cmake.org
http://www.gdal.org
http://www.fltk.org
http://www.cmake.org
http://www.gdal.org
http://www.fltk.org

540

Chapter 23. Frequently Asked Questions

It seems to be a bug in the GDAL install procedure: if you astahing it without root
privileges, even if youINSTALL _DIR is a directory for which you have the write permis-
sions, GDAL tries to copy the python bindings together with Python site packages,
which are usually somewhere in /usr/lib.

Actually, since this is the last step in the GDAL install pedare, when you get the error
message, the GDAL libs and header files are already instaltegdou can safely ignore
the error.

The --without-python option passed to theonfigure step avoids this. However,
some users may want to have Python bindings, so recommetttggption for the
install may not be OK for everybody.

2. Install CMake

cd INSTALL DIR

gunzip cmake-2.4.7.tar.gz

tar xvf cmake-2.4.7 tar

cd cmake-2.4.7

Jconfigure --prefix=INSTALL_DIR
make

make install

In order to properly use cmake, addSTALL _DIR/bin to your path withexport
PATH=$PATH:INSTALL_DIR/bin or something similar.

3. Install Fltk (optional) using CMake (do not use the configscript)

cd INSTALL_DIR

bunzip2 fltk-1.1.7-source.tar.bz2 OR

gunzip fltk-1.1.7-source.tar.gz

tar xvf fltk-1.1.7-source.tar

mkdir Fltk-binary

cd Fltk-binary

ccmake ..ffltk-1.1.7

--> follow the CMake instructions, in particular:

--> set CMAKE_INSTALL_PREFIX to INSTALL_DIR within CMake

--> set BUILD_EXAMPLES to ON within CMake
--> generate the configuration with 'g’

make

make install

--> check that the examples located in

INSTALL_DIR/Fltk-binary/bin work, in particular, the fra ctals

example which makes use of the OpenGL library needed by OTB.

23.4. Installing OTB 541

You can choose not to install Fltk but in this case, you wilt he able to compile the
visualization features of OTB.

4. Install OTB

cd INSTALL_DIR
gunzip OrfeoToolbox-2.0.0.tgz
tar xvf OrfeoToolbox-2.0.0.tar
mkdir OTB-Binary
cd OTB-Binary
ccmake ../OrfeoToolbox-2.0.0
--> follow the CMake instructions, in particular:
--> set BUILD_EXAMPLES to ON within CMake
--> set BUILD_SHARED_LIBS to ON within CMake
--> set BUILD_TESTING to OFF within CMake
--> set CMAKE_INSTALL_PREFIX to INSTALL_DIR within CMake
--> set GDAL_INCLUDE_DIRS to INSTALL_DIR/include within C Make
--> set GDAL_LIBRARY_DIRS to INSTALL_DIR/lib within CMake
--> set OTB_USE_EXTERNAL_ITK to OFF within CMake
--> set FLTK _DIR to INSTALL_DIR/Fltk-Binary within CMake O R
if you do not have FLTK press 't' to change to advanced
mode and set OTB_USE_VISU to OFF
--> generate the configuration with 'g’
make

If you want a faster compilation and don’t want the compdatiof the examples,
you can setBUILD_EXAMPLESto OFF Some plateforms apparently have more diffi-
culties with shared libraries, if you experience any problwith that, you can set
BUILD _SHAREDLIBS to OFFbut the built size might reach 1 GB.

After these steps, you have the source of OTEBNIBTALL _DIR/OrfeoToolbox-2.0.0

and the compiled binaries and libraries IMSTALL _DIR/OTB-Binary . Keeping the
sources is important as most programs you will designedneild an access to the txx
files during compilation. However, the binaries directonpls were its sources are and
you will need to point only to théNSTALL _DIR/OTB-Binary when thecmake for your
program will ask you where the OTB is.

If you want to put OTB in a standard location, you can proce#h:w

make install

but this is only optional.

542 Chapter 23. Frequently Asked Questions

Microsoft Visual Studio C++ 7.1

1. Install GDAL
MSVC++ 7.1 project files are needed to compile GDAL.
These files can be downloadechtp://vterrain.org/dist/gdal132 _vc7l.zip
Then, unzip it to your GDAL folder, and it will create a foldgramed "VisualStudio”).
Load the solution (.sIn file) and build the gdal project.
More details can be found http://vterrain.org/Distrib/gdal.html

2. Install Fltk
Use CMake on Windows to generate MSVC++ 7.1 project files ffitkrsources.
Open the solution and build the fltk project.

3. Install OTB
Use CMake on Windows to generate MSVC++ 7.1 project files fotimsources.
Open the solution and build the otb project.

Microsoft Visual Studio C++ 8.0

1. Install GDAL
Open a MS-DOS prompt.

Run the VCVARS32.bat script that comes with the compilecdit be found in Microsoft
Visual Studio 8/VC/bin).

Then, go to the GDAL root directory, and tape :

nmake /f makefile.vc

Once the build is successful, tape this line to install GDAL :

nmake /f makefile.vc install

More details about this install can be found at
http:/mww.gdal.org/gdal _building.html|
2. Install Fltk

Use CMake on Windows to generate MSVC++ 8.0 project files ffitkrsources.
Open the solution and build the fltk project.

3. Install OTB
Use CMake on Windows to generate MSVC++ 8.0 project files fatinsources.
Open the solution and build the otb project.

http://vterrain.org/dist/gdal132_vc71.zip
http://vterrain.org/Distrib/gdal.html
http://www.gdal.org/gdal_building.html

23.4. Installing OTB 543

MinGW on Windows platform

1. Download the lastest version of mingw and msysttat//www.mingw.org and install
those two programs.

Then, launch MinGW : a prompt appears (similar to Linux one).

2. Install GDAL
To compile GDAL, at configure step, use these options :

Jconfigure -prefix=INSTALL_DIR --host=mingw32 --witho ut-libtool
--without-python --with-png=internal --with-libtiff=i nternal
--with-jpeg=internal

Then the usual make and make install.

3. Install Fltk
Generate MSYS Makefiles with CMake (Windows version) froik $lburces.

Then, under prompt, tape make and make install where you fpanerated Makefiles
with CMake.

4. Install OTB
Similar to fltk install.

Cygwin
1. Download the lastest versiontdtp://www.cygwin.com and install it. Then, launch it,

a prompt appears (similar to Linux one).

2. Install GDAL
To compile GDAL, at configure step, use these options :

Jconfigure --prefix=INSTALL_DIR --with-png=internal - -with-libtiff=internal
--with-jpeg=internal
Then the usual make and make install.

3. Install Fltk
See Linux part for details (same procedure).

4. Install OTB
See Linux part for details (same procedure).

That should be all! Otherwise, subscribe to otb-users@lggogups.com and you will get
some help.

http://www.mingw.org
http://www.cygwin.com

544 Chapter 23. Frequently Asked Questions

23.4.4 Specific platform issues
SunOS/HP UX
Due to a bug in the tar command shipped with some versionsmdSuproblems may appear

when configuring, compiling or installing OTB.

Seehttp:/mww.gnu.org/software/tar/manual/tar.html#Che cksumming for details on
the bug characterization.

The solution is to use the GNU tar command if it is availableyoar system (gtar).

Linux Debian/Ubuntu

If you used the official gdal package version 1.4.0, the tipia namedlibgdall.4.0.s0
so you have to create a simlink namidgydal.so : In -s /fust/lib/libgdall.4.0.s0
{usr/lib/libgdal.so

Cygwin

Due to an unknown bug, Fltk can’t compile on some versionsygiv@n (OpenGL problems).
Put OTB_USE_VISU to OFF to avoid these problems.

Some bugs can appear while compiling GDAL with JPEG2000 fildssable this format to
solve the problem.

MSVC++ 8.0

Execution errors can appear on some platforms, using GDAwpded with MSVC++ 8.0.

