
The ORFEO Tool Box Software Guide
Sixth Edition

Updated for OTB-2.2

OTB Development Team

May 30, 2008

http://otb.cnes.fr
e-mail: otb@cnes.fr

http://otb.cnes.fr

The ORFEO Toolbox is not a black box.

Ch.D.

Foreword

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systems developments forming ORFEO,
the dual and bilateral system (France - Italy) for Earth Observation, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and promote the use and the exploitation of
the images derived from these sensors.

The creation of a preparatory program1 is needed because of :

• the new capabilities and performances of the ORFEO systems (optical and radar high
resolution, access capability, data quality, possibilityto acquire simultaneously in optic
and radar),

• the implied need of new methodological developments : new processing methods, or
adaptation of existing methods,

• the need to realise those new developments in very close cooperation with the final users
for better integration of new products in their systems.

This program was initiated by CNES mid-2003 and will last until 2009. It consists in two parts,
between which it is necessary to keep a strong interaction :

• A Thematic part,

• A Methodological part.

The Thematic part covers a large range of applications (civil and defence), and aims at specify-
ing and validating value added products and services required by end users. This part includes
consideration about products integration in the operational systems or processing chains. It also
includes a careful thought on intermediary structures to bedeveloped to help non-autonomous

1http://smsc.cnes.fr/PLEIADES/Aprog accomp.htm

users. Lastly, this part aims at raising future users awareness, through practical demonstrations
and validations.

The Methodological part objective is the definition and the development of tools for the op-
erational exploitation of the future submetric optic and radar images (tridimensional aspects,
changes detection, texture analysis, pattern matching, optic radar complementarities). It is
mainly based on R&D studies and doctorate and post-doctorate researches.

In this context, CNES2 decided to develop theORFEO ToolBox(OTB), a set of algorithms
encapsulated in a software library. The goals of the OTB is tocapitalise a methologicalsavoir
faire in order to adopt an incremental development approach aiming to efficiently exploit the
results obtained in the frame of methodological R&D studies.

All the developments are based on FLOSS (Free/Libre Open Source Software)
or existing CNES developments. OTB is distributed under theCéCILL licence,
http://www.cecill.info/licences/Licence CeCILL V2-en.html .

OTB is implemented in C++ and is mainly based on ITK3 (Insight Toolkit).

2http://www.cnes.fr
3http://www.itk.org

http://www.cecill.info/licences/Licence_CeCILL_V2-en.html

Contributors

The ORFEO Toolbox is a project conducted by CNES and developed in cooperation with CS
(Communication & Syst̀emes),http://www.c-s.fr .

This Software Guide is based on the ITK Software Guide: the build process for the documenta-
tion, many examples and even the LATEX sources were taken from ITK. We are very grateful
to the ITK developpers and contributors and especially to Luis Ibáñez.

The OTB specifics were implemented and documented by the OTB Development Team:

• Jordi Inglada did most of the editing work for this guide and is guilty for the choice of
data and examples. He also implemented the SVM classification approach and the change
detection framework.

• Thomas Feuvrier is the OTB system guru: he implemented the build procedures for the
code and the documentation; he implemented the IO functionalities and the streaming IO
capabilities; he also developped the visualization tools.

• Julien Michel implemented the morphological pyramid functionnalities, the spatial rea-
soning tools, Kohonen’s SOM, disparity map estimation, as well as some applications
and filters.

• Romain Garrigues is responsible for some applications and coded most of the ortho-
rectification routines (ported from code developped by Miarintsoa Ramanantsimiavona);
he also worked on the multi-platform installation procedures.

• Emmanuel Christophe developped a road extraction algorithm and is responsible for the
tutorials.

• Cyrille Valladeau coded some vegetation indices and portedthe Bayesian fusion algo-
rithm kindly provided by Julien Radoux and Dominique Fasbender (UCL).

http://www.c-s.fr

vi

• Grégoire Mercier contributed the Kullback-Leibler change detectors, several SVM ker-
nels and the SEM algorithm.

• Vincent Poulain contributed a DXF reader.

• Patrick Imbo developped some filters and feature extractionalgorithms.

• Caroline Ruffel coded the edge and line detectors among other fuctionnalities.

Contributions from users are expected and encouraged for the comming versions of OTB.