This problem can be solved by downloading GDAL binaries forindfléws at
http://vterrain.org/Distrib/gdal.html

23.5 Using OTB

23.5.1 Where to start ?

OTB presents a large set of features and it is not always eastait using it. After the instal-
lation, you can proceed to the tutorials (in the Softwared8li This should give you a quick
overview of the possibilities of OTB and will teach you howtoild your own programs.

http://www.gnu.org/software/tar/manual/tar.html#Checksumming
http://vterrain.org/Distrib/gdal.html

23.6. Getting help 545

23.5.2 What is the image size limitation of OTB ?

The maximum physical space a user can allocate depends qiatferm. Therefore, image
allocation in OTB is restricted by image dimension, sizeeptype and number of bands.

Fortunately, thanks to the streaming mechanism implerdenithin OTB’s pipeline (actually
ITK’s), this limitation can be bypassed. The use of thib::StreaminglmageFileWriter

at the end of the pipeline, or thik::StreaminglmageFilter at any point of the pipeline
will seamlessly break the large, problematic data into spiates whose allocation is possible.
These pieces are processed one afther the other, so thaithet allocation problem anymore.
We are often working with images of 250@@®5000 pixels.

For the streaming to work, all the filters in the pipeline mststreaming capable (this is the
case for most of the filters in OTB). The output image formabaleed to be streamable (not
PNG or JPEG, but TIFF or ENVI, for instance).

To tune the size of the streaming pieces, the OTB has two CMakiables. The first
is named OTBSTREAM_IMAGE _SIZE_TO_ACTIVATE _STREAMING. It represents the
minimum size of the image in bytes for which streaming may ké&fal. The second,
OTB_STREAM_MAX _SIZE_BUFFER_FOR_STREAMING, specifies the maximum size in
bytes a streaming piece should have. It can be used to corifeubgtimal number of pieces to
break the input data into.

These two parameters have been used in the OTB-Applicétitlss applications. Take this as
an example of how they can be used. They can also be tuned ligéhéo match her specific
needs.

23.6 Getting help

23.6.1 Is there any mailing list?

Yes. There is a discussion grouphép://groups.google.com/group/otb-users/ where
you can get help on the set up and the use of OTB.

23.6.2 Which is the main source of documentation?

The main source of documentation is the OTB Software Guidi&tlwhan be downloaded
at http://orfeo-toolbox.sourceforge.net/Docs/OTBSoftwa reGuide.pdf . It contains
tenths of commented examples and a tutorial which should lgecal starting point for
any new OTB user. The code source for these examples isbdigd with the tool-
box. Another information source is the on-line APl docuna¢ioh which is available at
http://orfeo-toolbox.sourceforge.net/Doxygen

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://groups.google.com/group/otb-users/
http://orfeo-toolbox.sourceforge.net/Docs/OTBSoftwareGuide.pdf
http://orfeo-toolbox.sourceforge.net/Doxygen

546 Chapter 23. Frequently Asked Questions

23.7 Contributing to OTB

23.7.1 1 want to contribute to OTB, where to begin?

First, you can send an email to otb@cnes.fr to let us know fumationality you would like to
introduce in OTB. If the functionality seems important fbetOTB users, we will then discuss
on how to send your code, make the necessary adaptions, alithciou that the results are
correct and finally include it in the next release.

23.7.2 What are the benefits of contributing to OTB?

Besides the satisfaction of contributing to an open sourgiegt, we will include the references
to relevant papers in the software guide. Having algoritipoislished in the form of repro-

ducible research helps science move faster and encouragpkeho needs your algorithms
to use them.

You will also benefit from the strengths of OTB: multiplathoy streaming and threading, etc.

23.7.3 What functionality can | contribute?

All functionalities which are useful for remote sensingadate of interest. As OTB is a library,
it should be generic algorithms: change, detection, fysibiect detection, segmentation, in-
terpolation, etc.

More specific applications can be contributed to the OTB{isjgtions package.

23.8 OTB’s Roadmap

23.8.1 Which will be the next version of OTB?

OTB's version numbers have 3 digits. The first one is for magsions, the second one is for
minor versions and the last one is for bugfixes.

The first version was 1.0.0 in July 2006. Version 1.2.0, 1@ 1.6.0 were released in between
and the current one 2.0.0 was released in December 2007.ekheme will probably be 2.2.0.

What is a major version?

A major version of the library implies the addition of higéwEl functionalities as for instance
image registration, object recognition, etc.

23.8. OTB’s Roadmap 547

What is a minor version?

A minor version is released when low-level functionalitéae available within one major func-
tionality, as for instance a new change detector, a newfeaixtractor, etc.

What is a bugfix version?

A budfix version is released when significant bugs are ideqtidind fixed.

23.8.2 When will the next version of OTB be available?

We plan to release major new OTB version once a year, thaersjon 2.0.0 was available at
the end of 2007, version 3.0.0 should be released by the e2@0&; and so on.

23.8.3 What features will the OTB include and when?

There is no detailed plan about the availability of OTB neatfees, since OTB'’s content de-
pends on ongoing research work and on feedback from theonsgis of the ORFEO Accom-
paniment Program.

Nevertheless, the main milestones for the OTB developmerthe following:

e Version 1 (2006):

— core of the system,

- 10,

— basic filtering, segmentation and classification,
— basic feature extraction,

— basic change detection.

e \ersion 2 (2007):
— geometric corrections,

— radiometric corrections,
— registration.

e \ersion 3 (2008):

— multi-scale and multi-resolution analysis,
— object detection and recognition,
— supervised learning.

548 Chapter 23. Frequently Asked Questions

e \ersion 4 (2009):

— data fusion,
— spatial reasoning.

BIBLIOGRAPHY

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied Professional Computing Series. Addison-Wesley, 2008.18.

[2] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing tiaiéss to binary: A unifying
approach for margin classifiers. Broc. 17th International Conf. on Machine Learnijng
pages 9-16. Morgan Kaufmann, San Francisco, CA, 2000.117.3.

[3] K. Alsabti, S. Ranka, and V. Singh. An efficient k-meansstéring algorithm. IrFirst
Workshop on High-Performance Data MinintP98. 17.1.1

[4] L. Alvarez and J.-M. Morel.A Morphological Approach To Multiscale Analysis: From
Principles to Equationgpages 229-254. Kluwer Academic Publishers, 1994. 7.6.2

[5] M. H. Austern. Generic Programming and the STLProfessional Computing Series.
Addison-Wesley, 1999. 3.2.1, 8.6.1

[6] Y. Bazi, L. Bruzzone, and F. Melgani. An unsupervisedraggh based on the general-
ized Gaussian model to automatic change detection in mlgbral SAR imagesEEE
Trans. Geoscience and Remote Sensii3¢4):874—887, April 2005. 16.1.1

[7] J. Besag. On the statistical analysis of dirty picturésRoyal Statist. Soc. B48:259—
302, 1986. 17.1.5

[8] L. Bruzzone and F. Melgani. Support vector machines fassification of hyperspectral
remote-sensing images. IBEE International Geoscience and Remote Sensing Sympo-
sium, IGARSSrolume 1, pages 506-508, June 2002. 17.3

[9] L. Bruzzone and D. F. Prieto. An adaptive semiparametnd context-based approach
to unsupervised change detection in multitemporal rersetesing imagedEEE Trans.
Image Processingl1(4):452—-466, April 2002. 16.1.1

[10] C.Burges. A Tutorial on Support Vector Machines fortBat RecognitionData Mining
and Knowledge Discoverg(2):121-167,1998. 17.3.1

550 Bibliography

[11] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algom for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computia§(5):1190-1208,
1995. 8.8

[12] R. H. B. C. Zhu and J. Nocedal. L-bfgs-b: Algorithm 778:bfgs-b, fortran routines
for large scale bound constrained optimizatioACM Transactions on Mathematical
Software 23(4):550-560, November 1997. 8.8

[13] K. Castleman.Digital Image ProcessingPrentice Hall, Upper Saddle River, NJ, 1996.
19.4.1,19.4.2

[14] G. Celeux and J. Diebolt. The SEM algorithm: a probakittiteacher algorithm derived
from the EM algorithm for the mixture problemComputational Statistics Quarterly
2(1):73-82,1985. 17.2.1

[15] E. Christophe and J. Inglada. Robust road extractiohifgh resolution satellite images.
In IEEE International Conference on Image Processing, ICIPW07. 13.6.1

[16] A. Chung, W. Wells, A. Norbash, and W. Grimson. Multi-te image registration by
minimising kullback-leibler distance. IMICCAI'02 Medical Image Computing and
Computer-Assisted Interventiohecture Notes in Computer Science, pages 525-532,
2002. 8.7.5

[17] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, it8ns, and G. Marchal. Auto-
mated multimodality image registration based on infororatiheory. Ininformation
Processing in Medical Imaging 199pages 263-274. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1995. 8.4

[18] P. R. Coppin, I. Jonckheere, and K. Nachaerts. Digit@inge detection in ecosystem
monitoring: a reviewlnt. J. of Remote Sensing4:1-33, 2003. 16.1.1

[19] P. E. Danielsson. Euclidean distance mappi@gmputer Graphics and Image Process-
ing, 14:227-248, 1980. 7.7

[20] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harmsphysics-based coordinate
transformation for 3-d image matchintEEE Transactions on Medical Imagin@6(3),
June 1997. 8.6.18

[21] P. Deer. Digital change detection in remotely sensed imagery usizgyf set theory
Phd thesis, University of Adelde, Australia, Department of Geography and Computer
Science, 1998. 16.1.1

[22] R. Deriche. Fast algorithms for low level visiolEEE Transactions on Pattern Analysis
and Machine Intelligengel2(1):78-87, 1990. 7.2.2,7.6.1

[23] R. Deriche. Recursively implementing the gaussianienderivatives. Technical Report
1893, Unite de recherche INRIA Sophia-Antipolis, avril B9®Research Repport. 7.2.2,
7.6.1

Bibliography 551

[24] S. Derrode, G. Mercier, and W. Pieczynski. Unsuperriskange detection in SAR
images using a multicomponent hidden Markov chain modelSdoond Int. Workshop
on the Analysis of Multi-temporal Remote Sensing Imagelsime 3, pages 195-203,
Ispra, Italy, July 16-18 2003. 16.1.1

[25] A. Desolneux, L. Moisan, and J.-M. Morel. Meaningfulgaments. Int. J. Comput.
Vision 40(1):7-23, 2000. 13.3

[26] C. Dodson and T. PostonTensor Geometry: The Geometric Viewpoint and its Uses
Springer, 1997. 8.6.1, 2

[27] J. R. Dominique Fasbender and P. Bogaert. Bayesian Rati@n for Adaptable Image
Pansharpeninglransactions on Geoscience and Remote Sensing, in 2@38. 12.2

[28] R. O. Duda, P. E. Hart, and D. G. Storlattern classification A Wiley-Interscience
Publication, second edition, 2000. 17.1, 17.1

[29] S. Dudani, K. Breeding, and R. McGhee. Aircraft idectiion by moments invariants.
IEEE Transanctions on Compute6:39-45, 1977. 13.5.2

[30] V. N. Dvorchenko. Bounds on (deterministic) corredatifunctions with applications to
registration.|IEEE Trans. PAM|5(2):206-213, 1983. 9.1

[31] D. Eberly.Ridges in Image and Data Analyskluwer Academic Publishers, Dordrecht,
1996. 14.2.1

[32] J. Flusser. On the independence of rotation momentiemwes. Pattern Recognition
33:1405-1410, 2000. 13.5.2,13.5.3

[33] E. Gamma, R. Helm, R. Johnson, and J. VlissifEsign Patterns, Elements of Reusable
Object-Oriented Softwarérofessional Computing Series. Addison-Wesley, 199563.
6.2,22.6

[34] G. Gerig, O. Kibler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropitefing of MRI
data.|EEE Transactions on Medical Imagin§j1(2):221-232, June 1992. 7.6.2

[35] R. Gonzalez and R. Wood®figital Image ProcessingAddison-Wesley, Reading, MA,
1993. 19.4.1,19.4.1,19.4.2

[36] H. Gray. Gray’s Anatomy Merchant Book Company, sixteenth edition, 2003. 5.1.6

[37] S. Grossberg. Neural dynamics of brightness percepkeatures, boundaries, diffusion,
and resonancedRerception and Psychophysj@&6(5):428-456, 1984. 7.6.2

[38] J. Hajnal, D. J. Hawkes, and D. HillMedical Image RegistrationCRC Press, 2001.
8.7.6

[39] W. R. Hamilton. Elements of Quaternion<helsea Publishing Company, 1969. 8.6.1,
8.6.11, 8.8

552 Bibliography

[40] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. 6. Cox, and D. J.
Hawkes. Voxel similarity measures for 3d serial mr braingeaegistration. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editoigformation Processing in Medical Imaging
1999 (IPMI'99), pages 472—-477. Springer, 1999. 8.7.3

[41] C. Hsu and C. Lin. A comparison of methods for multi-sl@sipport vector machines,
2001. 17.3.1

[42] M. K. Hu. Visual Pattern Recognition by moment invat&nIEEE Transactions on
Information Theory8(2):179-187, 1962. 13.5.2

[43] J.Inglada. Similarity Measures for Multisensor Rem8tnsing Images. International
Geoscience and Remote Sensing Symposium, IGARSS 200QM,2602. 9.1.2

[44] J. Inglada. Change detection on SAR images by using anpatric estimation of the
Kullback-Leibler divergence. IHEEE Int. Conf. Geosci. Remote Sensifigulouse,
France, July, 21-25 2003. 16.1.1, 16.4.1

[45] J. Inglada and A. Giros. On the possibility of automatiglti-sensor image registration.
IEEE Trans. Geoscience and Remote Sengig@l0), Oct. 2004. 8.4

[46] J. Inglada and G. Mercier. A New Statistical SimilarMeasure for Change Detection
in Multitemporal SAR Images and its Extension to Multisc&leange AnalysisIEEE
Trans. Geosci. Remote Sensid§(5):1432-1446, May 2007. 16.1.1, 16.4.1

[47] J.Flusser and T. Suk. A moment based approach to rati@irof image with affine
geometric distortion.IEEE Transactions Geoscience Remote Senga¢p):382-387,
1994. 13.5.2

[48] T. Joachims. Text Categorization with Support Vectaadflines: Learning with Many
Relevant Features. Technical report, Computer SciencéefJniversity of dortmund,
Nov. 1997. 17.3

[49] C. J. Joly.A Manual of QuaternionsMacMillan and Co. Limited, 1905. 8.6.11

[50] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, Rv&man, and A. Y. Wu. An
efficient k-means clustering algorithm: Analysis and inmpémtation. 17.1.1

[51] Y. J. Kaufman and D. Takr Atmospherically Resistant Vegetation Index (ARVI) for
EOS-MODIS. Transactions on Geoscience and Remote Sendid@):261-270, Mar.
1992. 11.1.3

[52] J. Keénderink and A. van Doorn. The Structure of Two-Dimensid@lar Fields with
Applications to Vision.Biol. Cybernetics33:151-158, 1979. 14.2.1

[53] J. Koenderink and A. van Doorn. Local features of smaithpes: Ridges and courses.
SPIE Proc. Geometric Methods in Computer Visiqr2D31:2-13, 1993. 14.2.1

[54] C. Kuglin and D. Hines. The phase correlation imageratignt method. INREEE Con-
ference on Cybernetics and Socigigges 163-165, 1975. 9.1

Bibliography 553

[55] V. Lacroix and M. Acheroy. Feature extraction using ttmstrained gradientlSPRS
Journal of Photogrammetry & Remote Sensitg:85-94, 1998. 13.6.1, 13.6.2

[56] J. Lee. Digital image enhancement and noise filteringibs of local statisticsSIEEE
Transactions on Pattern Analysis and Machine Intelligerx#&65-168, 1980. 7.6.3

[57] T. Lindeberg.Scale-Space Theory in Computer Scienékiwer Academic Publishers,
1994. 7.6.1

[58] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baitire, and J. DarnelMolecular
Cell Biology. W. H. Freeman and Company, 2000. 5.1.6, 8.6.1