CONTENTS

I Introduction 1

1 Welcome 3

1.1 Organization .. . 3

1.2 How to Learn OTB .. . 3

1.3 Software Organization 4

1.3.1 Obtaining the Software .4

1.4 Downloading OTB .. . 4

1.4.1 Join the Mailing List . 5

1.4.2 Directory Structure .. 5

1.4.3 Documentation . 7

1.4.4 Data . 7

1.5 The OTB Community and Support 7

1.6 A Brief History of OTB .. . 8

1.6.1 ITK’s history .9

2 Installation 11

2.1 External Libraries 11

2.2 Configuring OTB 12

2.2.1 Preparing CMake .. 12

2.2.2 Configuring OTB .13

Building ITK . 14

viii Contents

2.3 Getting Started With OTB .14

2.3.1 Hello World ! . 14

3 System Overview 19

3.1 System Organization 19

3.2 Essential System Concepts 20

3.2.1 Generic Programming .. 21

3.2.2 Include Files and Class Definitions .. . 21

3.2.3 Object Factories .. 22

3.2.4 Smart Pointers and Memory Management 22

3.2.5 Error Handling and Exceptions 24

3.2.6 Event Handling .24

3.2.7 Multi-Threading . 25

3.3 Numerics .. . 25

3.4 Data Representation 27

3.5 Data Processing Pipeline 28

3.6 Spatial Objects .. . 29

II Tutorials 31

4 Building Simple Applications with OTB 33

4.1 Hello world .. 33

4.2 Pipeline basics: read and write 35

4.3 Filtering pipeline .. 37

4.4 Handling types: scaling output 38

4.5 Working with multispectral or color images 40

4.6 Parsing command line arguments 43

4.7 Viewer .. 48

4.8 Going from raw satellite images to useful products 50

III User’s guide 55

5 Data Representation 57

Contents ix

5.1 Image .. . 57

5.1.1 Creating an Image .. 57

5.1.2 Reading an Image from a File .. 59

5.1.3 Accessing Pixel Data .. 60

5.1.4 Defining Origin and Spacing .. 61

5.1.5 Accessing Image Metadata .. . 65

5.1.6 RGB Images . 67

5.1.7 Vector Images .. 70

5.1.8 Importing Image Data from a Buffer 71

5.1.9 Image Lists . 74

5.2 PointSet .. . 76

5.2.1 Creating a PointSet .76

5.2.2 Getting Access to Points . 78

5.2.3 Getting Access to Data in Points . 80

5.2.4 Vectors as Pixel Type .. . 83

5.3 Mesh .. 85

5.3.1 Creating a Mesh .85

5.3.2 Inserting Cells .87

5.3.3 Managing Data in Cells . 90

5.4 Path .. 93

5.4.1 Creating a PolyLineParametricPath 93

6 Reading and Writing Images 95

6.1 Basic Example .. . 95

6.2 Pluggable Factories 99

6.3 IO Streaming .. . 100

6.3.1 Implicit Streaming . 100

6.3.2 Explicit Streaming . 101

6.4 Reading and Writing RGB Images 103

6.5 Reading, Casting and Writing Images 104

6.6 Extracting Regions 106

6.7 Reading and Writing Vector Images 108

x Contents

6.7.1 Reading and Writing Complex Images .. . 108

6.8 Reading and Writing Multiband Images 110

6.8.1 Extracting ROIs .111

6.9 Reading Image Series 113

6.10 Reading and Writing Vector Data 117

6.10.1 Reading DXF Files .117

6.10.2 Reading and Writing Vector Data Files .. . 119

6.11 Reading DEM Files .. . 123

7 Basic Filtering 127

7.1 Thresholding 127

7.1.1 Binary Thresholding .. 127

7.1.2 General Thresholding 130

7.1.3 Threshold to Point Set .. 133

7.2 Gradients .. . 135

7.2.1 Gradient Magnitude .. 135

7.2.2 Gradient Magnitude With Smoothing .137

7.2.3 Derivative Without Smoothing .. . 140

7.3 Second Order Derivatives 141

7.3.1 Laplacian Filters . 141

Laplacian Filter Recursive Gaussian .141

7.4 Edge Detection .. . 146

7.4.1 Canny Edge Detection .146

7.4.2 Ratio of Means Detector .147

7.5 Neighborhood Filters 150

7.5.1 Mean Filter . 151

7.5.2 Median Filter . 153

7.5.3 Mathematical Morphology .. 154

Binary Filters . 155

Grayscale Filters . 157

7.6 Smoothing Filters .. 159

7.6.1 Blurring . 160

Contents xi

Discrete Gaussian . 160

7.6.2 Edge Preserving Smoothing .. . 162

Introduction to Anisotropic Diffusion . 162

Gradient Anisotropic Diffusion . 164

7.6.3 Edge Preserving Speckle Reduction Filters 166

7.6.4 Edge preserving Markov Random Field 167

7.7 Distance Map .. . 171

8 Image Registration 175

8.1 Registration Framework 175

8.2 ”Hello World” Registration .. . 176

8.3 Features of the Registration Framework 185

8.3.1 Direction of the Transform Mapping 186

8.3.2 Registration is done in physical space 187

8.4 Multi-Modality Registration .. 187

8.4.1 Viola-Wells Mutual Information .. 188

8.5 Centered Transforms 193

8.5.1 Rigid Registration in 2D . 193

8.5.2 Centered Affine Transform 198

8.6 Transforms 205

8.6.1 Geometrical Representation .. . 205

8.6.2 Transform General Properties 208

8.6.3 Identity Transform .. 209

8.6.4 Translation Transform .. . 209

8.6.5 Scale Transform .. . 210

8.6.6 Scale Logarithmic Transform 212

8.6.7 Euler2DTransform .. . 212

8.6.8 CenteredRigid2DTransform 213

8.6.9 Similarity2DTransform .. 214

8.6.10 QuaternionRigidTransform 215

8.6.11 VersorTransform 216

8.6.12 VersorRigid3DTransform 217

xii Contents

8.6.13 Euler3DTransform 218

8.6.14 Similarity3DTransform .. . 219

8.6.15 Rigid3DPerspectiveTransform 219

8.6.16 AffineTransform 220

8.6.17 BSplineDeformableTransform 222

8.6.18 KernelTransforms 223

8.7 Metrics .. 225

8.7.1 Mean Squares Metric .. 226

Exploring a Metric . 226

8.7.2 Normalized Correlation Metric .. 227

8.7.3 Mean Reciprocal Square Differences 227

8.7.4 Mutual Information Metric .. 228

Parzen Windowing . 228

Viola and Wells Implementation . 229

Mattes et al. Implementation . 230

8.7.5 Kullback-Leibler distance metric .. . 230

8.7.6 Normalized Mutual Information Metric .. . 231

8.7.7 Mean Squares Histogram .. . 231

8.7.8 Correlation Coefficient Histogram 232

8.7.9 Cardinality Match Metric . 232

8.7.10 Kappa Statistics Metric .232

8.7.11 Gradient Difference Metric 233

8.8 Optimizers .. 233

9 Disparity Map Estimation 237

9.1 Disparity Maps .. . 237

9.1.1 Geometric deformation modeling .. . 239

9.1.2 Similarity measures .241

9.1.3 The correlation coefficient 242

9.2 Disparity Map Estimation Framework 243

9.3 Simple Disparity Map Estimation .. 243

10 Ortho-registration 253

Contents xiii

10.1 Sensor Models 254

10.1.1 Types of Sensor Models 254

10.1.2 Using Sensor Models .. . 255

10.1.3 Limits of the Approach .. 263

10.2 Map Projections 263

10.3 Ortho-rectification with OTB 264

11 Radiometry 267

11.1 Vegetation Index 267

11.1.1 Introduction .. 267

11.1.2 NDVI . 267

11.1.3 ARVI . 270

11.2 Atmospheric Corrections 272

12 Image Fusion 281

12.1 Simple Pan Sharpening 281

12.2 Bayesian Data Fusion 284

13 Feature Extraction 289

13.1 Introduction 289

13.2 Interest Points 289

13.2.1 Harris detector .. 289

13.2.2 SIFT detector .. 291

13.3 Alignments .. . 293

13.4 Lines .. . 296

13.4.1 Line Detection . 296

13.4.2 Segment Extraction .. . 302

13.5 Geometric Moments 304

13.5.1 Complex Moments .304

Complex Moments for Images . 305

Complex Moments for Paths . 306

13.5.2 Hu Moments . 307

Hu Moments for Images . 307

xiv Contents

13.5.3 Flusser Moments .. 309

Flusser Moments for Images . 309

13.6 Road extraction 311

13.6.1 Road extraction filter .. 311

13.6.2 Step by step road extraction 315

14 Image Segmentation 323

14.1 Region Growing 323

14.1.1 Connected Threshold 324

14.1.2 Otsu Segmentation .327

14.1.3 Neighborhood Connected 330

14.1.4 Confidence Connected 335

14.2 Segmentation Based on Watersheds 338

14.2.1 Overview .338

14.2.2 Using the ITK Watershed Filter .. . 341

14.3 Level Set Segmentation 344

14.3.1 Fast Marching Segmentation 346

15 Multi-scale Analysis 355

15.1 Introduction 355

15.2 Morphological Pyramid 355

15.2.1 Morphological Pyramid Exploitation 363

16 Change Detection 371

16.1 Introduction 371

16.1.1 Surface-based approaches 372

16.2 Change Detection Framework 373

16.3 Simple Detectors 376

16.3.1 Mean Difference .. . 376

16.3.2 Ratio Of Means .380

16.4 Statistical Detectors 382

16.4.1 Distance between local distributions 382

16.4.2 Local Correlation .. . 385

Contents xv

16.5 Multi-Scale Detectors 388

16.5.1 Kullback-Leibler Distance between distributions 388

17 Classification 391

17.1 Introduction 391

17.1.1 k-d Tree Based k-Means Clustering 392

17.1.2 K-Means Classification .. . 398

Simple version . 398

General approach . 402

17.1.3 Bayesian Plug-In Classifier 404

17.1.4 Expectation Maximization Mixture Model Estimation 410

17.1.5 Classification using Markov Random Fields 413

ITK framework . 414

OTB framework . 419

17.2 Statistical Segmentations 426

17.2.1 Stochastic Expectation Maximization .. 426

17.3 Support Vector Machines 429

17.3.1 Mathematical formulation .. 429

17.3.2 Learning With PointSets .431

17.3.3 PointSet Classification .. 434

17.3.4 Learning With Images .. 439

17.3.5 Image Classification .. 441

17.3.6 Generic Kernel SVM .. . 448

Learning with User Defined Kernels . 449

Classification with user defined kernel .451

17.3.7 Multi-band, streamed classification 451

17.4 Kohonen’s Self Organizing Map 453

17.4.1 The algorithm .453

Learning . 453

17.4.2 Building a color table .455

17.4.3 SOM Classification .459

17.4.4 Multi-band, streamed classification 463

xvi Contents

18 Image Visualization 465

IV Developper’s guide 469

19 Iterators 471

19.1 Introduction 471

19.2 Programming Interface 472

19.2.1 Creating Iterators .. . 472

19.2.2 Moving Iterators .. 472

19.2.3 Accessing Data .. 474

19.2.4 Iteration Loops .. 475

19.3 Image Iterators 476

19.3.1 ImageRegionIterator 476

19.3.2 ImageRegionIteratorWithIndex 478

19.3.3 ImageLinearIteratorWithIndex 480

19.4 Neighborhood Iterators 482

19.4.1 NeighborhoodIterator 488

Basic neighborhood techniques: edge detection 488

Convolution filtering: Sobel operator . 491

Optimizing iteration speed . 493

Separable convolution: Gaussian filtering .495

Random access iteration . 496

19.4.2 ShapedNeighborhoodIterator 498

Shaped neighborhoods: morphological operations 499

20 Image Adaptors 505

20.1 Image Casting 506

20.2 Adapting RGB Images 508

20.3 Adapting Vector Images 510

20.4 Adaptors for Simple Computation 512

20.5 Adaptors and Writers 514

21 Streaming and Threading 515

Contents xvii

21.1 Introduction 515

21.2 Streaming and threading in OTB 515

21.3 Division strategies 516

22 How To Write A Filter 517

22.1 Terminology 517

22.2 Overview of Filter Creation 518

22.3 Streaming Large Data 519

22.3.1 Overview of Pipeline Execution .. . 520

22.3.2 Details of Pipeline Execution .. 522

UpdateOutputInformation() . 522

PropagateRequestedRegion() .. 523

UpdateOutputData() . 524

22.4 Threaded Filter Execution 524

22.5 Filter Conventions 525

22.5.1 Optional .526

22.5.2 Useful Macros .. . 526

22.6 How To Write A Composite Filter .. . 527

22.6.1 Implementing a Composite Filter .. 527

22.6.2 A Simple Example . 528

V Appendix 533

23 Frequently Asked Questions 535

23.1 Introduction 535

23.1.1 What is OTB? .535

23.1.2 What is ORFEO? .536

Where can I get more information about ORFEO? 536

23.1.3 What is the ORFEO Accompaniment Program? 536

Where can I get more information about the ORFEO Accompaniment Program? . 537

23.1.4 Who is responsible for the OTB development? 537

23.2 Licence 537

23.2.1 Which is the OTB licence? .537

xviii Contents

23.2.2 If I write an application using OTB am I forced to distribute that application? . . 537

23.2.3 If I wanted to distribute an application using OTB what license would Ineed to use?538

23.2.4 I am a commercial user. Is there any restriction on the use of OTB? 538

23.3 Getting OTB .. 538

23.3.1 Who can download the OTB? .. . 538

23.3.2 Where can I download the OTB? 538

23.4 Installing OTB .. . 538

23.4.1 Which platforms are supported 538

23.4.2 Which libraries/packages are needed before installing OTB? 539

23.4.3 Main steps .539

Unix/Linux Platforms . 539

Microsoft Visual Studio C++ 7.1 . 542

Microsoft Visual Studio C++ 8.0 . 542

MinGW on Windows platform . 543

Cygwin . 543

23.4.4 Specific platform issues 544

SunOS/HP UX . 544

Linux Debian/Ubuntu . 544

Cygwin . 544

MSVC++ 8.0 . 544

23.5 Using OTB .. . 544

23.5.1 Where to start ? .. 544

23.5.2 What is the image size limitation of OTB ? . 545

23.6 Getting help .. 545

23.6.1 Is there any mailing list? .545

23.6.2 Which is the main source of documentation? 545

23.7 Contributing to OTB .. . 546

23.7.1 I want to contribute to OTB, where to begin? 546

23.7.2 What are the benefits of contributing to OTB? 546

23.7.3 What functionality can I contribute? 546

23.8 OTB’s Roadmap 546

23.8.1 Which will be the next version of OTB? 546

Contents xix

What is a major version? . 546

What is a minor version? . 547

What is a bugfix version? . 547

23.8.2 When will the next version of OTB be available? 547

23.8.3 What features will the OTB include and when? 547

Index 557

LIST OF FIGURES

2.1 Cmake user interface 17

5.1 OTB Image Geometrical Concepts 62

5.2 PointSet with Vectors as PixelType 83

6.1 Collaboration diagram of the ImageIO classes 97

6.2 Use cases of ImageIO factories 98

6.3 Class diagram of ImageIO factories 98

6.4 Initial SPOT 5 image .. . 114

6.5 ROI of a SPOT5 image 114

6.6 DXF reader 120

6.7 ARVI Example .. . 125

7.1 BinaryThresholdImageFilter transfer function 128

7.2 BinaryThresholdImageFilter output 130

7.3 ThresholdImageFilter using the threshold-below mode. 131

7.4 ThresholdImageFilter using the threshold-above mode 131

7.5 ThresholdImageFilter using the threshold-outside mode 131

7.6 GradientMagnitudeImageFilter output 137

7.7 GradientMagnitudeRecursiveGaussianImageFilter output 139

7.8 Effect of the Derivative filter. 141

7.9 Output of the LaplacianRecursiveGaussianImageFilter. 145

xxii List of Figures

7.10 Output of the LaplacianRecursiveGaussianImageFilter. 147

7.11 CannyEdgeDetectorImageFilter output 148

7.12 Touzi Edge Detector Application 150

7.13 Effect of the MedianImageFilter 152

7.14 Effect of the Median filter. 154

7.15 Effect of erosion and dilation in a binary image. 157

7.16 Effect of erosion and dilation in a grayscale image. 159

7.17 DiscreteGaussianImageFilter Gaussian diagram. 160

7.18 DiscreteGaussianImageFilter output 162

7.19 GradientAnisotropicDiffusionImageFilter output 165

7.20 Lee Filter Application 167

7.21 MRF restauration 170

7.22 DanielssonDistanceMapImageFilter output 172

8.1 Image Registration Concept 175

8.2 Registration Framework Components 176

8.3 Fixed and Moving images in registration framework 181

8.4 HelloWorld registration output images 182

8.5 Pipeline structure of the registration example 183

8.6 Registration Coordinate Systems 185

8.7 Multi-Modality Registration Inputs 192

8.8 Multi-Modality Registration outputs .. . 192

8.9 Rigid2D Registration input images 197

8.10 Rigid2D Registration output images 197

8.11 Rigid2D Registration input images 199

8.12 Rigid2D Registration output images 199

8.13 AffineTransform registration 204

8.14 AffineTransform output images 204

8.15 Geometrical representation objects in ITK 205

8.16 Parzen Windowing in Mutual Information 229

8.17 Class diagram of the Optimizer hierarchy 234

9.1 Estimation of the correlation surface. 241

List of Figures xxiii

9.2 Deformation field and resampling from disparity map estimation 251

10.1 Image Ortho-registration Procedure 253

11.1 ARVI Example 269

11.2 ARVI Example 272

12.1 Simple pan-sharpening 282

12.2 Pan sharpening 283

12.3 Bayesian Data Fusion Example inputs 286

12.4 Bayesian Data Fusion results 287

13.1 Harris Filter Application 290

13.2 SIFT Application 293

13.3 SIFT Application 293

13.4 Lee Filter Application 295

13.5 Line Ratio Detector Application 298

13.6 Line Correlation Detector Application 300

13.7 Line Correlation Detector Application 303

13.8 Line Correlation Detector Application 305

13.9 Road extraction filter application 316

13.10Spectral Angle 316

13.11Road extraction filter application 321

13.12Road extraction filter application 321

14.1 ConnectedThreshold segmentation results 327

14.2 OtsuThresholdImageFilter output 329

14.3 OtsuThresholdImageFilter output 331

14.4 NeighborhoodConnectedThreshold segmentation results 334

14.5 ConfidenceConnected segmentation results 338

14.6 Watershed Catchment Basins 339

14.7 Watersheds Hierarchy of Regions 340

14.8 Watersheds filter composition 340

14.9 Watershed segmentation output 343

xxiv List of Figures

14.10Zero Set Concept 344

14.11Grid position of the embedded level-set surface. 345

14.12FastMarchingImageFilter collaboration diagram 346

14.13FastMarchingImageFilter intermediate output 353

14.14FastMarchingImageFilter segmentations 353

15.1 Morphological pyramid analysis 359

15.2 Morphological pyramid analysis 359

15.3 Morphological pyramid analysis 360

15.4 Morphological pyramid analysis 360

15.5 Morphological pyramid analysis 360

15.6 Morphological pyramid analysis 361

15.7 Morphological pyramid analysis and synthesis 364

15.8 Morphological pyramid analysis 366

16.1 Spot Images for Change Detection 377

16.2 Difference Change Detection Results 379

16.3 Radarsat Images for Change Detection 380

16.4 Ratio Change Detection Results 382

16.5 Kullback-Leibler Change Detection Results 385

16.6 ERS Images for Change Detection 386

16.7 Correlation Change Detection Results 388

16.8 Kullback-Leibler profile Change Detection Results 390

17.1 Simple conceptual classifier 391

17.2 Statistical classification framework 392

17.3 Two normal distributions plot 395

17.4 Output of the KMeans classifier 401

17.5 Bayesian plug-in classifier for two Gaussian classes 405

17.6 Output of the ScalarImageMarkovRandomField 419

17.7 OTB Markov Framework 420

17.8 MRF restauration 424

17.9 MRF restauration 425

List of Figures xxv

17.10MRF restauration 425

17.11SEM Classification results 429

17.12SVM Image Model Estimation 439

17.13SVM Image Model Estimation 443

17.14SVM Image Classification 448

17.15Kohonen’s Self Organizing Map 454

17.16SOM Image Classification 458

17.17SOM Image Classification 463

18.1 Image visualization. 466

19.1 ITK image iteration 473

19.2 Copying an image subregion using ImageRegionIterator 479

19.3 Using the ImageRegionIteratorWithIndex 480

19.4 Neighborhood iterator 483

19.5 Some possible neighborhood iterator shapes 484

19.6 Sobel edge detection results 491

19.7 Gaussian blurring by convolution filtering 496

19.8 Finding local minima 498

19.9 Binary image morphology 503

20.1 ImageAdaptor concept 506

20.2 Image Adaptor for performing computations 514

22.1 Relationship between DataObjects and ProcessObjects 518

22.2 The Data Pipeline 520

22.3 Sequence of the Data Pipeline updating mechanism 521

22.4 Composite Filter Concept 527

22.5 Composite Filter Example 528

LIST OF TABLES

8.1 Geometrical Elementary Objects 206

8.2 Identity Transform Characteristics 209

8.3 Translation Transform Characteristics 210

8.4 Scale Transform Characteristics 211

8.5 Scale Logarithmic Transform Characteristics 212

8.6 Euler2D Transform Characteristics 213

8.7 CenteredRigid2D Transform Characteristics 214

8.8 Similarity2D Transform Characteristics 215

8.9 QuaternionRigid Transform Characteristics 216

8.10 Versor Transform Characteristics 217

8.11 Versor Rigid3D Transform Characteristics 218

8.12 Euler3D Transform Characteristics 219

8.13 Similarity3D Transform Characteristics 220

8.14 Rigid3DPerspective Transform Characteristics 221

8.15 Affine Transform Characteristics 221

8.16 BSpline Deformable Transform Characteristics 223

9.1 Characterization of the geometric deformation sources 239

9.2 Approaches to image registration 240

14.1 ConnectedThreshold example parameters 326

xxviii List of Tables

14.2 NeighborhoodConnectedThreshold example parameters 334

14.3 ConnectedThreshold example parameters 338

14.4 FastMarching segmentation example parameters 352

Part I

Introduction

CHAPTER

ONE

Welcome

Welcome to theORFEO ToolBox (OTB) Software Guide.

This document presents the essential concepts used in OTB. It will guide you through the road
of learning and using OTB. The Doxygen documentation for theOTB application programming
interface is available on line athttp://orfeo-toolbox.sourceforge.net/Doxygen/html .

1.1 Organization

This software guide is divided into three parts, each of which is further divided into several
chapters. Part I is a general introduction to OTB, with—in thenext chapter—a description
of how to install the ORFEO Toolbox on your computer. Part I also introduces basic system
concepts such as an overview of the system architecture, andhow to build applications in the
C++ programming language. Part II describes the system fromthe user point of view. Dozens
of examples are used to illustrate important system features. Part III is for the OTB developer.
It explains how to create your own classes and extend the system.

1.2 How to Learn OTB

There are two broad categories of users of OTB. First are class developers, those who create
classes in C++. The second, users, employ existing C++ classes to build applications. Class
developers must be proficient in C++, and if they are extending or modifying OTB, they must
also be familiar with OTB’s internal structures and design (material covered in Part III).

The key to learning how to use OTB is to become familiar with its palette of objects and the
ways of combining them. We recommend that you learn the system by studying the examples
and then, if you are a class developer, study the source code.Start by reading Chapter 3, which
provides an overview of some of the key concepts in the system, and then review the examples in
Part II. You may also wish to compile and run the dozens of examples distributed with the source

http://orfeo-toolbox.sourceforge.net/Doxygen/html

4 Chapter 1. Welcome

code found in the directoryOTB/Examples . (Please see the fileOTB/Examples/README.txt
for a description of the examples contained in the various subdirectories.) There are also several
hundreds of tests found in the source distribution inOTB/Testing/Code , most of which are
minimally documented testing code. However, they may be useful to see how classes are used
together in OTB, especially since they are designed to exercise as much of the functionality of
each class as possible.

1.3 Software Organization

The following sections describe the directory contents, summarize the software functionality in
each directory, and locate the documentation and data.

1.3.1 Obtaining the Software

Periodic releases of the software are available on the OTB Web site. These official releases are
available a few times a year and announced on the ORFEO Web pages and mailing lists.

This software guide assumes that you are working with the official OTB version 1.0 release
(available on the OTB Web site).

1.4 Downloading OTB

OTB can be downloaded without cost from the following web site:

http://otb.cnes.fr/

In order to track the kind of applications for which OTB is being used, you will be asked to
complete a form prior to downloading the software. The information you provide in this form
will help developers to get a better idea of the interests andskills of the toolkit users.

Once you fill out this form you will have access to the downloadpage. This page can be book
marked to facilitate subsequent visits to the download sitewithout having to complete any form
again.

Then choose the tarball that better fits your system. The options are.zip and.tgz files. The
first type is better suited for MS-Windows while the second one is the preferred format for
UNIX systems.

Once you unzip or untar the file, a directory calledOTBwill be created in your disk and you will
be ready for starting the configuration process described inSection 2.2.1 on page 12.

http://otb.cnes.fr/

1.4. Downloading OTB 5

1.4.1 Join the Mailing List

It is strongly recommended that you join the users mailing list. This is one of the primary
resources for guidance and help regarding the use of the toolkit. You can subscribe to the users
list online at

http://groups.google.com/group/otb-users

The otb-users mailing list is also the best mechanism for expressing your opinions about the
toolbox and to let developers know about features that you find useful, desirable or even unnec-
essary. OTB developers are committed to creating a self-sustaining open-source OTB commu-
nity. Feedback from users is fundamental to achieving this goal.