[59] D. G. Lowe. Distinctive image features from scale-inaat keypoints. International
Journal of Computer Visiqré0(2):91-110, 2004. 13.2.2

[60] D. Lu, P. Mausel, E. Brondizio, and E. Moran. Change déta techniquesint. J. of
Remote Sensin@5(12):2365-2407, 2004. 16.1.1

[61] F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. 8mst Multi-modality image
registration by maximization of mutual informationEEE Trans. on Med. Imaging
16:187-198, 1997. 8.4

[62] D. Malacara. Color Vision and Colorimetry: Theory and ApplicationSPIE PRESS,
2002. 5.1.6,5.1.6

[63] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, aNdEubank. Non-rigid multi-
modality image registration. IMedical Imaging 2001: Image Processingages 1609—
1620, 2001. 8.6.17,8.7.4

[64] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, andEubank. PET-CT image
registration in the chest using free-form deformatidB€E Trans. on Medical Imaging
22(1):120-128, Jan. 2003. 8.6.17

[65] D. Musser and A. SainiSTL Tutorial and Reference Guidé€rofessional Computing
Series. Addison-Wesley, 1996. 3.2.1

[66] V. Onana, E. Troug, G. Mauris, J. Rudant, and P. Frison. Change detectionbianur
context with multitemporal ERS-SAR images by using dataofuspproach. InEEE
Int. Conf. Geosci. Remote Sensiitigulouse, France, July, 21-25 2003. 16.1.1

[67] E. Osuna, R. Freund, and F. Girosi. Training supportaremachines:an application to
face detection, 1997. 17.3

[68] D. Pelleg and A. Moore. Accelerating exact k -means @algms with geometric rea-
soning. InFifth ACM SIGKDD International Conference On Knowledgedoigery and
Data Mining, pages 277-281, 1999. 17.1.1

[69] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. 8, &d D. J. Hawkes. A
comparision of similarity measures for use in 2d-3d medicelge registration|EEE
Transactions on Medical Imagind7(4):586-595, August 1998. 8.7.3

554 Bibliography

[70] P.Perona and J. Malik. Scale-space and edge detediiog anisotropic diffusionlEEE
Transactions on Pattern Analysis Machine Intelligent2:629-639, 1990. 7.6.2, 7.6.2,
7.6.2

[71] J.P.Pluim, J. B. A. Maintz, and M. A. Viergever. Mutualformation-Based Registration
of Medical Images: A SurveyEEE Transactions on Medical Imaging2(8):986—1004,
Aug. 2003. 8.7.4

[72] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. Tt&ing. Numerical Recipes in
C. Cambridge University Press, second edition, 1992. 8.8

[73] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysman. Imapange detection al-
gorithms: a systematic surveyEEE Trans. Image Processing4(3):294-307, March
2005. 16.1.1

[74] J. A. Richards. Analysis of remotely sensed data: thmé&tive decades and the fututre.
IEEE Trans. Geoscience and Remote Sendif(B):422—-432, 2005. 16.1.1

[75] K. Rohr, M. Fornefett, and H. S. Stiehl. Approximatinigirt-plate splines for elas-
tric registration: Integration of landmark errors and otaion attributes. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editotgformation Processing in Medical Imaging
1999 (IPMI'99), pages 252—-265. Springer, 1999. 8.6.18

[76] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese] M. H. Kuhn. Landmark-
based elastic registration using approximating thineptatlines.|IEEE Transactions on
Medical Imaging 20(6):526-534, June 1997. 8.6.18

[77] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O.ddh, and D. J. Hawkes.
Nonrigid registration using free-form deformations: Ajpption to breast mr images.
IEEE Transaction on Medical Imagind8(8):712—721, 1999. 8.6.17

[78] G. Sapiro and D. Ringach. Anisotropic diffusion of nivdlued images with applications
to color filtering. IEEE Trans. on Image Processing;1582—1586, 1996. 7.6.2

[79] J. P. Serralmage Analysis and Mathematical Morphologcademic Press Inc., 1982.
7.5.3,14.2.1

[80] J. SethianLevel Set Methods and Fast Marching Metho@ambridge University Press,
1996. 14.3

[81] J. C. Spall. An overview of the simultaneous perturratinethod for efficient optimiza-
tion. Johns Hopkins APL Technical Dige$0:482-492, 1998. 8.8

[82] E. Stabel and P. Fischer. Detection of structural clkarng river dynamics by radar-based
earth observation methods. Proc. of the 1st Biennial Meeting of the Int. Environmental
Modelling and Software Societyolume 1, pages 352—-358, Lugano, Switzerland, June
2002. 16.1.1

Bibliography 555

[83] M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Remtaic estimate of intensity
homogeneities applied to MRIIEEE Trans. Medical Imaging19(3):153-165, Mar.
2000. 8.8

[84] B. M. ter Haar Romeny, editofzeometry-Driven Diffusion in Computer Visiokluwer
Academic Publishers, 1994. 7.6.2

[85] R. Touzi, A. Lopes, and P. Bousquet. A statistical anogetrical edge detector for SAR
images.IEEE Trans. Geoscience and Remote Seng6(f):764—773, November 1988.
7.4.2

[86] J. Townshend, C. Justice, C. Gurney, and J. McManus.impact of misregistration on
change detectionlEEE Transactions on Geoscience and Remote Sen3g{§):1054—
1060, sept 1992. 9.1.1

[87] F. Tupin, H. Métre, J.-F. Mangin, J.-M. Nicolas, and E. Pechersky. Déaiaatf linear
features in SAR images: application to road network exiwactlEEE Transactions on
Geoscience and Remote SensB®f2):434-453, Mar. 1998. 13.4.1,13.4.1

[88] V. Vapnik. Statistical learning theoryJohn Wiley and Sons, NewYork, 1998. 17.3

[89] P. Viola and W. M. Wells Ill. Alignment by maximizationf enutual information.lJCV,
24(2):137-154, 1997. 8.4, 8.7.4

[90] J. Weickert, B. ter Haar Romeny, and M. Viergever. Covstive image transformations
with restoration and scale-space propertie®rivc. 1996 IEEE International Conference
on Image Processing (ICIP-96, Lausanne, Sept. 16-19, 1988)es 465-468, 1996.
7.6.2

[91] J. Weston and C. Watkins. Multi-class support vectochirzes, 1998. 17.3.1

[92] R. T. Whitaker. Characterizing first and second ordeclpaé using geometry-limited
diffusion. InInformation Processing in Medical Imaging 1993 (IPMI'93ages 149—
167,1993. 7.6.2

[93] R. T. Whitaker. Geometry-Limited DiffusianPhD thesis, The University of North Car-
olina, Chapel Hill, North Carolina 27599-3175, 1993. 7,6.5.2

[94] R. T. Whitaker. Geometry-limited diffusion in the chaterization of geometric patches
in images. Computer Vision, Graphics, and Image Processing: Imagedistdnding
57(1):111-120, January 1993. 7.6.2

[95] R. T. Whitaker and G. Gerig/ector-Valued Diffusiofpages 93—-134. Kluwer Academic
Publishers, 1994. 7.6.2, 7.6.2

[96] R. T. Whitaker and S. M. Pizer. Geometry-based image segation using anisotropic
diffusion. In Y.-L. O, A. Toet, H. Heijmans, D. Foster, andNpeer, editorsShape in
Picture: The mathematical description of shape in greylévages Springer Verlag,
Heidelberg, 1993. 7.6.2

556 Bibliography

[97] R. T. Whitaker and S. M. Pizer. A multi-scale approach eaumiform diffusion.Com-

puter Vision, Graphics, and Image Processing: Image Urtdading 57(1):99-110,
January 1993. 7.6.2

[98] R. T. Whitaker and X. Xue. Variable-Conductance, LeSel-Curvature for Image Pro-

cessing. Ifnternational Conference on Image Processipgges 142-145. IEEE, 2001.
7.6.2

[99] G. Wyszecki.Color Science: Concepts and Methods, Quantitative DataRomthulae
Wiley-Interscience, 2000. 5.1.6, 5.1.6