1.4.2 Directory Structure

To begin your OTB odyssey, you will first need to know something about OTB’s software
organization and directory structure. It is helpful to knowenough to navigate through the code
base to find examples, code, and documentation.

OTB is organized into several different modules. There are three: theOTB, OTB-Documents and
OTB-Applications modules. The source code, examples and applications are found in theOTB
module; documentation, tutorials, and material related tothe design and marketing of OTB are
found inOTB-Documents ; and fairly complex applications using OTB (and other systems such
as VTK and FLTK) are available fromOTB-Applications . Usually you will work with the
OTBmodule unless you are a developer, are teaching a course, or are looking at the details of
various design documents. TheOTB-Applications module should only be downloaded and
compiled once theOTBmodule is functioning properly.

TheOTBmodule contains the following subdirectories:

• OTB/Code—the heart of the software; the location of the majority of thesource code.

• OTB/Examples —a suite of simple, well-documented examples used by this guide and to
illustrate important OTB concepts.

• OTB/Testing —a large number of small programs used to test OTB. These examples tend
to be minimally documented but may be useful to demonstrate various system concepts.

• OTB/Utilities —supporting software for the OTB source code. For example, libraries
such asITK .

The source code directory structure—found inOTB/Code—is important to understand since
other directory structures (such as theTesting directory) shadow the structure of theOTB/Code
directory.

http://groups.google.com/group/otb-users

6 Chapter 1. Welcome

• OTB/Code/Common—core classes, macro definitions, typedefs, and other software con-
structs central to OTB.

• OTB/Code/BasicFilters —basic image processing filters.

• OTB/Code/IO —classes that support the reading and writing of data.

• OTB/Code/Projections —classes allowing to deal with sensor models and cartographic
projections.

• OTB/Code/Radiometry —classes allowing to compute vegetation indices and radiomet-
ric corrections.

• OTB/Code/Fusion —image fusion algorithms, as for instance, pansharpening.

• OTB/Code/FeatureExtraction —the location of many feature extraction algorithms.

• OTB/Code/ChangeDetection —a set of remote sensing image change detection algo-
rithms.

• OTB/Code/MultiScale —a set of functionalities for multiscale image analysis and syn-
thesis.

• OTB/Code/Learning —several functionnalities for supervised learning and classifica-
tion.

• OTB/Code/SpatialReasoning —several functionnalities high level image analysis using
spatial reasoning techniques.

• OTB/Code/Visu —utilities for simple image visualization.

• OTB/Code/Gui —very basic widgets for building graphical user interfaces,such as
progress bars for filters, etc.

TheOTB-Documents module contains the following subdirectories:

• OTB-Documents/CourseWare —material related to teaching OTB.

• OTB-Documents/Latex —LATEX styles to produce this work as well as other documents.

• OTB-Documents/SoftwareGuide —LATEX files used to create this guide. (Note that the
code found inOTB/Examples is used in conjunction with these LATEX files.)

TheOTB-Applications module contains large, relatively complex examples of OTB usage.

1.5. The OTB Community and Support 7

1.4.3 Documentation

Besides this text, there are other documentation resourcesthat you should be aware of.

Doxygen Documentation.The Doxygen documentation is an essential resource when working
with OTB. These extensive Web pages describe in detail everyclass and method in the
system. The documentation also contains inheritance and collaboration diagrams, listing
of event invocations, and data members. The documentation is heavily hyper-linked to
other classes and to the source code. The Doxygen documentation is available on-line at
http://orfeo-toolbox.sourceforge.net/Doxygen/html .

Header Files. Each OTB class is implemented with a .h and .cxx/.txx file (.txx file for tem-
plated classes). All methods found in the .h header files are documented and provide
a quick way to find documentation for a particular method. (Indeed, Doxygen uses the
header documentation to produces its output.)

1.4.4 Data

The OTB Toolkit was designed to support the ORFEO Acompaniment Program and its associ-
ated data. This data is availablehttp://smsc.cnes.fr/PLEIADES/index.htm .

1.5 The OTB Community and Support

OTB was created from its inception as a collaborative, community effort. Research, teaching,
and commercial uses of the toolkit are expected. If you wouldlike to participate in the commu-
nity, there are a number of possibilities.

• Users may actively report bugs, defects in the system API, and/or submit feature requests.
Currently the best way to do this is through the OTB users mailing list.

• Developers may contribute classes or improve existing classes. If you are a developer,
you may request permission to join the OTB developers mailing list. Please do so by
sending email to otb “at” cnes.fr. To become a developer you need to demonstrate both
a level of competence as well as trustworthiness. You may wish to begin by submitting
fixes to the OTB users mailing list.

• Research partnerships with members of the ORFEO Acompaniment Program are encour-
aged. CNES will encourage the use of OTB in proposed work and research projects.

• Educators may wish to use OTB in courses. Materials are beingdeveloped for this pur-
pose, e.g., a one-day, conference course and semester-longgraduate courses. Watch the
OTB web pages or check in theOTB-Documents/CourseWare directory for more infor-
mation.

http://orfeo-toolbox.sourceforge.net/Doxygen/html
http://smsc.cnes.fr/PLEIADES/index.htm

8 Chapter 1. Welcome

1.6 A Brief History of OTB

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systems developments forming ORFEO,
the dual and bilateral system (France - Italy) for Earth Observation, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and promote the use and the exploitation of
the images derived from these sensors.

The creation of a preparatory program1 is needed because of :

• the new capabilities and performances of the ORFEO systems (optical and radar high
resolution, access capability, data quality, possibilityto acquire simultaneously in optic
and radar),

• the implied need of new methodological developments : new processing methods, or
adaptation of existing methods,

• the need to realise those new developments in very close cooperation with the final users
for better integration of new products in their systems.

This program was initiated by CNES mid-2003 and will last until 2009. It consists in two parts,
between which it is necessary to keep a strong interaction :

• A Thematic part

• A Methodological part.

The Thematic part covers a large range of applications (civil and defence ones), and aims
at specifying and validating value added products and services required by end users. This
part includes consideration about products integration inthe operational systems or processing
lines. It also includes a careful thought on intermediary structures to be developed to help non-
autonomous users. Lastly, this part aims at raising future users awareness, through practical
demonstrations and validations.

The Methodological part objective is the definition and the development of tools for the op-
erational exploitation of the future submetric optic and radar images (tridimensional aspects,
change detection, texture analysis, pattern matching, optic radar complementarities). It is
mainly based on R&D studies and doctorate and post-doctorate research.

In this context, CNES2 decided to develop theORFEO ToolBox(OTB), a set of algorithms
encapsulated in a software library. The goals of the OTB is tocapitalise a methologicalsavoir
faire in order to adopt an incremental development approach aiminto efficiently exploit the
results obtained in the frame of methodological R&D studies.

All the developments are based on FLOSS (Free/Libre Open Source Software) or existing
CNES developments.

1http://smsc.cnes.fr/PLEIADES/Aprog accomp.htm
2http://www.cnes.fr

1.6. A Brief History of OTB 9

OTB is implemented in C++ and is mainly based on ITK3 (Insight Toolkit):

• ITK is used as the core element of OTB

• OTB classes inherit from ITK classes

• The software development procedure of OTB is strongly inspired from ITK’s (Extreme
Programming, test-based coding, Generic Programming, etc.)

• The documentation production procedure is the same as for ITK

• Several chapters of the Software Guide are litterally copied from ITK’s Software Guide
(with permission).

• Many examples are taken from ITK.

1.6.1 ITK’s history

In 1999 the US National Library of Medicine of the National Institutes of Health awarded
six three-year contracts to develop an open-source registration and segmentation toolkit, that
eventually came to be known as the Insight Toolkit (ITK) and formed the basis of the Insight
Software Consortium. ITK’s NIH/NLM Project Manager was Dr.Terry Yoo, who coordi-
nated the six prime contractors composing the Insight consortium. These consortium members
included three commercial partners—GE Corporate R&D, Kitware, Inc., and MathSoft (the
company name is now Insightful)—and three academic partners—University of North Carolina
(UNC), University of Tennessee (UT) (Ross Whitaker subsequently moved to University of
Utah), and University of Pennsylvania (UPenn). The Principle Investigators for these partners
were, respectively, Bill Lorensen at GE CRD, Will Schroederat Kitware, Vikram Chalana at
Insightful, Stephen Aylward with Luis Ib́añez at UNC (Luis is now at Kitware), Ross Whitaker
with Josh Cates at UT (both now at Utah), and Dimitri Metaxas at UPenn (now at Rutgers). In
addition, several subcontractors rounded out the consortium including Peter Raitu at Brigham
& Women’s Hospital, Celina Imielinska and Pat Molholt at Columbia University, Jim Gee at
UPenn’s Grasp Lab, and George Stetten at the University of Pittsburgh.

In 2002 the first official public release of ITK was made available.

3http://www.itk.org

CHAPTER

TWO

Installation

This section describes the process for installing OTB on your system. Keep in mind that OTB is
a toolbox, and as such, once it is installed in your computer there will be no application to run.
Rather, you will use OTB to build your own applications. What OTB does provide—besides the
toolbox proper—is a large set of test files and examples that will introduce you to OTB concepts
and will show you how to use OTB in your own projects.

OTB has been developed and tested across different combinations of operating systems, com-
pilers, and hardware platforms including MS-Windows, Linux on Intel-compatible hardware,
Solaris and Mac OSX. It is known to work with the following compilers:

• Cygwin, MinGW, Visual Studio 7 and 8 on MS-Windows

• GCC on Unix/Linux systems

Given the advanced usage of C++ features in the toolbox, somecompilers may have difficulties
processing the code. If you are currently using an outdated compiler this may be an excellent
excuse for upgrading this old piece of software!

2.1 External Libraries

The OTB depends on 3 libraries:

• ITK: you have the choice between using OTB’s internal version of ITK or building
your own ITK outside the OTB source tree. The recommended choice is the first one.
See next section for details. If you choose to use an externalversion of ITK, go to
http://www.itk.org and follow the guidelines to download and install ITK.

• GDAL: The support of remote sensing imagery formats is ensured through the use of the
GDAL library. Please seehttp://www.remotesensing.org/gdal/ for informations
on how to download and install this library on your system.

http://www.itk.org
http://www.remotesensing.org/gdal/

12 Chapter 2. Installation

• Fltk: this library is used for the visualization functionnalities. See
http://www.fltk.org/ for details about dowloading and installing Fltk. OTB
has been tested with version 1.1.7.

See section 23.4 for quick installation guidelines.

2.2 Configuring OTB

The challenge of supporting OTB across platforms has been solved through the use of CMake,
a cross-platform, open-source build system. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files. CMake generates
native makefiles and workspaces that can be used in the compiler environment of your choice.
CMake is quite sophisticated—it supports complex environments requiring system configura-
tion, compiler feature testing, and code generation.

CMake generates Makefiles under UNIX and Cygwin systems and generates Visual Studio
workspaces under Windows (and appropriate build files for other compilers like Borland). The
information used by CMake is provided byCMakeLists.txt files that are present in every
directory of the OTB source tree. These files contain information that the user provides to
CMake at configuration time. Typical information includes paths to utilities in the system and
the selection of software options specified by the user.

2.2.1 Preparing CMake

CMake can be downloaded at no cost from

http://www.cmake.org

OTB requires at least CMake version 2.0. You can download binary versions for most of the
popular platforms including Windows, Solaris, IRIX, HP, Mac and Linux. Alternatively you
can download the source code and build CMake on your system. Follow the instructions in the
CMake Web page for downloading and installing the software.

Running CMake initially requires that you provide two pieces of information: where the source
code directory is located (OTBSOURCE DIR), and where the object code is to be produced
(OTB BINARY DIR). These are referred to as thesource directoryand thebinary directory.
We recommend setting the binary directory to be different than the source directory (anout-of-
sourcebuild), but OTB will still build if they are set to the same directory (anin-sourcebuild).
On Unix, the binary directory is created by the user and CMakeis invoked with the path to the
source directory. For example:

mkdir OTB-binary
cd OTB-binary

http://www.fltk.org/
http://www.cmake.org

2.2. Configuring OTB 13

ccmake ../OTB

On Windows, the CMake GUI is used to specify the source and build directories (Figure 2.1).

CMake runs in an interactive mode in that you iteratively select options and configure according
to these options. The iteration proceeds until no more options remain to be selected. At this
point, a generation step produces the appropriate build files for your configuration.

This interactive configuration process can be better understood if you imagine that you are
walking through a decision tree. Every option that you select introduces the possibility that
new, dependent options may become relevant. These new options are presented by CMake at
the top of the options list in its interface. Only when no new options appear after a configuration
iteration can you be sure that the necessary decisions have all been made. At this point build
files are generated for the current configuration.

2.2.2 Configuring OTB

Figure 2.1 shows the CMake interface for UNIX and MS-Windows. In order to speed up the
build process you may want to disable the compilation of the testing and examples. This is done
with the variablesBUILD TESTING=OFFandBUILD EXAMPLES=OFF. The examples distributed
with the toolbox are a helpful resource for learning how to use OTB components but are not
essential for the use of the toolbox itself. The testing section includes a large number of small
programs that exercise the capabilities of OTB classes. Dueto the large number of tests, en-
abling the testing option will considerably increase the build time. It is not desirable to enable
this option for a first build of the toolbox.

An additional resource is available in theOTB-Applications module, which contains applica-
tions incorporating GUIs and different levels of visualization. However, building this module
should be postponed until you are familiar with the basic structure of the toolbox and the build-
ing process.

Begin running CMake by using ccmake on Unix, and CMakeSetup on Windows. Remember
to run ccmake from the binary directory on Unix. On Windows, specify the source and binary
directories in the GUI, then begin to set the build variablesin the GUI as necessary. Most
variables should have default values that are sensible. Each time you change a set of variables
in CMake, it is necessary to proceed to another configurationstep. In the Windows version this
is done by clicking on the “Configure” button. In the UNIX version this is done in an interface
using the curses library, where you can configure by hitting the “c” key.

When no new options appear in CMake, you can proceed to generate Makefiles or Visual Studio
projects (or appropriate build file(s) depending on your compiler). This is done in Windows by
clicking on the “Ok” button. In the UNIX version this is done by hitting the “g” key. After the
generation process CMake will quit silently. To initiate the build process on UNIX, simply type
make in the binary directory. Under Windows, load the workspace namedOTB.dsw (if using
MSDEV) or OTB.sln (if using the .NET compiler) from the binary directory you specified in
the CMake GUI.

14 Chapter 2. Installation

The build process will typically take anywhere from 15 to 30 minutes depending on the perfor-
mance of your system. If you decide to enable testing as part of the normal build process, about
600 small test programs will be compiled. This will verify that the basic components of OTB
have been correctly built on your system.

Building ITK

The OTB installation procedure allows you to choose betweenbuilding the OTB with an
external version of ITK already present in your system. The choice is made by using the
OTB USE EXTERNAL ITK CMake variable.

2.3 Getting Started With OTB

The simplest way to create a new project with OTB is to create anew directory somewhere in
your disk and create two files in it. The first one is aCMakeLists.txt file that will be used
by CMake to generate a Makefile (if you are using UNIX) or a Visual Studio workspace (if
you are using MS-Windows). The second file is an actual C++ program that will exercise some
of the large number of classes available in OTB. The details of these files are described in the
following section.

Once both files are in your directory you can run CMake in orderto configure your project.
Under UNIX, you can cd to your newly created directory and type “ccmake . ”. Note the “.”
in the command line for indicating that theCMakeLists.txt file is in the current directory.
The curses interface will require you to provide the directory where OTB was built. This is
the same path that you indicated for theOTB BINARY DIR variable at the time of configuring
OTB. Under Windows you can run CMakeSetup and provide your newly created directory as
being both the source directory and the binary directory foryour new project (i.e., an in-source
build). Then CMake will require you to provide the path to thebinary directory where OTB was
built. The OTB binary directory will contain a file namedOTBConfig.cmake generated during
the configuration process at the time OTB was built. From thisfile, CMake will recover all the
information required to configure your new OTB project.

2.3.1 Hello World !

Here is the content of the two files to write in your new project. These two files can be found in
theOTB/Examples/Installation directory. TheCMakeLists.txt file contains the following
lines:

PROJECT(HelloWorld)

FIND_PACKAGE(OTB)
IF(OTB_FOUND)

2.3. Getting Started With OTB 15

INCLUDE(${OTB_USE_FILE})
ELSE(OTB_FOUND)

MESSAGE(FATAL_ERROR
"Cannot build OTB project without OTB. Please set OTB_DIR.")

ENDIF(OTB_FOUND)

ADD_EXECUTABLE(HelloWorld HelloWorld.cxx)

TARGET_LINK_LIBRARIES(HelloWorld OTBCommon OTBIO ITKCo mmon ITKIO)

The first line defines the name of your project as it appears in Visual Studio (it will have no
effect under UNIX). The second line loads a CMake file with a predefined strategy for finding
OTB 1. If the strategy for finding OTB fails, CMake will prompt you for the directory where
OTB is installed in your system. In that case you will write this information in theOTB DIR
variable. The line INCLUDE(${USE OTB FILE}) loads theUseOTB.cmake file to set all the
configuration information from OTB.

The next block of lines is needed in order for CMake to know whether you are using the OTB’s
internal version of ITK or an external one. In the second case, CMake will try to find ITK in
your system. As for OTB, if it fails in finding ITK, it will ask you to manually set the ITK
location.

The line ADD EXECUTABLEdefines as its first argument the name of the executable that will
be produced as result of this project. The remaining arguments of ADD EXECUTABLEare the
names of the source files to be compiled and linked. Finally, the TARGET LINK LIBRARIES
line specifies which OTB libraries will be linked against this project.

The source code for this example can be found in the file
Examples/Installation/HelloWorld.cxx .

The following code is an implementation of a small OTB program. It tests including header
files and linking with OTB libraries.

#include "otbImage.h"
#include <iostream>

int main()
{

typedef otb::Image< unsigned short, 2 > ImageType;

ImageType::Pointer image = ImageType::New();

std::cout << "OTB Hello World !" << std::endl;

return 0;
}

1Similar files are provided in CMake for other commonly used libraries, all of them namedFind*.cmake

16 Chapter 2. Installation

This code instantiates an image whose pixels are represented with typeunsigned short . The
image is then constructed and assigned to aitk::SmartPointer . Although later in the text
we will discussSmartPointer ’s in detail, for now think of it as a handle on an instance of an
object (see section 3.2.4 for more information). Theitk::Image class will be described in
Section 5.1.

At this point you have successfully installed and compiled OTB, and created your first simple
program. If you have difficulties, please join the otb-usersmailing list (Section 1.4.1 on page
5) and post questions there.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

2.3. Getting Started With OTB 17

Figure 2.1:CMake interface. Top) ccmake , the UNIX version based on curses . Bottom) CMakeSetup ,

the MS-Windows version based on MFC.

CHAPTER

THREE

System Overview

The purpose of this chapter is to provide you with an overviewof theORFEO Toolboxsystem.
We recommend that you read this chapter to gain an appreciation for the breadth and area of
application of OTB. In this chapter, we will make reference either to OTB featuresor ITK
featureswithout distinction. Bear in mind that OTB uses ITK as its core element, so all the
fundamental elements of OTB come from ITK. OTB extends the functionalities of ITK for the
remote sensing image processing comunity. We benefit from the Open Source development
approach chosen for ITK, which allows us to provide an impressive set of functionalities with
much lesser effort than it would have been the case in a closedsource universe!

3.1 System Organization

The ORFEO Toolbox consists of several subsystems. A brief description of these subsystems
follows. Later sections in this chapter—and in some cases additional chapters—cover these
concepts in more detail. (Note: in the previous chapter two other modules—OTB-Documents
andOTB-Applications were briefly described.)

Essential System Concepts.Like any software system, OTB is built around some core design
concepts. OTB uses those of ITK. Some of the more important concepts include generic
programming, smart pointers for memory management, objectfactories for adaptable
object instantiation, event management using the command/observer design paradigm,
and multithreading support.

Numerics OTB, as ITK uses VXL’s VNL numerics libraries. These are easy-to-use C++ wrap-
pers around the Netlib Fortran numerical analysis routines(http://www.netlib.org).

Data Representation and Access.Two principal classes are used to represent data: the
otb::Image and itk::Mesh classes. In addition, various types of iterators and con-
tainers are used in ITK to hold and traverse the data. Other important but less popular
classes are also used to represent data such as histograms.

http://www.netlib.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html

20 Chapter 3. System Overview

ITK’s Data Processing Pipeline. The data representation classes (known asdata objects) are
operated on byfilters that in turn may be organized into data flowpipelines. These
pipelines maintain state and therefore execute only when necessary. They also support
multi-threading, and are streaming capable (i.e., can operate on pieces of data to minimize
the memory footprint).

IO Framework. Associated with the data processing pipeline aresources, filters that initiate
the pipeline, andmappers, filters that terminate the pipeline. The standard examplesof
sources and mappers arereadersandwriters respectively. Readers input data (typically
from a file), and writers output data from the pipeline.Viewersare another example of
mappers.

Spatial Objects. Geometric shapes are represented in OTB using the ITK spatial object hierar-
chy. These classes are intended to support modeling of anatomical structures in ITK. OTB
uses them in order to model cartographic elements. Using a common basic interface, the
spatial objects are capable of representing regions of space in a variety of different ways.
For example: mesh structures, image masks, and implicit equations may be used as the
underlying representation scheme. Spatial objects are a natural data structure for com-
municating the results of segmentation methods and for introducing geometrical priors in
both segmentation and registration methods.

ITK’s Registration Framework. A flexible framework for registration supports four different
types of registration: image registration, multiresolution registration, PDE-based regis-
tration, and FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problems, in particular
non-rigid registration. The FEM package includes mesh definition (nodes and elements),
loads, and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creating filters to solve
partial differential equations on images using an iterative, finite difference update scheme.
The level set framework consists of finite difference solvers including a sparse level set
solver, a generic level set segmentation filter, and severalspecific subclasses including
threshold, Canny, and Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfaces(i.e., “wrappers”) to
interpreted languages such as Tcl and Python. The GCCXML tool is used to produce an
XML description of arbitrarily complex C++ code; CSWIG is then used to transform the
XML description into wrappers using the SWIG package. OTB does not use this system
at present.

3.2 Essential System Concepts

This section describes some of the core concepts and implementation features found in ITK and
therefore also in OTB.

http://www.swig.org/

3.2. Essential System Concepts 21

3.2.1 Generic Programming

Generic programming is a method of organizing libraries consisting of generic—or reusable—
software components [65]. The idea is to make software that is capable of “plugging together”
in an efficient, adaptable manner. The essential ideas of generic programming arecontainersto
hold data,iteratorsto access the data, andgeneric algorithmsthat use containers and iterators to
create efficient, fundamental algorithms such as sorting. Generic programming is implemented
in C++ with thetemplateprogramming mechanism and the use of the STL Standard Template
Library [5].

C++ templating is a programming technique allowing users towrite software in terms of one
or more unknown typesT. To create executable code, the user of the software must specify all
typesT (known astemplate instantiation) and successfully process the code with the compiler.
TheT may be a native type such asfloat or int , or T may be a user-defined type (e.g.,class).
At compile-time, the compiler makes sure that the templatedtypes are compatible with the
instantiated code and that the types are supported by the necessary methods and operators.

ITK uses the techniques of generic programming in its implementation. The advantage of this
approach is that an almost unlimited variety of data types are supported simply by defining
the appropriate template types. For example, in OTB it is possible to create images consisting
of almost any type of pixel. In addition, the type resolutionis performed at compile-time,
so the compiler can optimize the code to deliver maximal performance. The disadvantage of
generic programming is that many compilers still do not support these advanced concepts and
cannot compile OTB. And even if they do, they may produce completely undecipherable error
messages due to even the simplest syntax errors. If you are not familiar with templated code
and generic programming, we recommend the two books cited above.

3.2.2 Include Files and Class Definitions

In ITK and OTB classes are defined by a maximum of two files: a header .h file and an imple-
mentation file—.cxx if a non-templated class, and a.txx if a templated class. The header files
contain class declarations and formatted comments that areused by the Doxygen documentation
system to automatically produce HTML manual pages.

In addition to class headers, there are a few other importantheader files.

itkMacro.h is found in theUtilities/ITK/Code/Common directory and defines standard
system-wide macros (such asSet/Get , constants, and other parameters).

itkNumericTraits.h is found in theUtilities/ITK/Code/Common directory and de-
fines numeric characteristics for native types such as its maximum and minimum possible
values.

itkWin32Header.h is found in theUtilities/ITK/Code/Common and is used to define
operating system parameters to control the compilation process.

22 Chapter 3. System Overview

3.2.3 Object Factories

Most classes in OTB are instantiated through anobject factorymechanism. That is, rather than
using the standard C++ class constructor and destructor, instances of an OTB class are created
with the static classNew() method. In fact, the constructor and destructor areprotected:
so it is generally not possible to construct an OTB instance on the heap. (Note: this behavior
pertains to classes that are derived fromitk::LightObject . In some cases the need for speed
or reduced memory footprint dictates that a class not be derived from LightObject and in this
case instances may be created on the heap. An example of such aclass isitk::EventObject .)

The object factory enables users to control run-time instantiation of classes by registering one or
more factories withitk::ObjectFactoryBase . These registered factories support the method
CreateInstance(classname) which takes as input the name of a class to create. The factory
can choose to create the class based on a number of factors including the computer system
configuration and environment variables. For example, in a particular application an OTB user
may wish to deploy their own class implemented using specialized image processing hardware
(i.e., to realize a performance gain). By using the object factory mechanism, it is possible at run-
time to replace the creation of a particular OTB filter with such a custom class. (Of course, the
class must provide the exact same API as the one it is replacing.) To do this, the user compiles
her class (using the same compiler, build options, etc.) andinserts the object code into a shared
library or DLL. The library is then placed in a directory referred to by theOTB AUTOLOADPATH
environment variable. On instantiation, the object factory will locate the library, determine that
it can create a class of a particular name with the factory, and use the factory to create the
instance. (Note: if theCreateInstance() method cannot find a factory that can create the
named class, then the instantiation of the class falls back to the usual constructor.)

In practice object factories are used mainly (and generallytransparently) by the OTB in-
put/output (IO) classes. For most users the greatest impactis on the use of theNew() method
to create a class. Generally theNew() method is declared and implemented via the macro
itkNewMacro() found inUtilities/ITK/Common/itkMacro.h .

3.2.4 Smart Pointers and Memory Management

By their nature object-oriented systems represent and operate on data through a variety of ob-
ject types, or classes. When a particular class is instantiated to produce an instance of that
class, memory allocation occurs so that the instance can store data attribute values and method
pointers (i.e., the vtable). This object may then be referenced by other classes or data structures
during normal operation of the program. Typically during program execution all references to
the instance may disappear at which point the instance must be deleted to recover memory re-
sources. Knowing when to delete an instance, however, is difficult. Deleting the instance too
soon results in program crashes; deleting it too late and memory leaks (or excessive memory
consumption) will occur. This process of allocating and releasing memory is known as memory
management.

In ITK, memory management is implemented through referencecounting. This compares to an-

http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1EventObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 23

other popular approach—garbage collection—used by many systems including Java. In refer-
ence counting, a count of the number of references to each instance is kept. When the reference
goes to zero, the object destroys itself. In garbage collection, a background process sweeps the
system identifying instances no longer referenced in the system and deletes them. The problem
with garbage collection is that the actual point in time at which memory is deleted is variable.
This is unacceptable when an object size may be gigantic (think of a large 3D volume gigabytes
in size). Reference counting deletes memory immediately (once all references to an object
disappear).

Reference counting is implemented through aRegister() /Delete() member function inter-
face. All instances of an OTB object have aRegister() method invoked on them by any other
object that references an them. TheRegister() method increments the instances’ reference
count. When the reference to the instance disappears, aDelete() method is invoked on the
instance that decrements the reference count—this is equivalent to anUnRegister() method.
When the reference count returns to zero, the instance is destroyed.

This protocol is greatly simplified by using a helper class called a itk::SmartPointer . The
smart pointer acts like a regular pointer (e.g. supports operators-> and*) but automagically
performs aRegister() when referring to an instance, and anUnRegister() when it no longer
points to the instance. Unlike most other instances in OTB, SmartPointers can be allocated
on the program stack, and are automatically deleted when thescope that the SmartPointer was
created is closed. As a result, you shouldrarely if ever call Register() or Delete()in OTB. For
example:

MyRegistrationFunction()
{ <----- Start of scope

// here an interpolator is created and associated to the
// SmartPointer "interp".
InterpolatorType::Pointer interp = InterpolatorType::N ew();

} <------ End of scope

In this example, reference counted objects are created (with theNew() method) with a reference
count of one. Assignment to the SmartPointerinterp does not change the reference count. At
the end of scope,interp is destroyed, the reference count of the actual interpolator object
(referred to byinterp) is decremented, and if it reaches zero, then the interpolator is also
destroyed.