[100] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rihes, and R. Whitaker. Direct
visualization of volume datdEEE Computer Graphics and Applicatigrs?(4):63—71,
1992. 14.2.1

[101] T. Yoo, S. Pizer, H. Fuchs, T. Cullip, J. Rhoades, antMRitaker. Achieving direct vol-
ume visualization with interactive semantic region sétect In Information Processing
in Medical ImagesSpringer Verlag, 1991. 14.2.1, 14.2.1

[102] T. S. Yoo and J. M. Coggins. Using statistical pattexcognition techniques to control
variable conductance diffusion. lImformation Processing in Medical Imaging 1993
(IPMI'93), pages 459-471, 1993. 7.6.2

INDEX

BufferedRegion, 518 Constlterator, 84
convolution
CellAutoPointer, 88 kernels, 492
TakeOwnership(), 89, 91 operators, 492
CellDataContainer convolution filtering, 491
Begin(), 92 CreateStructuringElement()
Constlterator, 92 itk::BinaryBallStructuringElement, 156,
End(), 92 159
Iterator, 92
CellDatalterator data object, 27, 517
increment, 92 data processing pipeline, 28, 517
Value(), 92 Digital elevation model, 123
Celllterator Distance map, 170
increment, 90 down casting, 90
Value(), 90 Downloading, 4
CellsContainer
Begin(), 90 edge detection, 488
End(), 90 error handling, 24
CellType event handling, 24
creation, 89, 91 exceptions, 24
GetNumberOfPoints(), 90
Print(), 90 ff'ictory, 22
CMake, 12 filter, 28, 517 .
downloading, 12 overview of creation, 518

Filter, Pipeline, 37

Command/Observer design pattern, 24 I ,
forward iteration, 472

Complex images

Instantiation, 108 garbage collection, 23

\?V?'sidr:ngi(]).(gjg Gaussian blurring, 495

' g Generic Programming, 471
Configuration, 12 :)

with VTK' 13 generic programming, 21, 471

const-correctness, 84 Hello World, 14, 33

558 Index

Image operator+=(), 473
Allocate(), 59 operator—, 473
Header, 57 operator-=(), 473
Index, 58 programming interface, 472-476
IndexType, 58 Set(), 474
Instantiation, 57 SetPosition(), 474
itk::ImageRegion, 58 speed, 476, 478
Multispectral, 108 Value(), 475
New(), 57 iterators
Pointer, 57 neighborhood
RegionType, 58 and convolution, 492
RGB, 103 itk::AddImageFilter
SetRegions(), 59 Instantiation, 143
Size, 58 itk::AffineTransform, 198, 218
SizeType, 58 header, 198
image region, 517 Instantiation, 198
ImageAdaptor New(), 198
RGB blue channel, 510 Pointer, 198
RGB green channel, 509 itk::AmoebaOptimizer, 233
RGB red channel, 508 itk::AutoPointer, 88
ImageAdaptors, 505 TakeOwnership(), 89, 91
Installation, 11 itk::BinaryThresholdimageFilter
InvokeEvent(), 24 Header, 128
it::GradientDifferencelmageTolmageMetric, Instantiation, 128
231 Setlnput(), 129
iteration region, 472 SetInsideValue(), 129
Iterators SetOutsideValue(), 129
advantages of, 471 itk::BinaryBallStructuringElement
and bounds checking, 474 CreateStructuringElement(), 156, 159
and image lines, 481 SetRadius(), 156, 159
and image regions, 472, 475, 476, 478 itk::BinaryDilatelmageFilter
const, 472 header, 155
construction of, 472, 478 New(), 156
definition of, 471 Pointer, 156
Get(), 474 SetDilateValue(), 157
Getindex(), 474 SetKernel(), 156
GoToBegin(), 472 Update(), 157
GoToEnd(), 473 itk::BinaryErodelmageFilter
image, 471-503 header, 155
image dimensionality, 478 New(), 156
IsAtBegin(), 474 Pointer, 156
ISAtENnd(), 474 SetErodeValue(), 157
neighborhood, 482-503 SetKernel(), 156

operator++(), 473 Update(), 157

Index 559
itk::BSplineDeformableTransform, 220 itk::DerivativelmageFilter, 140
itk::CannyEdgeDetectionimageFiltdr 7 GetOutput(), 140

header, 147 header, 140
itk::Cell instantiation, 140

CellAutoPointer, 88 New(), 140
itk::CenteredRigid2DTransform, 211 Pointer, 140
itk::CenteredRigid2DTransform, 191 SetDirection(), 140

header, 191 Setlnput(), 140

Instantiation, 191 SetOrder(), 140

New(), 191 itk::DiscreteGaussianimageFilter, 160

Pointer, 191 header, 160
itk::Command, 24 instantiation, 161
itk::ConfidenceConnectedimageFilter, 333 New(), 161

header, 333 Pointer, 161

SetlnitiaINeighborhoodRadius(), 335 SetMaximumKernelWidth(), 161

SetMultiplier(), 334 SetVariance(), 161

SetNumberOflterations(), 335 Update(), 161

SetReplaceValue(), 335 itk::ElasticBodyReciprocalSplineKernel-

SetSeed(), 335 Transform, 221
itk::ConjugateGradientOptimizer, 233 itk::ElasticBodySplineKernelTransform, 221
itk::ConnectedThresholdimageFilter, 322 itk::Euler2DTransform, 210

header, 322 itk::Euler3DTransform, 216

SetLower(), 323 itk::FastMarchinglmageFilter

SetReplaceValue(), 323 Multiple seeds, 348

SetSeed(), 324 NodeContainer, 348

SetUpper(), 323 Nodes, 348
itk::CorrelationCoefficientHistogramlmage- NodeType, 348

TolmageMetric, 230 Seed initialization, 349

itk::Covariant\Vector SetStoppingValue(), 349

Concept, 203 SetTrialPoints(), 349
itk::DanielssonDistanceMaplmageFilter itk::FilelmageReader

GetOutput(), 171 GetOutput(), 132

GetVoronoiMap(), 171 itk::FloodFilllterator

Header, 170 In Region Growing, 322, 333

Instantiation, 170 itk::GradientAnisotropicDiffusionimage-

instantiation, 171 Filter, 164

New(), 171 header, 164

Pointer, 171 instantiation, 164

Setlnput(), 171 New(), 164
itk::DanielssonDistanceMaplimageFilter Pointer, 164

InputlsBinaryOn(), 171 SetConductanceParameter(), 165
itk::DataObjectDecorator SetNumberOflterations(), 165

Get(), 180
Use in Registration, 180

SetTimeStep(), 165
Update(), 165

560

Index

itk:

itk:

itk:

itk:

itk:

itk:

itk:

itk:

itk:

itk:

:GradientDescentOptimizer, 233

MaximizeOn(), 189

:GradientMagnitudeRecursiveGaussian-

ImageFilter, 138
header, 138
Instantiation, 138
New(), 138
Pointer, 138
SetSigma(), 139, 348
Update(), 139

:GradientMagnitudelmagerFilter, 136

header, 136
instantiation, 136
New(), 136
Pointer, 136
Update(), 136

:GrayscaleDilatelmageFilter

header, 157
New(), 158
Pointer, 158
SetKernel(), 159
Update(), 159

:GrayscaleErodelmageFilter

header, 157
New(), 158
Pointer, 158
SetKernel(), 159
Update(), 159

:IdentityTransform, 207
:ImageRegistrationMethod

Maximize vs Minimize, 189
Multi-Modality, 185

:ImageTolmageMetric, 223

GetDerivatives(), 223
GetValue(), 223
GetValueAndDerivatives(), 223

:ImageAdaptor

Header, 506, 508, 510, 512
Instantiation, 506, 508, 510, 512
performing computation, 512
RGB blue channel, 510

RGB green channel, 509

RGB red channel, 508

:ImageFileReader

itk:

itk::

itk:

itk::

itk::

itk:
itk::
itk::

itk::
itk::
itk::
itk::
itk::
itk::

itk::