Note that in ITK SmartPointers are always used to refer to instances of classes derived from
itk::LightObject . Method invocations and function calls often return “real”pointers to in-
stances, but they are immediately assigned to a SmartPointer. Raw pointers are used for non-
LightObject classes when the need for speed and/or memory demands a smaller, faster class.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html

24 Chapter 3. System Overview

3.2.5 Error Handling and Exceptions

In general, OTB uses exception handling to manage errors during program execution. Exception
handling is a standard part of the C++ language and generallytakes the form as illustrated
below:

try
{
//...try executing some code here...
}

catch (itk::ExceptionObject exp)
{
//...if an exception is thrown catch it here
}

where a particular class may throw an exceptions as demonstrated below (this code snippet is
taken from itk::ByteSwapper :

switch (sizeof(T))
{
//non-error cases go here followed by error case
default:

ByteSwapperError e(__FILE__, __LINE__);
e.SetLocation("SwapBE");
e.SetDescription("Cannot swap number of bytes requested");
throw e;

}

Note that itk::ByteSwapperError is a subclass ofitk::ExceptionObject . (In fact in
OTB all exceptions should be derived fromitk::ExceptionObject .) In this example a special
constructor and C++ preprocessor variablesFILE and LINE are used to instantiate
the exception object and provide additional information tothe user. You can choose to catch
a particular exception and hence a specific OTB error, or you can trapanyOTB exception by
catching ExceptionObject.

3.2.6 Event Handling

Event handling in OTB is implemented using the Subject/Observer design pattern [33] (some-
times referred to as the Command/Observer design pattern).In this approach, objects indicate
that they are watching for a particular event—invoked by a particular instance–by registering
with the instance that they are watching. For example, filters in OTB periodically invoke the
itk::ProgressEvent . Objects that have registered their interest in this event are notified when
the event occurs. The notification occurs via an invocation of a command (i.e., function call-
back, method invocation, etc.) that is specified during the registration process. (Note that events
in OTB are subclasses of EventObject; look initkEventObject.h to determine which events
are available.)

http://www.melaneum.com/OTB/doxygen/classitk_1_1ByteSwapper.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ByteSwapperError.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExceptionObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ProgressEvent.html

3.3. Numerics 25

To recap via example: various objects in OTB will invoke specific events as they execute (from
ProcessObject):

this->InvokeEvent(ProgressEvent());

To watch for such an event, registration is required that associates a command (e.g., callback
function) with the event:Object::AddObserver() method:

unsigned long progressTag =
filter->AddObserver(ProgressEvent(), itk::Command*);

When the event occurs, all registered observers are notified via invocation of the associ-
atedCommand::Execute() method. Note that several subclasses of Command are available
supporting const and non-const member functions as well as C-style functions. (Look in
Common/Command.h to find pre-defined subclasses of Command. If nothing suitable is found,
derivation is another possibility.)

3.2.7 Multi-Threading

Multithreading is handled in OTB through ITK’s high-level design abstraction. This approach
provides portable multithreading and hides the complexityof differing thread implementations
on the many systems supported by OTB. For example, the classitk::MultiThreader pro-
vides support for multithreaded execution usingsproc() on an SGI, orpthread create on
any platform supporting POSIX threads.

Multithreading is typically employed by an algorithm during its execution phase. MultiThreader
can be used to execute a single method on multiple threads, orto specify a method per thread.
For example, in the classitk::ImageSource (a superclass for most image processing filters)
theGenerateData() method uses the following methods:

multiThreader->SetNumberOfThreads(int);
multiThreader->SetSingleMethod(ThreadFunctionType, v oid* data);
multiThreader->SingleMethodExecute();

In this example each thread invokes the same method. The multithreaded filter takes care to
divide the image into different regions that do not overlap for write operations.

The general philosophy in ITK regarding thread safety is that accessing different instances of
a class (and its methods) is a thread-safe operation. Invoking methods on the same instance in
different threads is to be avoided.

3.3 Numerics

OTB; as ITK, uses the VNL numerics library to provide resources for numerical programming
combining the ease of use of packages like Mathematica and Matlab with the speed of C and the

http://www.melaneum.com/OTB/doxygen/classitk_1_1MultiThreader.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageSource.html

26 Chapter 3. System Overview

elegance of C++. It provides a C++ interface to the high-quality Fortran routines made available
in the public domain by numerical analysis researchers. ITKextends the functionality of VNL
by including interface classes between VNL and ITK proper.

The VNL numerics library includes classes for

Matrices and vectors. Standard matrix and vector support and operations on these types.

Specialized matrix and vector classes.Several special matrix and vector class with special
numerical properties are available. Classvnl diagonal matrix provides a fast and
convenient diagonal matrix, while fixed size matrices and vectors allow ”fast-as-C” com-
putations (seevnl matrix fixed<T,n,m> and example subclassesvnl double 3x3
andvnl double 3).

Matrix decompositions. Classes vnl svd<T> , vnl symmetric eigensystem<T> , and
vnl generalized eigensystem .

Real polynomials. Class vnl real polynomial stores the coefficients of a real polyno-
mial, and provides methods of evaluation of the polynomial at any x, while class
vnl rpoly roots provides a root finder.

Optimization. Classes vnl levenberg marquardt , vnl amoeba,
vnl conjugate gradient , vnl lbfgs allow optimization of user-supplied func-
tions either with or without user-supplied derivatives.

Standardized functions and constants.Classvnl math defines constants (pi, e, eps...) and
simple functions (sqr, abs, rnd...). Classnumeric limits is from the ISO stan-
dard document, and provides a way to access basic limits of a type. For example
numeric limits<short>::max() returns the maximum value of a short.

Most VNL routines are implemented as wrappers around the high-quality Fortran routines
that have been developed by the numerical analysis community over the last forty years and
placed in the public domain. The central repository for these programs is the ”netlib” server
http://www.netlib.org/ . The National Institute of Standards and Technology (NIST)pro-
vides an excellent search interface to this repository in its Guide to Available Mathematical
Software (GAMS)at http://gams.nist.gov , both as a decision tree and a text search.

ITK also provides additional numerics functionality. A suite of optimizers, that use
VNL under the hood and integrate with the registration framework are available. A
large collection of statistics functions—not available from VNL—are also provided in the
Insight/Numerics/Statistics directory. In addition, a complete finite element (FEM)
package is available, primarily to support the deformable registration in ITK.

http://www.netlib.org/
http://gams.nist.gov

3.4. Data Representation 27

3.4 Data Representation

There are two principal types of data represented in OTB: images and meshes. This func-
tionality is implemented in the classes Image and Mesh, bothof which are subclasses of
itk::DataObject . In OTB, data objects are classes that are meant to be passed around the
system and may participate in data flow pipelines (see Section 3.5 on page 28 for more infor-
mation).

otb::Image represents ann-dimensional, regular sampling of data. The sampling direction is
parallel to each of the coordinate axes, and the origin of thesampling, inter-pixel spacing, and
the number of samples in each direction (i.e., image dimension) can be specified. The sample, or
pixel, type in OTB is arbitrary—a template parameterTPixel specifies the type upon template
instantiation. (The dimensionality of the image must also be specified when the image class
is instantiated.) The key is that the pixel type must supportcertain operations (for example,
addition or difference) if the code is to compile in all cases(for example, to be processed by a
particular filter that uses these operations). In practice the OTB user will use a C++ simple type
(e.g.,int , float) or a pre-defined pixel type and will rarely create a new type of pixel class.

One of the important ITK concepts regarding images is that rectangular, continuous pieces of
the image are known asregions. Regions are used to specify which part of an image to process,
for example in multithreading, or which part to hold in memory. In ITK there are three common
types of regions:

1. LargestPossibleRegion —the image in its entirety.

2. BufferedRegion —the portion of the image retained in memory.

3. RequestedRegion —the portion of the region requested by a filter or other class when
operating on the image.

The otb::Image class extends the functionalities of theitk::Image in order to take into
account particular remote sensing features as geographical projections, etc.

The Mesh class represents ann-dimensional, unstructured grid. The topology of the mesh is
represented by a set ofcellsdefined by a type and connectivity list; the connectivity list in turn
refers to points. The geometry of the mesh is defined by then-dimensional points in combi-
nation with associated cell interpolation functions.Mesh is designed as an adaptive represen-
tational structure that changes depending on the operations performed on it. At a minimum,
points and cells are required in order to represent a mesh; but it is possible to add additional
topological information. For example, links from the points to the cells that use each point can
be added; this provides implicit neighborhood informationassuming the implied topology is the
desired one. It is also possible to specify boundary cells explicitly, to indicate different connec-
tivity from the implied neighborhood relationships, or to store information on the boundaries of
cells.

The mesh is defined in terms of three template parameters: 1) apixel type associated with
the points, cells, and cell boundaries; 2) the dimension of the points (which in turn limits the

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

28 Chapter 3. System Overview

maximum dimension of the cells); and 3) a “mesh traits” template parameter that specifies the
types of the containers and identifiers used to access the points, cells, and/or boundaries. By
using the mesh traits carefully, it is possible to create meshes better suited for editing, or those
better suited for “read-only” operations, allowing a trade-off between representation flexibility,
memory, and speed.

Mesh is a subclass ofitk::PointSet . The PointSet class can be used to represent point clouds
or randomly distributed landmarks, etc. The PointSet classhas no associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used to represent data,process objectsare
classes that operate on data objects and may produce new dataobjects. Process objects are
classed assources, filter objects, or mappers. Sources (such as readers) produce data, filter
objects take in data and process it to produce new data, and mappers accept data for output
either to a file or some other system. Sometimes the termfilter is used broadly to refer to all
three types.

The data processing pipeline ties together data objects (e.g., images and meshes) and process
objects. The pipeline supports an automatic updating mechanism that causes a filter to execute
if and only if its input or its internal state changes. Further, the data pipeline supportsstreaming,
the ability to automatically break data into smaller pieces, process the pieces one by one, and
reassemble the processed data into a final result.

Typically data objects and process objects are connected together using theSetInput() and
GetOutput() methods as follows:

typedef otb::Image<float,2> FloatImage2DType;

itk::RandomImageSource<FloatImage2DType>::Pointer ra ndom;
random = itk::RandomImageSource<FloatImage2DType>::Ne w();
random->SetMin(0.0);
random->SetMax(1.0);

itk::ShrinkImageFilter<FloatImage2DType,FloatImage2 DType>::Pointer shrink;
shrink = itk::ShrinkImageFilter<FloatImage2DType,Floa tImage2DType>::New();
shrink->SetInput(random->GetOutput());
shrink->SetShrinkFactors(2);

otb::ImageFileWriter::Pointer<FloatImage2DType> writ er;
writer = otb::ImageFileWriter::Pointer<FloatImage2DTy pe>::New();
writer->SetInput (shrink->GetOutput());
writer->SetFileName(‘‘test.raw’’);
writer->Update();

In this example the source object itk::RandomImageSource is connected to

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RandomImageSource.html

3.6. Spatial Objects 29

the itk::ShrinkImageFilter , and the shrink filter is connected to the mapper
otb::ImageFileWriter . When the Update() method is invoked on the writer, the
data processing pipeline causes each of these filters in order, culminating in writing the final
data to a file on disk.

3.6 Spatial Objects

The ITK spatial object framework supports the philosophy that the task of image segmentation
and registration is actually the task of object processing.The image is but one medium for
representing objects of interest, and much processing and data analysis can and should occur at
the object level and not based on the medium used to representthe object.

ITK spatial objects provide a common interface for accessing the physical location and geo-
metric properties of and the relationship between objects in a scene that is independent of the
form used to represent those objects. That is, the internal representation maintained by a spatial
object may be a list of points internal to an object, the surface mesh of the object, a continuous
or parametric representation of the object’s internal points or surfaces, and so forth.

The capabilities provided by the spatial objects frameworksupports their use in object segmen-
tation, registration, surface/volume rendering, and other display and analysis functions. The
spatial object framework extends the concept of a “scene graph” that is common to computer
rendering packages so as to support these new functions. With the spatial objects framework
you can:

1. Specify a spatial object’s parent and children objects. In this way, a city may contain
roads and those roads can be organized in a tree structure.

2. Query if a physical point is inside an object or (optionally) any of its children.

3. Request the value and derivatives, at a physical point, ofan associated intensity function,
as specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a parentobject’s coordinate system into
a child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optionally) its children.

6. Query the resolution at which the object was originally computed. For example, you
can query the resolution (i.e., pixel spacing) of the image used to generate a particular
instance of aitk::LineSpatialObject .

Currently implemented types of spatial objects include: Blob, Ellipse, Group, Image, Line,
Surface, and Tube. Theitk::Scene object is used to hold a list of spatial objects that may
in turn have children. Each spatial object can be assigned a color property. Each spatial object
type has its own capabilities. For example,itk::TubeSpatialObject s indicate to what point
on their parent tube they connect.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShrinkImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LineSpatialObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Scene.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TubeSpatialObject.html

30 Chapter 3. System Overview

There are a limited number of spatial objects and their methods in ITK, but their number is
growing and their potential is huge. Using the nominal spatial object capabilities, methods
such as mutual information registration, can be applied to objects regardless of their internal
representation. By having a common API, the same method can be used to register a paramet-
ric representation of a building with an image or to registertwo different segmentations of a
particular object in object-based change detection.

Part II

Tutorials

CHAPTER

FOUR

Building Simple Applications with OTB

Well, that’s it, you’ve just downloaded and installed OTB, lured by the promise that you will be
able to do everything with it. That’s true, you will be able todo everything but - there is always
abut - some effort is required.

OTB uses the very powerful systems of generic programing, many classes are already available,
some powerful tools are defined to help you with recurrent tasks, but it is not an easy world to
enter.

These tutorials are designed to help you enter this world andgrasp the logic behind OTB. Each
of these tutorials should not take more than 10 minutes (typing included) and each is designed
to highlight a specific point. You may not be concerned by the latest tutorials but it is strongly
advised to go through the first few which cover the basics you’ll use almost everywhere.

4.1 Hello world

Let’s start by the typicalHello world program. We are going to compile this C++ program
linking to your new OTB.

First, create a new folder to put your new programs (all the examples from this tutorial) in and
go into this folder.

Since all programs using OTB are handled using the CMake system, we need to create a
CMakeLists.txt that will be used by CMake to compile our program. An example of this
file can be found in theOTB/Examples/Tutorials directory. TheCMakeLists.txt will be
very similar between your projects.

Open theCMakeLists.txt file and write in the few lines:

PROJECT(Tutorials)

FIND_PACKAGE(OTB)
IF(OTB_FOUND)

34 Chapter 4. Building Simple Applications with OTB

INCLUDE(${OTB_USE_FILE})
ELSE(OTB_FOUND)

MESSAGE(FATAL_ERROR
"Cannot build OTB project without OTB. Please set OTB_DIR.")

ENDIF(OTB_FOUND)

ADD_EXECUTABLE(HelloWorldOTB HelloWorldOTB.cxx)
TARGET_LINK_LIBRARIES(HelloWorldOTB OTBCommon OTBIO)

The first line defines the name of your project as it appears in Visual Studio (it will have no
effect under UNIX or Linux). The second line loads a CMake filewith a predefined strategy for
finding OTB1. If the strategy for finding OTB fails, CMake will prompt you for the directory
where OTB is installed in your system. In that case you will write this information in the
OTB DIR variable. The line INCLUDE(${USE OTB FILE}) loads theUseOTB.cmake file to
set all the configuration information from OTB.

The line ADD EXECUTABLEdefines as its first argument the name of the executable that will
be produced as result of this project. The remaining arguments of ADD EXECUTABLEare the
names of the source files to be compiled and linked. Finally, the TARGET LINK LIBRARIES
line specifies which OTB libraries will be linked against this project.

The source code for this example can be found in the file
Examples/Tutorials/HelloWorldOTB.cxx .

The following code is an implementation of a small OTB program. It tests including header
files and linking with OTB libraries.

#include "otbImage.h"
#include <iostream>

int main(int argc, char * argv[])
{

typedef otb::Image< unsigned short, 2 > ImageType;

ImageType::Pointer image = ImageType::New();

std::cout << "OTB Hello World !" << std::endl;

return 0;
}

This code instantiates an image whose pixels are represented with typeunsigned short . The
image is then created and assigned to aitk::SmartPointer . Later in the text we will discuss
SmartPointer s in detail, for now think of it as a handle on an instance of an object (see section
3.2.4 for more information).

1Similar files are provided in CMake for other commonly used libraries, all of them namedFind*.cmake

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

4.2. Pipeline basics: read and write 35

Once the file is written, runccmake on the current directory (that isccmake ./ under
Linux/Unix). If OTB is on a non standard place, you will have to tell CMake where it is.
Once your done with CMake (you shouldn’t have to do it anymore) run make.

You finally have your program. When you run it, you will have theOTB Hello World !printed.

Ok, well done! You’ve just compiled and executed your first OTB program. Actually, using
OTB for that is not very useful, and we doubt that you downloaded OTB only to do that. It’s
time to move on to a more advanced level.

4.2 Pipeline basics: read and write

OTB is designed to read images, process them and write them todisk or view the result. In this
tutorial, we are going to see how to read and write images and the basics of the pipeline system.

First, let’s add the following lines at the end of theCMakeLists.txt file:

ADD_EXECUTABLE(Pipeline Pipeline.cxx)
TARGET_LINK_LIBRARIES(Pipeline OTBCommon OTBIO)

Now, create aPipeline.cxx file.

The source code for this example can be found in the file
Examples/Tutorials/Pipeline.cxx .

Start by including some necessary headers and with the usualmain declaration:

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"

int main(int argc, char * argv[])
{

Declare the image as anotb::Image , the pixel type is declared as an unsigned char (one byte)
and the image is specified as having two dimensions.

typedef otb::Image<unsigned char, 2> ImageType;

To read the image, we need anotb::ImageFileReader which is templated with the image
type.

typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

36 Chapter 4. Building Simple Applications with OTB

Then, we need anotb::StreamingImageFileWriter also templated with the image type.

typedef otb::StreamingImageFileWriter<ImageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

The filenames are passed as arguments to the program. We keep it simple for now and we don’t
check their validity.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Now that we have all the elements, we connect the pipeline, pluging the output of the reader to
the input of the writer.

writer->SetInput(reader->GetOutput());

And finally, we trigger the pipeline execution calling the Update() method on the last element
of the pipeline. The last element will make sure to update allprevious elements in the pipeline.

writer->Update();

return 0;
}

Once this file is written you just have to runmake. Theccmake call is not required anymore.

Get one image from theOTB/Examples/Data directory in the OTB sources. For example get
QB Suburb.png .

Now, run your new program asPipeline QB Suburb.png output.png . You obtain the file
output.png which is the same image asQB Suburb.png . When you triggered theUpdate()
method, OTB opened the original image and wrote it back underanother name.

Well. . . that’s nice but a bit complicated for a copy program!

Wait a minute! We didn’t specify the file format anywhere! Let’s try Pipeline
QB Suburb.png output.jpg . And voila! The output image is a jpeg file.

That’s starting to be a bit more interesting: this is not justa program to copy image files, but
also to convert between image formats.

You have just experienced the pipeline structure which executes the filters only when needed
and the automatic image format detection.

Now it’s time to do some processing in between.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

4.3. Filtering pipeline 37

4.3 Filtering pipeline

We are now going to insert a simple filter to do some processingbetween the reader and the
writer.

Let’s first add the 2 following lines to theCMakeLists.txt file:

ADD_EXECUTABLE(FilteringPipeline FilteringPipeline.c xx)
TARGET_LINK_LIBRARIES(FilteringPipeline OTBCommon OTB IO)

The source code for this example can be found in the file
Examples/Tutorials/FilteringPipeline.cxx .

We are going to use theitk::GradientMagnitudeImageFilter to compute the gradient of
the image. The begining of the file is similar to the Pipeline.cxx.

We include the required headers, without forgetting to add the header for the
itk::GradientMagnitudeImageFilter .

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "itkGradientMagnitudeImageFilter.h"

int main(int argc, char * argv[])
{

We declare the image type, the reader and the writer as before:

typedef otb::Image<unsigned char, 2> ImageType;

typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();

typedef otb::StreamingImageFileWriter<ImageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Now we have to declare the filter. It is templated with the input image type and the output
image type like many filters in OTB. Here we are using the same type for the input and the
output images:

typedef itk::GradientMagnitudeImageFilter
<ImageType,ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

38 Chapter 4. Building Simple Applications with OTB

Let’s plug the pipeline:

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

And finally, we trigger the pipeline execution calling theUpdate() method on the writer

writer->Update();

return 0;
}

Compile withmake and execute asFilteringPipeline QB Suburb.png output.png .

You have the filtered version of your image in theoutput.png file.

Now, you can practice a bit and try to replace the filter by one of the 150+ filters which inherit
from the otb::ImageToImageFilter class. You will definitely find some useful filters here!

4.4 Handling types: scaling output

If you tried some other filter in the previous example, you mayhave noticed that in some cases,
it does not make sense to save the output directly as an integer. This is the case if you tried
the itk::CannyEdgeDetectionImageFilter . If you tried to use it directly in the previous
example, you will have some warning about converting to unsigned char from double.

The output of the Canny edge detection is a floating point number. A simple solution would be
to used double as the pixel type. Unfortunately, most image formats use integer typed and you
should convert the result to an integer image if you still want to visualize your images with your
usual viewer (we will see in a tutorial later how you can avoidthat using the built-in viewer).

To realize this conversion, we will use theitk::RescaleIntensityImageFilter .

Add the two lines to theCMakeLists.txt file:

ADD_EXECUTABLE(ScalingPipeline ScalingPipeline.cxx)
TARGET_LINK_LIBRARIES(ScalingPipeline OTBCommon OTBIO)

The source code for this example can be found in the file
Examples/Tutorials/ScalingPipeline.cxx .

This example illustrates the use of theitk::RescaleIntensityImageFilter to convert the
result for proper display.

We include the required header including the header for theitk::CannyEdgeImageFilter
and the itk::RescaleIntensityImageFilter .

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

4.4. Handling types: scaling output 39

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

int main(int argc, char * argv[])
{

We need to declare two different image types, one for the internal processing and one to output
the results:

typedef double PixelType;
typedef otb::Image<PixelType, 2> ImageType;

typedef unsigned char OutputPixelType;
typedef otb::Image<OutputPixelType, 2> OutputImageType ;

We declare the reader with the image template using the pixeltype double. It is worth noticing
that this instanciation does not imply anything about the type of the input image. The original
image can be anything, the reader will just convert the result to double.

The writer is templated with the unsigned char image to be able to save the result on one byte
images (like png for example).

typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

typedef otb::StreamingImageFileWriter<OutputImageTyp e> WriterType;
WriterType::Pointer writer=WriterType::New();

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Now we are declaring the edge detection filter which is going to work with double input and
output.

typedef itk::CannyEdgeDetectionImageFilter
<ImageType,ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

Here comes the interesting part: we declare theitk::RescaleIntensityImageFilter . The
input image type is the output type of the edge detection filter. The output type is the same as
the input type of the writer.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

40 Chapter 4. Building Simple Applications with OTB

Desired minimum and maximum values for the output are specified by the methods
SetOutputMinimum() andSetOutputMaximum() .

This filter will actually rescale all the pixels of the image but also cast the type of these pixels.

typedef itk::RescaleIntensityImageFilter
<ImageType,OutputImageType> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

Let’s plug the pipeline:

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

And finally, we trigger the pipeline execution calling the Update() method on the writer

writer->Update();

return 0;
}

As you should be getting used to it by now, compile withmake and execute as
ScalingPipeline QB Suburb.png output.png .

You have the filtered version of your image in theoutput.png file.

4.5 Working with multispectral or color images

So far, as you may have noticed, we have been working with greylevel images, i.e. with only
one spectral band. If you tried to process a color image with some of the previous examples you
have probably obtained a deceiving grey result.

Often, satellite images combine several spectral band to help the identification of materials: this
is called multispectral imagery. In this tutorial, we are going to explore some of the mechanisms
used by OTB to process multispectral images.

Add the following lines in theCMakeLists.txt file:

ADD_EXECUTABLE(Multispectral Multispectral.cxx)
TARGET_LINK_LIBRARIES(Multispectral OTBCommon OTBIO)

4.5. Working with multispectral or color images 41

The source code for this example can be found in the file
Examples/Tutorials/Multispectral.cxx .

First, we are going to useotb::VectorImage instead of the now traditionnalotb::Image .
So we include the required header:

#include "otbVectorImage.h"

We also include some other header which will be useful later.Note that we are still using the
otb::Image in this example for some of the output.

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "itkShiftScaleImageFilter.h"
#include "otbPerBandVectorImageFilter.h"

int main(int argc, char * argv[])
{

We want to read a multispectral image so we declare the image type and the reader. As we have
done in the previous example we get the filename from the command line.

typedef unsigned short int PixelType;
typedef otb::VectorImage<PixelType, 2> VectorImageType ;

typedef otb::ImageFileReader<VectorImageType> ReaderT ype;
ReaderType::Pointer reader = ReaderType::New();

reader->SetFileName(argv[1]);

Sometime, you need to process only one spectral band of the image. To get only one of the
spectral band we use the /doxygenotbMultiToMonoChannelExtractROI. The declaration is as
usual:

typedef otb::MultiToMonoChannelExtractROI<PixelType, PixelType> ExtractChannelType;
ExtractChannelType::Pointer extractChannel = ExtractCh annelType::New();

We need to pass the parameters to the filter for the extraction. This filter also allow to extract
only a spatial subset of the image. However, we will extract the whole channel in this case.

To do that, we need to pass the desired region using theSetExtractionRegion() (method
such asSetStartX , SetSizeX are also available). We get the region from the reader with the

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

42 Chapter 4. Building Simple Applications with OTB

GetLargestPossibleRegion() method. Before doing that we need to read the metadata from
the file: this is done by calling theUpdateOutputInformation() on the reader’s output. The
difference with theUpdate() is that the pixel array is not allocated (yet !) and reduce the
memory usage.

reader->UpdateOutputInformation();
extractChannel->SetExtractionRegion(reader->GetOutp ut()->GetLargestPossibleRegion());

We chose the channel number to extract (starting from 1) and we plug the pipeline.

extractChannel->SetChannel(3);
extractChannel->SetInput(reader->GetOutput());

To output this image, we need a writer. As the output of the
otb::MultiToMonoChannelExtractROI is a otb::Image , we need to template the
writer with this type.

typedef otb::Image<PixelType, 2> ImageType;
typedef otb::StreamingImageFileWriter<ImageType> Writ erType;
WriterType::Pointer writer = WriterType::New();

writer->SetFileName(argv[2]);
writer->SetInput(extractChannel->GetOutput());

writer->Update();

After this, we have a one band image that we can process with most OTB filters.

In some situation, you may want to apply the same process to all bands of the image. You don’t
have to extract each band and process them separately. Thereis several situations:

• the filter (or the combination of filters) you want to use are doing operations that are well
defined for itk::VariableLengthVector (which is the pixel type), then you don’t have
to do anything special.

• if this is not working, you can look for the equivalent filter specially designed for vector
images.

• some of the filter you need to use applies operations unde-
fined for itk::VariableLengthVector , then you can use the
otb::PerBandVectorImageFilter specially designed for this purpose.

Let’s see how this filter is working. We chose to apply theitk::ShiftScaleImageFilter to
each of the spectral band. We start by declaring the filter on anormal otb::Image . Note that
we don’t need to specify any input for this filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShiftScaleImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

4.6. Parsing command line arguments 43

typedef itk::ShiftScaleImageFilter<ImageType, ImageTy pe> ShiftScaleType;
ShiftScaleType::Pointer shiftScale = ShiftScaleType::N ew();
shiftScale->SetScale(0.5);
shiftScale->SetShift(10);

We declare theotb::PerBandVectorImageFilter which has three template: the input image
type, the output image type and the filter type to apply to eachband.

The filter is selected using theSetFilter() method and the input by the usualSetInput()
method.

typedef otb::PerBandVectorImageFilter
<VectorImageType, VectorImageType, ShiftScaleType> Vec torFilterType;

VectorFilterType::Pointer vectorFilter = VectorFilterT ype::New();
vectorFilter->SetFilter(shiftScale);

vectorFilter->SetInput(reader->GetOutput());

Now, we just have to save the image using a writer templated over an otb::VectorImage :

typedef otb::StreamingImageFileWriter<VectorImageTyp e> VectorWriterType;
VectorWriterType::Pointer writerVector = VectorWriterT ype::New();

writerVector->SetFileName(argv[3]);
writerVector->SetInput(vectorFilter->GetOutput());

writerVector->Update();

return 0;
}

Compile withmake and execute as./Multispectral qb RoadExtract.tif qb blue.tif
qb shiftscale.tif .

4.6 Parsing command line arguments

Well, if you play with some other filters in the previous example, you probably noticed that in
many cases, you need to set some parameters to the filters. Ideally, you want to set some of
these parameters from the command line.

In OTB, there is a mechanism to help you parse the command lineparameters. Let try it!

Add the following lines in theCMakeLists.txt file:

ADD_EXECUTABLE(SmarterFilteringPipeline SmarterFilte ringPipeline.cxx)
TARGET_LINK_LIBRARIES(SmarterFilteringPipeline OTBCo mmon OTBIO)

http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

44 Chapter 4. Building Simple Applications with OTB

The source code for this example can be found in the file
Examples/Tutorials/SmarterFilteringPipeline.cxx .

We are going to use theotb::HarrisImageFilter to find the points of interest in one image.

The derivative computation is performed by a convolution with the derivative of a Gaussian
kernel of varianceσD (derivation scale) and the smoothing of the image is performed by con-
volving with a Gaussian kernel of varianceσI (integration scale). This allows the computation
of the following matrix:

µ(x,σI ,σD) = σ2
Dg(σI)⋆

[

L2
x(x,σD) LxL2

y(x,σD)

LxL2
y(x,σD) L2

y(x,σD)

]

The output of the detector is det(µ)−αtrace2(µ).

We want to set 3 parameters of this filter through the command line: σD (SigmaD),σI (SigmaI)
andα (Alpha).

We are also going to do the things properly and catch the exceptions.

Let first add the two following headers:

#include "itkExceptionObject.h"
#include "otbCommandLineArgumentParser.h"

The first one is to handle the exceptions, the second one to help us parse the command line.