Instantiation, 110

:ImageFileWriter

Instantiation, 110
ImageLinearlteratorWithindex, 480-482
example of using, 481-482
GoToBeginOfLine(), 481
GoToReverseBeginOfLine(), 481
ISAtEndOfLine(), 481
IsAtReverseEndOfLine(), 481
NextLine(), 481
PreviousLine(), 481

:ImageRegionlterator, 476478

example of using, 476-478
ImageRegionlteratorWithindex, 478-480
example of using, 479-480
ImageRegistrationMethod
DataObjectDecorator, 180

GetOutput(), 180

Pipeline, 180

Resampling image, 180
SetFixedimageRegion(), 177

:KappasStatisticimageTolmageMetric, 230

KernelTransforms, 221
LaplacianRecursiveGaussianimagekFilter,
145
header, 145
New(), 146
Pointer, 146
SetSigma(), 146
Update(), 146
LBFGSOptimizer, 233
LBFGSBOptimizer, 233
LevenbergMarquardtOptimizer, 233
LineCell
Header, 87
Instantiation, 88, 91
MapContainer
InsertElement(), 79, 81
MatchCardinalitylmageTolmageMetric,
230
MattesMutuallnformationimageTolmage-
Metric, 228
SetNumberOfHistogramBins(), 228
SetNumberOfSpatialSamples(), 228

Index 561
itk::MeanReciprocalSquareDifferencelmage- SetCell(), 89, 91
TolmageMetric, 225 SetPoint(), 86, 88, 91
itk::MeanSquaresHistogramimageTolmage- Static, 85
Metric, 229 traits, 87
itk::MeanSquaresimageTolmageMetric, 224 itk::MutuallnformationilmageTolmageMetric,
itk::MeanimageFilter, 151 227
GetOutput(), 152 SetFixedlmageStandardDeviation(), 187,
header, 151 228
instantiation, 151 SetMovinglmageStandardDeviation(),
Neighborhood, 152 187, 228

New(), 151
Pointer, 151
Radius, 152
Setlnput(), 152
itk::MedianlmageFilter, 153
GetOutput(), 154
header, 153
instantiation, 153
Neighborhood, 153
New(), 153
Pointer, 153
Radius, 153
Setlnput(), 154
itk::Mesh, 27, 85
Cell data, 90
CellAutoPointer, 88
CellType, 87
CellType casting, 90
Dynamic, 85
GetCellData(), 92
GetCells(), 90
GetNumberOfCells(), 90
GetNumberOfPoints(), 86
GetPoints(), 87
Header file, 85
Inserting cells, 89
Instantiation, 86, 91
Iterating cell data, 92
Iterating cells, 90
New(), 86, 88, 91
PixelType, 91
Pointer, 91
Pointer(), 86
PointType, 86, 88, 91

itk::

itk::

itk:
itk::

itk::

itk::

itk::

itk::

itk::

SetNumberOfSpatialSamples(), 189, 228
Trade-offs, 189
NeighborhoodConnectedlimageFilter

SetLower(), 331

SetReplaceValue(), 331

SetSeed(), 331

SetUppder(), 331
NormalizedCorrelationimageTolmage-

Metric, 225

:0OnePlusOneEvolutionaryOptimizer, 233

Optimizer, 231
GetCurrentPosition(), 231
SetlnitialPosition(), 231
SetScales(), 231
StartOptimization(), 231

OtsuThresholdimageFilter
Setlnput(), 326
SetinsideValue(), 326
SetOutsideValue(), 326

OtsuMultipleThresholdsCalculator
GetOutput(), 328

PixelAccessor
performing computation, 512
with parameters, 510, 512

Point
Concept, 203

PointSet, 76
Dynamic, 76
GetNumberOfPoints(), 77, 80
GetPoint(), 78
GetPointData(), 81, 82, 84
GetPoints(), 79, 80, 84
Instantiation, 76
New(), 77

562

Index

PixelType, 80

PointDataContainer, 81

Pointer, 77

Pointlterator, 84

PointsContainer, 78

PointType, 77

SetPoint(), 77, 83

SetPointData(), 81-83

SetPoints(), 79

Static, 76

Vector pixels, 83
itk::PowellOptimizer, 233
itk::QuaternionRigidTransform, 213
itk::QuaternionRigidTransformGradient-

DescentOptimizer, 233

itk::RecursiveGaussianimagerFilter, 141

header, 141

Instantiation, 141, 145

New(), 142

Pointer, 142

SetSigma(), 143
itk::RegistrationMethod

GetCurrentlteration(), 201

GetValue(), 201
SetFixedImage(), 176

SetlnitialTransformParameters(), 177

Setinterpolator(), 176
SetMetric(), 176
SetMovinglmage(), 176
SetOptimizer(), 176
SetTransform(), 176, 191, 198

itk::RegularSetpGradientDescentOptimizer

GetCurrentlteration(), 178
SetMaximumStepLength(), 177
SetNumberOfilterations(), 178

itk::RegularStepGradientDescentOptimizer,

233
MinimizeOn(), 200
SetMinimumStepLength(), 177
itk::RescalelntensitylmageFilter
header, 105
SetOutputMaximum(), 105
SetOutputMinimum(), 105

itk::

itk::
itk::
itk::
itk::
itk:
itk::
itk::
itk::

itk::

itk::
itk::
itk:
itk::
GetLastTransformParameters(), 178, 20ik::

itk::
itk:

itk:

itk::

itk::

RGBPixel, 69

GetBlue(), 69

GetGreen(), 69

GetRed(), 69

header, 69

Image, 69, 103

Instantiation, 69, 104
Rigid3DPerspectiveTransform, 217
ScaleLogarithmicTransform, 210
ScaleTransform, 208
Similarity2DTransform, 212

:Similarity3DTransform, 217

SingleValuedNonLinearOptimizer, 231

SPSAOptimizer, 233

Statistics::ExpectationMaximization-
MixtureModelEstimator, 408

Statistics::GaussianMixtureModel-
Component, 408

Statistics::GaussianDensityFunction, 402

Statistics::KdTreeBasedKmeans-
Estimator, 390

:Statistics::NormalVariateGenerator, 402

Statistics::SampleClassifier, 402

ThinPlateR2LogRSplineKernel-
Transform, 221

ThinPlateSplineKernelTransform, 221

:ThresholdimageFilter

Header, 132

Instantiation, 132
Setlnput(), 132
SetOutsideValue(), 132
ThresholdAbove(), 132
ThresholdBelow(), 132, 133
ThresholdOutside(), 132

:Transform, 203

GetJacobian(), 206
SetParameters(), 206
TransformCovariantVector(), 203
TransformPoint(), 203
TransformVector(), 203
TranslationTransform, 207
GetNumberOfParameters(), 177
Vector, 70
Concept, 203

Index

563

itk:

itk:

itk:
itk:
itk:
itk:
itk:
itk:

header, 70
itk::PointSet, 83

:VectorContainer

InsertElement(), 79, 81

‘Versor

Definition, 214

:VersorRigid3DTransformOptimizer, 233
:VersorTransformOptimizer, 233
:VersorRigid3DTransform, 215
:VersorTransform, 214
:VersorTransformOptimizer, 214
:‘VolumeSplineKernelTransform, 221

LaplacianRecursiveGaussianimageFilter

SetNormalizeAcrossScale(), 146

LargestPossibleRegion, 518
LineCell

GetNumberOfPoints(), 90
Print(), 90

mailing list, 5
mapper, 28, 517
Markov, 417

Classification, 417, 421
Filtering, 167
Regularization, 422
Restauration, 167

mesh region, 518
modified time, 518

Neighborhood iterators

active neighbors, 498

as stencils, 498
boundary conditions, 487
bounds checking, 487
construction of, 483
examples, 488

inactive neighbors, 498
radius of, 483

shaped, 498

NeighborhoodIterator

examples, 488
GetCenterPixel(), 485
GetlmagePointer(), 485
Getindex(), 486

GetNeighborhood(), 486

GetNeighborhoodindex(), 487

GetNext(), 485

GetOffset(), 487

GetPixel(), 485

GetPrevious(), 486

GetRadius(), 484

GetSlice(), 487

NeedToUseBoundaryConditionOff(),
487

NeedToUseBoundaryConditionOn(),
487

OverrideBoundaryCondition(), 487

ResetBoundaryCondition(), 488

SetCenterPixel(), 485

SetNeighborhood(), 486

SetNext(), 486

SetPixel(), 485, 488

SetPrevious(), 486

Size(), 485

Neighborhoodlterators, 485, 486
numerics, 25

object factory, 22
OoTB

otb::

otb::
otb::
otb::
otb::
otb::
otb::
otb::

otb::

history, 8

mailing list, 5
AssymetricFusionOfDetector
SetLengthLine(), 300
SetWidthLine(), 300