We include the other required headers, without forgetting to add the header for the
otb::HarrisImageFilter . Then we start the usual main function.

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbHarrisImageFilter.h"

int main(int argc, char * argv[])
{

To handle the exceptions properly, we need to put all the instructions inside atry .

try
{

Now, we can declare theotb::CommandLineArgumentParser which is going to parse the
command line, select the proper variables, handle the missing compulsory arguments and print
an error message if necessary.

Let’s declare the parser:

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CommandLineArgumentParser.html

4.6. Parsing command line arguments 45

typedef otb::CommandLineArgumentParser ParserType;
ParserType::Pointer parser = ParserType::New();

It’s now time to tell the parser what are the options we want. Special options are available for
input and output images with theAddInputImage() andAddOutputImage() methods.

For the other options, we need to use theAddOption() method. This method allows us to
specify

• the name of the option

• a message to explain the meaning of this option

• a shortcut for this option

• the number of expected parameters for this option

• whether or not this option is compulsory

parser->AddInputImage();
parser->AddOutputImage();
parser->AddOption("--SigmaD",

"Set the sigmaD parameter. Default is 1.0.","-d",1,false) ;
parser->AddOption("--SigmaI",

"Set the sigmaI parameter. Default is 1.0.","-i",1,false) ;
parser->AddOption("--Alpha",

"Set the alpha parameter. Default is 1.0.","-a",1,false);

Now that the parser has all this information, it can actuallylook at the command line to parse
it. We have to do this within atry - catch loop to handle exceptions nicely.

typedef otb::CommandLineArgumentParseResult ParserRes ultType;
ParserResultType::Pointer parseResult = ParserResultTy pe::New();

try
{

parser->ParseCommandLine(argc,argv,parseResult);
}

catch(itk::ExceptionObject & err)
{

std::string descriptionException = err.GetDescription();
if(descriptionException.find("ParseCommandLine(): He lp Parser")

!= std::string::npos)
{

return EXIT_SUCCESS;
}

46 Chapter 4. Building Simple Applications with OTB

if(descriptionException.find("ParseCommandLine(): Ve rsion Parser")
!= std::string::npos)

{
return EXIT_SUCCESS;

}
return EXIT_FAILURE;

}

Now, we can declare the image type, the reader and the writer as before:

typedef double PixelType;
typedef otb::Image<PixelType, 2> ImageType;

typedef unsigned char OutputPixelType;
typedef otb::Image<OutputPixelType, 2> OutputImageType ;

typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

typedef otb::StreamingImageFileWriter<OutputImageTyp e> WriterType;
WriterType::Pointer writer=WriterType::New();

We are getting the filenames for the input and the output images directly from the parser:

reader->SetFileName(parseResult->GetInputImage().c_ str());
writer->SetFileName(parseResult->GetOutputImage().c _str());

Now we have to declare the filter. It is templated with the input image type and the output
image type like many filters in OTB. Here we are using the same type for the input and the
output images:

typedef otb::HarrisImageFilter
<ImageType,ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

We set the filter parameters from the parser. The methodIsOptionPresent() let us know if
an optional option was provided in the command line.

if(parseResult->IsOptionPresent("--SigmaD"))
filter->SetSigmaD(parseResult->GetParameterDouble(" --SigmaD"));

if(parseResult->IsOptionPresent("--SigmaI"))
filter->SetSigmaI(parseResult->GetParameterDouble(" --SigmaI"));

if(parseResult->IsOptionPresent("--Alpha"))
filter->SetAlpha(parseResult->GetParameterDouble("- -Alpha"));

4.6. Parsing command line arguments 47

We add the rescaler filter as before

typedef itk::RescaleIntensityImageFilter
<ImageType,OutputImageType> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

Let’s plug the pipeline:

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

We trigger the pipeline execution calling theUpdate() method on the writer

writer->Update();

}

Finally, we have to handle exceptions we may have raised before

catch(itk::ExceptionObject & err)
{
std::cout << "Following otbException catch :" << std::endl ;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

catch(std::bad_alloc & err)
{
std::cout << "Exception bad_alloc : "<<(char*)err.what() << std::endl;
return EXIT_FAILURE;
}

catch(...)
{
std::cout << "Unknown Exception found !" << std::endl;
return EXIT_FAILURE;
}

return EXIT_SUCCESS;
}

Compile with make as usual. The execution is a bit different now as we have an automatic
parsing of the command line. First, try to execute asSmarterFilteringPipeline without
any argument.

The usage message (automatically generated) appears:

48 Chapter 4. Building Simple Applications with OTB

’--InputImage’ option is obligatory !!!

Usage : ./SmarterFilteringPipeline
[--help|-h] : Help
[--version|-v] : Version

--InputImage|-in : input image file name (1 parameter)
--OutputImage|-out : output image file name (1 parameter)

[--SigmaD|-d] : Set the sigmaD parameter of the Harris point s of
interest algorithm. Default is 1.0. (1 parameter)

[--SigmaI|-i] : Set the SigmaI parameter of the Harris point s of
interest algorithm. Default is 1.0. (1 parameter)

[--Alpha|-a] : Set the alpha parameter of the Harris points o f
interest algorithm. Default is 1.0. (1 parameter)

That looks a bit more professional: another user should be able to play with your program. As
this is automatic, that’s a good way not to forget to documentyour programs.

So now you have a better idea of the command line options that are possible. Try
SmarterFilteringPipeline -in QB Suburb.png -out output.png for a basic version
with the default values.

If you want a result that looks a bit better, you have to adjustthe parameter
with SmarterFilteringPipeline -in QB Suburb.png -out output.png -d 1.5 -i 2
-a 0.1 for example.

4.7 Viewer

So far, we had to save the image and use an external viewer every time we wanted to see the
result of our processing. That is not very convenient, especially for someexotic formats (16
bits, floating point . . .). Thankfully, OTB comes with it’s own visualization tool.

This tool is accessible by the classotb::ImageViewer . We will now design a simple, mini-
malistic example to illustrate the use for this viewer.

First you need to add the following lines in theCMakeLists.txt file:

ADD_EXECUTABLE(SimpleViewer SimpleViewer.cxx)
TARGET_LINK_LIBRARIES(SimpleViewer OTBCommon OTBIO OTB Gui OTBVisu)

Notice that you have to link to 2 other OTB libraries: OTBGui and OTBVisu.

The source code for this example can be found in the file
Examples/Tutorials/SimpleViewer.cxx .

Now, we are going to illustrate the use of theotb::ImageViewer to display an image or the
result of an algorithm without saving the image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

4.7. Viewer 49

We include the required header including the header for the
itk::GradientMagnitudeImageFilter and theotb::ImageViewer .

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "otbImageViewer.h"

int main(int argc, char * argv[])
{

We need to declare two different image types, one for the internal processing and one to output
the results:

typedef double PixelType;
typedef otb::Image<PixelType, 2> ImageType;

typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();

reader->SetFileName(argv[1]);

Now we are declaring the edge detection filter which is going to work with double input and
output.

typedef itk::GradientMagnitudeImageFilter
<ImageType,ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

Unlike most OTB filters, theotb::ImageViewer is templated over the input pixel type instead
of the image type. This will allow to use it with scalar and vector images.

typedef otb::ImageViewer<PixelType> ViewerType;
ViewerType::Pointer viewer = ViewerType::New();

Let’s plug the pipeline: for the viewer the method isSetImage() .

filter->SetInput(reader->GetOutput());
viewer->SetImage(filter->GetOutput());

We trigger the pipeline execution and the image display withtheShow() method of the viewer.

viewer->Show();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

50 Chapter 4. Building Simple Applications with OTB

A call to Fl::run() is mandatory to ask the program to listen to mouse and keywordevents
until the viewer is closed.

Fl::run();

return 0;
}

After compiling you can execute the program withSimpleViewer QB Suburb.png . The result
of the edge detection is displayed. Notice that you can call this simple program with a big
image (let’s say 30000×30000 pixels). For all multithreaded filters (filters which implement
a ThreadedGenerateData() method), the image is splitted into piece and only the piece on
display is processed.

4.8 Going from raw satellite images to useful products

Quite often, when you buy satellite images, you end up with several images. In the case of
optical satellite, you often have a panchromatic spectral band with the highest spatial resolution
and a multispectral product of the same area with a lower resolution. The resolution ratio is
likely to be around 4.

To get the best of the image processing algorithms, you want to combine these data to produce
a new image with the highest spatial resolution and several spectral band. This step is called
fusion and you can find more details about it in 12. However, the fusion suppose that your two
images represents exactly the same area. There are different solutions to process your data to
reach this situation. Here we are going to use the metadata available with the images to produce
an orthorectification as detailled in 10.

First you need to add the following lines in theCMakeLists.txt file:

ADD_EXECUTABLE(OrthoFusion OrthoFusion.cxx)
TARGET_LINK_LIBRARIES(OrthoFusion OTBProjections OTBC ommon OTBIO)

The source code for this example can be found in the file
Examples/Tutorials/OrthoFusion.cxx .

Start by including some necessary headers and with the usualmain declaration. Apart from the
classical header related to image input and output. We need the headers related to the fusion
and the orthorectification. One header is also required to beable to process vector images (the
XS one) with the orthorectification.

#include "otbImage.h"

4.8. Going from raw satellite images to useful products 51

#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"

#include "otbOrthoRectificationFilter.h"
#include "otbMapProjections.h"
#include "otbPerBandVectorImageFilter.h"

#include "otbSimpleRcsPanSharpeningFusionImageFilter .h"
#include "otbStandardFilterWatcher.h"

int main(int argc, char* argv[])
{

We initialize ossim which is required for the orthorectification and we check that all parameters
are provided. Basically, we need:

• the name of the input PAN image;

• the name of the input XS image;

• the desired name for the output;

• as the coordinates are given in UTM, we need the UTM zone number;

• of course, we need the UTM coordinates of the final image;

• the size in pixels of the final image;

• and the sampling of the final image.

We check that all those parameters are provided.

if(argc!=12)
{
std::cout << argv[0] <<" <input_pan_filename> <input_xs_ filename> ";
std::cout << "<output_filename> <utm zone> <hemisphere N/ S> <x_ground_upper_left_corner> ";
std::cout << "<y_ground_upper_left_corner> <x_Size> <y_ Size> ";
std::cout << "<x_groundSamplingDistance> ";
std::cout << "<y_groundSamplingDistance (should be negat ive since origin is upper left)>"

<< std::endl;

return EXIT_FAILURE;
}

We declare the different images, readers and writer:

52 Chapter 4. Building Simple Applications with OTB

typedef otb::Image<unsigned int, 2> ImageType;
typedef otb::VectorImage<unsigned int, 2> VectorImageTy pe;
typedef otb::Image<double, 2> DoubleImageType;
typedef otb::VectorImage<double, 2> DoubleVectorImageT ype;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileReader<VectorImageType> VectorR eaderType;
typedef otb::StreamingImageFileWriter<VectorImageTyp e> WriterType;

ReaderType::Pointer readerPAN=ReaderType::New();
VectorReaderType::Pointer readerXS=VectorReaderType: :New();
WriterType::Pointer writer=WriterType::New();

readerPAN->SetFileName(argv[1]);
readerXS->SetFileName(argv[2]);
writer->SetFileName(argv[3]);

We declare the projection (here we chose the UTM projection,other choices are possible) and
retrieve the paremeters from the command line:

• the UTM zone

• the hemisphere

typedef otb::UtmInverseProjection utmMapProjectionTyp e ;
utmMapProjectionType::Pointer utmMapProjection =

utmMapProjectionType::New();
utmMapProjection->SetZone(atoi(argv[4]));
utmMapProjection->SetHemisphere(*(argv[5]));

We will need to pass several parameters to the orthorectification concerning the desired output
region:

ImageType::IndexType start;
start[0]=0;
start[1]=0;

ImageType::SizeType size;
size[0]=atoi(argv[8]);
size[1]=atoi(argv[9]);

ImageType::SpacingType spacing;
spacing[0]=atof(argv[10]);

4.8. Going from raw satellite images to useful products 53

spacing[1]=atof(argv[11]);

ImageType::PointType origin;
origin[0]=strtod(argv[6], NULL);
origin[1]=strtod(argv[7], NULL);

We declare the orthorectification filter. And provide the different parameters:

typedef otb::OrthoRectificationFilter<ImageType, Doub leImageType,
utmMapProjectionType> OrthoRectifFilterType ;

OrthoRectifFilterType::Pointer orthoRectifPAN =
OrthoRectifFilterType::New();

orthoRectifPAN->SetMapProjection(utmMapProjection);

orthoRectifPAN->SetInput(readerPAN->GetOutput());

orthoRectifPAN->SetOutputStartIndex(start);
orthoRectifPAN->SetSize(size);
orthoRectifPAN->SetOutputSpacing(spacing);
orthoRectifPAN->SetOutputOrigin(origin);

Now we are able to have the orthorectified area from the PAN image. We just have to fol-
low a similar process for the XS image. However, theotb::OrthoRectificationFilter
is designed to work with one band images. To be able to processthe XS image (which is a
otb::VectorImage), we need to use theotb::PerBandVectorImageFilter which is going
to apply the filter set via the methodSetFilter() to all spectral bands.

typedef otb::PerBandVectorImageFilter<VectorImageTyp e,
DoubleVectorImageType, OrthoRectifFilterType> VectorO rthoRectifFilterType;

OrthoRectifFilterType::Pointer orthoRectifXS =
OrthoRectifFilterType::New();

VectorOrthoRectifFilterType::Pointer orthoRectifXSVe ctor =
VectorOrthoRectifFilterType::New();

orthoRectifXSVector->SetFilter(orthoRectifXS);

This is the only difference, the rest of the parameters are provided as before:

orthoRectifXS->SetMapProjection(utmMapProjection);

orthoRectifXSVector->SetInput(readerXS->GetOutput());

orthoRectifXS->SetOutputStartIndex(start);
orthoRectifXS->SetSize(size);

http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PerBandVectorImageFilter.html

54 Chapter 4. Building Simple Applications with OTB

orthoRectifXS->SetOutputSpacing(spacing);
orthoRectifXS->SetOutputOrigin(origin);

It’s time to declare the fusion filter and set its inputs:

typedef otb::SimpleRcsPanSharpeningFusionImageFilter
<DoubleImageType,DoubleVectorImageType,VectorImageT ype> FusionFilterType;

FusionFilterType::Pointer fusion = FusionFilterType::N ew();
fusion->SetPanInput(orthoRectifPAN->GetOutput());
fusion->SetXsInput(orthoRectifXSVector->GetOutput());

And we can plug it to the writer. To be able to process the images by tiles, we use the
SetTilingStreamDivisions() method of the writer. We trigger the pipeline execution with
theUpdate() method.

writer->SetInput(fusion->GetOutput());

writer->SetTilingStreamDivisions();

otb::StandardFilterWatcher watcher(writer, "OrthoFusi on");

writer->Update();

return EXIT_SUCCESS;

}

Part III

User’s guide

CHAPTER

FIVE

Data Representation

This chapter introduces the basic classes responsible for representing data in OTB. The most
common classes are theotb::Image , the itk::Mesh and the itk::PointSet .