AssymetricFusionOfDetectorimageFilter

Setlnput(), 300
BayesianFusionFilter, 282
header, 282

DEMHandler, 123
DEMTolmageGenerator, 123
ExtractROI

header, 106, 111
ExtractSegmentsimageFilter
Setlnput(), 302
FilelmageReader
GetOutput(), 129, 166, 326
Image, 27
GetBufferedRegion(), 177

564 Index
GetPixel(), 61, 69 SetWidthLine(), 298
Header, 174 otb::LineCorrelationDetectorimageFilter
Instantiation, 174 Setlnput(), 298
origin, 63 oth::LineRatioDetector
read, 59 SetLengthLine(), 295
SetOrigin(), 63 SetWidthLine(), 295
SetPixel(), 61 otb::LineRatioDetectorimageFilter
SetSpacing(), 63 Setlnput(), 295
Spacing, 62 oth::MultiChannelRAndBANndNIRVegetationIndexImageeét|
TransformPhysicalPointTolndex(), 64 268, 270
otb::ImageFileRead header, 268, 270
Complex images, 108 otb::RAndNIRVegetationindeximageFilter,
otb::ImageFileReade®5, 100, 110 266
GetOutput(), 60 oth::StreaminglmageFileReader
header, 95, 100, 105, 110 SmartPointer, 101
Instantiation, 59, 96, 105 otb::StreaminglmageFileWritet00
New(), 60, 96, 101, 105, 107, 110 header, 100
Pointer, 60 Instantiation, 100
RGB Image, 69, 104 SetFileName(), 101
SetFileName(), 60, 96, 101, 106, 107th::SVMPointSetModelEstimator, 431
110 otb::TouziEdgeDetectorimageFilter
SmartPointer, 96, 105, 107, 110 Setlnput(), 149
Update(), 60 otb::Vectorlmage
otb::ImageFileWrite Instantiation, 70
Complex images, 108 oth::Vegetationindex, 266, 268, 270
oth::ImageFileWriter95, 110 header, 266, 268, 270
header, 95, 105, 110
Instantiation, 96, 105 pipeline
New(), 96, 101, 105, 107, 110 downstream, 518
RGB Image, 104 execution details, 522
SetFileName(), 96, 106, 107, 110 information, 518
SmartPointer, 96, 101, 105, 107, 110 modified time, 518
0tb::|mp0rt|mage|:i|ter overview of execution, 520
Header, 72 PropagateRequestedRegion, 523
Instantiation, 72 streaming large data, 519
New(), 72 ThreadedFilterExecution, 524
Pointer, 72 UpdateOutputData, 524
SetRegion(), 72 UpdateOutputinformation, 522
otb::LeelmageFilter upstream, 518
NbLooks(), 150, 166 PixelAccessor
Setlnput(), 166 RGB blue channel, 510
SetRadius(), 150, 166 RGB green channel, 509
otb::LineCorrelationDetector RGB red channel, 508

SetlLengthLine(), 298

PointDataContainer

Index

565

Begin(), 82
End(), 82
increment ++, 82
InsertElement(), 81
Iterator, 82
New(), 81
Pointer, 81
PointsContainer
Begin(), 79, 87
End(), 80, 87
InsertElement(), 79
Iterator, 79, 80, 87
New(), 78
Pointer, 78, 79
Size(), 80
Print(), 90
process object, 28, 517
ProgressEvent(), 24

reader, 28

Reader, Writer, Pipeline, 35

RecursiveGaussianimagekFilter
SetDirection(), 142
SetNormalizeAcrossScale(), 143
SetOrder(), 142

region, 517

RegularStepGradientDescentOptimizer
SetMaximumStepLength(), 194
SetMinimumStepLength(), 194
SetNumberOfiterations(), 194
SetRelaxationFactor(), 194

RequestedRegion, 518

reverse iteration, 472, 475

RGB
reading Image, 103
writing Image, 103

scene graph, 29
SetCell()
itk::Mesh, 89
SetDilateValue()
itk::BinaryDilatelmageFilter, 157
SetErodeValue()
itk::BinaryErodelmageFilter, 157
SetFileName()

otb::ImageFileReader, 96, 101, 106, 107,
110
otb::ImageFileWriter, 96, 106, 107, 110
oth::StreaminglmageFileWriter, 101
SetinsideValue()
itk::BinaryThresholdimageFilter, 129
itk::OtsuThresholdimageFilter, 326
SetKernel()
itk::BinaryDilatelmageFilter, 156
itk::BinaryErodelmageFilter, 156
itk::GrayscaleDilatelmageFilter, 159
itk::GrayscaleErodelmageFilter, 159
SetNbLooks()
oth::LeelmageFilter, 150, 166
SetNumberOflterations()
itk::GradientAnisotropicDiffusion-
ImagekFilter, 165
SetOutsideValue()
itk::BinaryThresholdimageFilter, 129
itk::OtsuThresholdimageFilter, 326
itk::ThresholdimageFilter, 132
SetRadius()
itk::BinaryBallStructuringElement, 156,
159
SetSigma()
itk::GradientMagnitudeRecursive-
GaussianimageFilter, 139
itk::LaplacianRecursiveGaussianimagekFilter,
146
itk::RecursiveGaussianimagekFilter, 143
SetTimeStep()
itk::GradientAnisotropicDiffusion-
ImageFilter, 165
ShapedNeighborhoodlterator, 498
ActivateOffset(), 498
ClearActiveList(), 499
DeactivateOffset(), 499
examples of, 499
GetActivelndexListSize(), 499
Iterator::Begin(), 499
Iterator::End(), 499
smart pointer, 22
Sobel operator, 488, 491
source, 28, 517

566

Index

spatial object, 29

Statistics
Bayesian plugin classifier, 402
Expectation maximization, 408
k-means clustering (using k-d tree), 390
Mixture model estimation, 408

Streaming, 100, 515

streaming, 28

template, 21
Threading, 515

Vector
Geometrical Concept, 203
vector data, 117
dxf, 117
shapefile, 119
VNL, 25
Voronoi partitions, 171
itk::DanielssonDistanceMaplmageFilter,
171

Watersheds, 336
ImageFilter, 339
Overview, 336

	I Introduction
	Welcome
	Organization
	How to Learn OTB
	Software Organization
	Obtaining the Software

	Downloading OTB
	Join the Mailing List
	Directory Structure
	Documentation
	Data

	The OTB Community and Support
	A Brief History of OTB
	ITK's history

	Installation
	External Libraries
	Configuring OTB
	Preparing CMake
	Configuring OTB
	Building ITK

	Getting Started With OTB
	Hello World !

	System Overview
	System Organization
	Essential System Concepts
	Generic Programming
	Include Files and Class Definitions
	Object Factories
	Smart Pointers and Memory Management
	Error Handling and Exceptions
	Event Handling
	Multi-Threading

	Numerics
	Data Representation
	Data Processing Pipeline
	Spatial Objects

	II Tutorials
	Building Simple Applications with OTB
	Hello world
	Pipeline basics: read and write
	Filtering pipeline
	Handling types: scaling output
	Working with multispectral or color images
	Parsing command line arguments
	Viewer
	Going from raw satellite images to useful products

	III User's guide
	Data Representation
	Image
	Creating an Image
	Reading an Image from a File
	Accessing Pixel Data
	Defining Origin and Spacing
	Accessing Image Metadata
	RGB Images
	Vector Images
	Importing Image Data from a Buffer
	Image Lists

	PointSet
	Creating a PointSet
	Getting Access to Points
	Getting Access to Data in Points
	Vectors as Pixel Type

	Mesh
	Creating a Mesh
	Inserting Cells
	Managing Data in Cells

	Path
	Creating a PolyLineParametricPath

	Reading and Writing Images
	Basic Example
	Pluggable Factories
	IO Streaming
	Implicit Streaming
	Explicit Streaming

	Reading and Writing RGB Images
	Reading, Casting and Writing Images
	Extracting Regions
	Reading and Writing Vector Images
	Reading and Writing Complex Images

	Reading and Writing Multiband Images
	Extracting ROIs

	Reading Image Series
	Reading and Writing Vector Data
	Reading DXF Files
	Reading and Writing Vector Data Files

	Reading DEM Files

	Basic Filtering
	Thresholding
	Binary Thresholding
	General Thresholding
	Threshold to Point Set

	Gradients
	Gradient Magnitude
	Gradient Magnitude With Smoothing
	Derivative Without Smoothing

	Second Order Derivatives
	Laplacian Filters
	Laplacian Filter Recursive Gaussian

	Edge Detection
	Canny Edge Detection
	Ratio of Means Detector

	Neighborhood Filters
	Mean Filter
	Median Filter
	Mathematical Morphology
	Binary Filters
	Grayscale Filters

	Smoothing Filters
	Blurring
	Discrete Gaussian

	Edge Preserving Smoothing
	Introduction to Anisotropic Diffusion
	Gradient Anisotropic Diffusion

	Edge Preserving Speckle Reduction Filters
	Edge preserving Markov Random Field

	Distance Map

	Image Registration
	Registration Framework
	"Hello World" Registration
	Features of the Registration Framework
	Direction of the Transform Mapping
	Registration is done in physical space

	Multi-Modality Registration
	Viola-Wells Mutual Information

	 Centered Transforms
	Rigid Registration in 2D
	Centered Affine Transform

	Transforms
	Geometrical Representation
	Transform General Properties
	Identity Transform
	Translation Transform
	Scale Transform
	Scale Logarithmic Transform
	Euler2DTransform
	CenteredRigid2DTransform
	Similarity2DTransform
	QuaternionRigidTransform
	VersorTransform
	VersorRigid3DTransform
	Euler3DTransform
	Similarity3DTransform
	Rigid3DPerspectiveTransform
	AffineTransform
	BSplineDeformableTransform
	KernelTransforms

	Metrics
	Mean Squares Metric
	Exploring a Metric

	Normalized Correlation Metric
	Mean Reciprocal Square Differences
	Mutual Information Metric
	Parzen Windowing
	Viola and Wells Implementation
	Mattes et al. Implementation

	Kullback-Leibler distance metric
	Normalized Mutual Information Metric
	Mean Squares Histogram
	Correlation Coefficient Histogram
	Cardinality Match Metric
	Kappa Statistics Metric
	Gradient Difference Metric

	Optimizers

	Disparity Map Estimation
	Disparity Maps
	Geometric deformation modeling
	Similarity measures
	The correlation coefficient

	Disparity Map Estimation Framework
	Simple Disparity Map Estimation

	Ortho-registration
	Sensor Models
	Types of Sensor Models
	Using Sensor Models
	Limits of the Approach

	Map Projections
	Ortho-rectification with OTB

	 Radiometry
	Vegetation Index
	Introduction
	NDVI
	ARVI

	Atmospheric Corrections

	Image Fusion
	Simple Pan Sharpening
	Bayesian Data Fusion

	Feature Extraction
	Introduction
	Interest Points
	Harris detector
	SIFT detector

	Alignments
	Lines
	Line Detection
	Segment Extraction

	Geometric Moments
	Complex Moments
	Complex Moments for Images
	Complex Moments for Paths

	Hu Moments
	Hu Moments for Images

	Flusser Moments
	Flusser Moments for Images

	Road extraction
	Road extraction filter
	Step by step road extraction

	Image Segmentation
	Region Growing
	Connected Threshold
	Otsu Segmentation
	Neighborhood Connected
	Confidence Connected

	Segmentation Based on Watersheds
	Overview
	Using the ITK Watershed Filter

	Level Set Segmentation
	Fast Marching Segmentation

	Multi-scale Analysis
	Introduction
	Morphological Pyramid
	Morphological Pyramid Exploitation

	Change Detection
	Introduction
	Surface-based approaches

	Change Detection Framework
	Simple Detectors
	Mean Difference
	Ratio Of Means

	Statistical Detectors
	Distance between local distributions
	Local Correlation

	Multi-Scale Detectors
	Kullback-Leibler Distance between distributions

	Classification
	Introduction
	k-d Tree Based k-Means Clustering
	K-Means Classification
	Simple version
	General approach

	Bayesian Plug-In Classifier
	Expectation Maximization Mixture Model Estimation
	Classification using Markov Random Fields
	ITK framework
	OTB framework

	Statistical Segmentations
	Stochastic Expectation Maximization

	Support Vector Machines
	Mathematical formulation
	Learning With PointSets
	PointSet Classification
	Learning With Images
	Image Classification
	Generic Kernel SVM
	Learning with User Defined Kernels
	Classification with user defined kernel

	Multi-band, streamed classification

	Kohonen's Self Organizing Map
	The algorithm
	Learning

	Building a color table
	SOM Classification
	Multi-band, streamed classification

	Image Visualization

	IV Developper's guide
	Iterators
	Introduction
	Programming Interface
	Creating Iterators
	Moving Iterators
	Accessing Data
	Iteration Loops

	Image Iterators
	ImageRegionIterator
	ImageRegionIteratorWithIndex
	ImageLinearIteratorWithIndex

	Neighborhood Iterators
	NeighborhoodIterator
	Basic neighborhood techniques: edge detection
	Convolution filtering: Sobel operator
	Optimizing iteration speed
	Separable convolution: Gaussian filtering
	Random access iteration

	ShapedNeighborhoodIterator
	Shaped neighborhoods: morphological operations

	Image Adaptors
	Image Casting
	Adapting RGB Images
	Adapting Vector Images
	Adaptors for Simple Computation
	Adaptors and Writers

	Streaming and Threading
	Introduction
	Streaming and threading in OTB
	Division strategies

	How To Write A Filter
	Terminology
	Overview of Filter Creation
	Streaming Large Data
	Overview of Pipeline Execution
	Details of Pipeline Execution
	UpdateOutputInformation()
	PropagateRequestedRegion()
	UpdateOutputData()

	Threaded Filter Execution
	Filter Conventions
	Optional
	Useful Macros

	How To Write A Composite Filter
	Implementing a Composite Filter
	A Simple Example

	V Appendix
	Frequently Asked Questions
	Introduction
	What is OTB?
	What is ORFEO?
	Where can I get more information about ORFEO?

	What is the ORFEO Accompaniment Program?
	Where can I get more information about the ORFEO Accompaniment Program?

	Who is responsible for the OTB development?

	Licence
	Which is the OTB licence?
	If I write an application using OTB am I forced to distribute that application?
	If I wanted to distribute an application using OTB what license would I need to use?
	I am a commercial user. Is there any restriction on the use of OTB?

	Getting OTB
	Who can download the OTB?
	Where can I download the OTB?

	Installing OTB
	Which platforms are supported
	Which libraries/packages are needed before installing OTB?
	Main steps
	Unix/Linux Platforms
	Microsoft Visual Studio C++ 7.1
	Microsoft Visual Studio C++ 8.0
	MinGW on Windows platform
	Cygwin

	Specific platform issues
	SunOS/HP UX
	Linux Debian/Ubuntu
	Cygwin
	MSVC++ 8.0

	Using OTB
	Where to start ?
	What is the image size limitation of OTB ?

	Getting help
	Is there any mailing list?
	Which is the main source of documentation?

	Contributing to OTB
	I want to contribute to OTB, where to begin?
	What are the benefits of contributing to OTB?
	What functionality can I contribute?

	OTB's Roadmap
	Which will be the next version of OTB?
	What is a major version?
	What is a minor version?
	What is a bugfix version?

	When will the next version of OTB be available?
	What features will the OTB include and when?

	Index