5.1 Image

The otb::Image class follows the spirit of Generic Programming, where types are separated
from the algorithmic behavior of the class. OTB supports images with any pixel type and any
spatial dimension.

5.1.1 Creating an Image

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image1.cxx .

This example illustrates how to manually construct anotb::Image class. The following is the
minimal code needed to instantiate, declare and create the image class.

First, the header file of the Image class must be included.

#include "otbImage.h"

Then we must decide with what type to represent the pixels andwhat the dimension of the
image will be. With these two parameters we can instantiate the image class. Here we create a
2D image, which is what we often use in remote sensing applications, anyway, withunsigned
short pixel data.

typedef otb::Image< unsigned short, 2 > ImageType;

The image can then be created by invoking theNew() operator from the corresponding image
type and assigning the result to aitk::SmartPointer .

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

58 Chapter 5. Data Representation

ImageType::Pointer image = ImageType::New();

In OTB, images exist in combination with one or moreregions. A region is a subset of the image
and indicates a portion of the image that may be processed by other classes in the system. One of
the most common regions is theLargestPossibleRegion, which defines the image in its entirety.
Other important regions found in OTB are theBufferedRegion, which is the portion of the image
actually maintained in memory, and theRequestedRegion, which is the region requested by a
filter or other class when operating on the image.

In OTB, manually creating an image requires that the image isinstantiated as previously shown,
and that regions describing the image are then associated with it.

A region is defined by two classes: theitk::Index and itk::Size classes. The origin of
the region within the image with which it is associated is defined by Index. The extent, or size,
of the region is defined by Size. Index is represented by a n-dimensional array where each
component is an integer indicating—in topological image coordinates—the initial pixel of the
image. When an image is created manually, the user is responsible for defining the image size
and the index at which the image grid starts. These two parameters make it possible to process
selected regions.

The starting point of the image is defined by an Index class that is an n-dimensional array where
each component is an integer indicating the grid coordinates of the initial pixel of the image.

ImageType::IndexType start;

start[0] = 0; // first index on X
start[1] = 0; // first index on Y

The region size is represented by an array of the same dimension of the image (using the Size
class). The components of the array are unsigned integers indicating the extent in pixels of the
image along every dimension.

ImageType::SizeType size;

size[0] = 200; // size along X
size[1] = 200; // size along Y

Having defined the starting index and the image size, these two parameters are used to create an
ImageRegion object which basically encapsulates both concepts. The region is initialized with
the starting index and size of the image.

ImageType::RegionType region;

region.SetSize(size);
region.SetIndex(start);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

5.1. Image 59

Finally, the region is passed to theImage object in order to define its extent and origin. The
SetRegions method sets the LargestPossibleRegion, BufferedRegion, and RequestedRegion
simultaneously. Note that none of the operations performedto this point have allocated memory
for the image pixel data. It is necessary to invoke theAllocate() method to do this. Allocate
does not require any arguments since all the information needed for memory allocation has
already been provided by the region.

image->SetRegions(region);
image->Allocate();

In practice it is rare to allocate and initialize an image directly. Images are typically read from
a source, such a file or data acquisition hardware. The following example illustrates how an
image can be read from a file.

5.1.2 Reading an Image from a File

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image2.cxx .

The first thing required to read an image from a file is to include the header file of the
otb::ImageFileReader class.

#include "otbImageFileReader.h"

Then, the image type should be defined by specifying the type used to represent pixels and the
dimensions of the image.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef otb::Image< PixelType, Dimension > ImageType;

Using the image type, it is now possible to instantiate the image reader class. The image type
is used as a template parameter to define how the data will be represented once it is loaded
into memory. This type does not have to correspond exactly tothe type stored in the file.
However, a conversion based on C-style type casting is used,so the type chosen to represent
the data on disk must be sufficient to characterize it accurately. Readers do not apply any
transformation to the pixel data other than casting from thepixel type of the file to the pixel type
of the ImageFileReader. The following illustrates a typical instantiation of the ImageFileReader
type.

typedef otb::ImageFileReader< ImageType > ReaderType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

60 Chapter 5. Data Representation

The reader type can now be used to create one reader object. Aitk::SmartPointer (defined
by the ::Pointer notation) is used to receive the reference to the newly created reader. The
New() method is invoked to create an instance of the image reader.

ReaderType::Pointer reader = ReaderType::New();

The minimum information required by the reader is the filename of the image to be loaded in
memory. This is provided through theSetFileName() method. The file format here is inferred
from the filename extension. The user may also explicitly specify the data format explicitly
using the itk::ImageIO (See Chapter 6.1 95 for more information):

const char * filename = argv[1];
reader->SetFileName(filename);

Reader objects are referred to as pipeline source objects; they respond to pipeline update re-
quests and initiate the data flow in the pipeline. The pipeline update mechanism ensures that
the reader only executes when a data request is made to the reader and the reader has not read
any data. In the current example we explicitly invoke theUpdate() method because the output
of the reader is not connected to other filters. In normal application the reader’s output is con-
nected to the input of an image filter and the update invocation on the filter triggers an update
of the reader. The following line illustrates how an explicit update is invoked on the reader.

reader->Update();

Access to the newly read image can be gained by calling theGetOutput() method on the reader.
This method can also be called before the update request is sent to the reader. The reference to
the image will be valid even though the image will be empty until the reader actually executes.

ImageType::Pointer image = reader->GetOutput();

Any attempt to access image data before the reader executes will yield an image with no pixel
data. It is likely that a program crash will result since the image will not have been properly
initialized.

5.1.3 Accessing Pixel Data

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image3.cxx .

This example illustrates the use of theSetPixel() and GetPixel() methods. These two
methods provide direct access to the pixel data contained inthe image. Note that these two
methods are relatively slow and should not be used in situations where high-performance access
is required. Image iterators are the appropriate mechanismto efficiently access image pixel data.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

5.1. Image 61

The individual position of a pixel inside the image is identified by a unique index. An index
is an array of integers that defines the position of the pixel along each coordinate dimension
of the image. The IndexType is automatically defined by the image and can be accessed using
the scope operator likeitk::Index . The length of the array will match the dimensions of the
associated image.

The following code illustrates the declaration of an index variable and the assignment of values
to each of its components. Please note thatIndex does not use SmartPointers to access it. This
is becauseIndex is a light-weight object that is not intended to be shared between objects. It
is more efficient to produce multiple copies of these small objects than to share them using the
SmartPointer mechanism.

The following lines declare an instance of the index type andinitialize its content in order to
associate it with a pixel position in the image.

ImageType::IndexType pixelIndex;

pixelIndex[0] = 27; // x position
pixelIndex[1] = 29; // y position

Having defined a pixel position with an index, it is then possible to access the content of the
pixel in the image. TheGetPixel() method allows us to get the value of the pixels.

ImageType::PixelType pixelValue = image->GetPixel(pixe lIndex);

TheSetPixel() method allows us to set the value of the pixel.

image->SetPixel(pixelIndex, pixelValue+1);

Please note thatGetPixel() returns the pixel value using copy and not reference semantics.
Hence, the method cannot be used to modify image data values.

Remember that bothSetPixel() andGetPixel() are inefficient and should only be used for
debugging or for supporting interactions like querying pixel values by clicking with the mouse.

5.1.4 Defining Origin and Spacing

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image4.cxx .

Even though OTB can be used to perform general image processing tasks, the primary purpose
of the toolkit is the processing of remote sensing image data. In that respect, additional infor-
mation about the images is considered mandatory. In particular the information associated with

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

62 Chapter 5. Data Representation

0 10050 150 200

0

50

100

150

200

250

300

30.0

20.0

Size=7x6

Spacing=(20.0, 30.0)

Physical extent=(140.0, 180.0)

Origin=(60.0,70.0)

Image Origin

Voronoi Region
Pixel Coverage

Delaunay Region
Linear Interpolation Region

Pixel Coordinates

Spacing[0]

S
pa

ci
ng

[1
]

Figure 5.1:Geometrical concepts associated with the OTB image.

the physical spacing between pixels and the position of the image in space with respect to some
world coordinate system are extremely important.

Image origin and spacing are fundamental to many applications. Registration, for example, is
performed in physical coordinates. Improperly defined spacing and origins will result in incon-
sistent results in such processes. Remote sensing images with no spatial information should not
be used for image analysis, feature extraction, GIS input, etc. In other words, remote sensing
images lacking spatial information are not only useless butalso hazardous.

Figure 5.1 illustrates the main geometrical concepts associated with the otb::Image . In this
figure, circles are used to represent the center of pixels. The value of the pixel is assumed to
exist as a Dirac Delta Function located at the pixel center. Pixel spacing is measured between
the pixel centers and can be different along each dimension.The image origin is associated with
the coordinates of the first pixel in the image. Apixel is considered to be the rectangular region
surrounding the pixel center holding the data value. This can be viewed as the Voronoi region
of the image grid, as illustrated in the right side of the figure. Linear interpolation of image
values is performed inside the Delaunay region whose corners are pixel centers.

Image spacing is represented in aFixedArray whose size matches the dimension of the image.
In order to manually set the spacing of the image, an array of the corresponding type must
be created. The elements of the array should then be initialized with the spacing between the
centers of adjacent pixels. The following code illustratesthe methods available in the Image
class for dealing with spacing and origin.

ImageType::SpacingType spacing;

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

5.1. Image 63

// Note: measurement units (e.g., meters, feet, etc.) are de fined by the application.
spacing[0] = 0.70; // spacing along X
spacing[1] = 0.70; // spacing along Y

The array can be assigned to the image using theSetSpacing() method.

image->SetSpacing(spacing);

The spacing information can be retrieved from an image by using theGetSpacing() method.
This method returns a reference to aFixedArray . The returned object can then be used to read
the contents of the array. Note the use of theconst keyword to indicate that the array will not
be modified.

const ImageType::SpacingType& sp = image->GetSpacing();

std::cout << "Spacing = ";
std::cout << sp[0] << ", " << sp[1] << std::endl;

The image origin is managed in a similar way to the spacing. APoint of the appropriate
dimension must first be allocated. The coordinates of the origin can then be assigned to every
component. These coordinates correspond to the position ofthe first pixel of the image with
respect to an arbitrary reference system in physical space.It is the user’s responsibility to make
sure that multiple images used in the same application are using a consistent reference system.
This is extremely important in image registration applications.

The following code illustrates the creation and assignmentof a variable suitable for initializing
the image origin.

ImageType::PointType origin;

origin[0] = 0.0; // coordinates of the
origin[1] = 0.0; // first pixel in 2-D

image->SetOrigin(origin);

The origin can also be retrieved from an image by using theGetOrigin() method. This will
return a reference to aPoint . The reference can be used to read the contents of the array. Note
again the use of theconst keyword to indicate that the array contents will not be modified.

const ImageType::PointType& orgn = image->GetOrigin();

std::cout << "Origin = ";
std::cout << orgn[0] << ", " << orgn[1] << std::endl;

64 Chapter 5. Data Representation

Once the spacing and origin of the image have been initialized, the image will correctly map
pixel indices to and from physical space coordinates. The following code illustrates how a point
in physical space can be mapped into an image index for the purpose of reading the content of
the closest pixel.

First, a itk::Point type must be declared. The point type is templated over the type used to
represent coordinates and over the dimension of the space. In this particular case, the dimension
of the point must match the dimension of the image.

typedef itk::Point< double, ImageType::ImageDimension > PointType;

The Point class, like anitk::Index , is a relatively small and simple object. For this reason,
it is not reference-counted like the large data objects in OTB. Consequently, it is also not ma-
nipulated with itk::SmartPointer s. Point objects are simply declared as instances of any
other C++ class. Once the point is declared, its components can be accessed using traditional
array notation. In particular, the[] operator is available. For efficiency reasons, no bounds
checking is performed on the index used to access a particular point component. It is the user’s
responsibility to make sure that the index is in the range{0,Dimension−1}.

PointType point;

point[0] = 1.45; // x coordinate
point[1] = 7.21; // y coordinate

The image will map the point to an index using the values of thecurrent spacing and origin. An
index object must be provided to receive the results of the mapping. The index object can be
instantiated by using theIndexType defined in the Image type.

ImageType::IndexType pixelIndex;

TheTransformPhysicalPointToIndex() method of the image class will compute the pixel
index closest to the point provided. The method checks for this index to be contained inside
the current buffered pixel data. The method returns a boolean indicating whether the resulting
index falls inside the buffered region or not. The output index should not be used when the
returned value of the method isfalse .

The following lines illustrate the point to index mapping and the subsequent use of the pixel
index for accessing pixel data from the image.

bool isInside = image->TransformPhysicalPointToIndex(p oint, pixelIndex);

if (isInside)
{
ImageType::PixelType pixelValue = image->GetPixel(pixe lIndex);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.1. Image 65

pixelValue += 5;

image->SetPixel(pixelIndex, pixelValue);
}

Remember thatGetPixel() andSetPixel() are very inefficient methods for accessing pixel
data. Image iterators should be used when massive access to pixel data is required.

5.1.5 Accessing Image Metadata

The source code for this example can be found in the file
Examples/IO/MetadataExample.cxx .

This example illustrates the access to metadata image information with OTB. By metadata, we
mean data which is typically stored with remote sensing images, like geographical coordinates
of pixels, pixel spacing or resolution, etc. Of course, the availability of these data depends on
the image format used and on the fact that the image producer must fill the available metadata
fields. The image formats which typically support metadata are for example CEOS and GeoTiff.

The metadata support is embedded in OTB’s IO functionnalities and is accessible through the
otb::Image and otb::VectorImage classes. You should avoid using theitk::Image class
if you want to have metadata support.

This simple example will consist on reading an image from a file and writing the metadata to
an output ASCII file. As usual we start by defining the types needed for the image to be read.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;

typedef otb::Image< InputPixelType, Dimension > InputIma geType;

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;

We can now instantiate the reader and get a pointer to the input image.

ReaderType::Pointer reader = ReaderType::New();
InputImageType::Pointer image = InputImageType::New();

reader->SetFileName(inputFilename);
reader->Update();

image = reader->GetOutput();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html

66 Chapter 5. Data Representation

Once the image has been read, we can access the metadata information. We will copy this
information to an ASCII file, so we create an output file streamfor this purpose.

std::ofstream file;

file.open(outputAsciiFilename);

We can now call the different available methods for accessing the metadata. Useful methods
are :

• GetSpacing : the sampling step;

• GetOrigin : the coordinates of the origin of the image;

• GetProjectionRef : the image projection reference;

• GetGCPProjection : the projection for the eventual ground control points;

• GetGCPCount : the number of GCPs available;

file << "Spacing " << image->GetSpacing() << std::endl;
file << "Origin " << image->GetOrigin() << std::endl;

file << "Projection REF " << image->GetProjectionRef() << s td::endl;

file << "GCP Projection " << image->GetGCPProjection() << s td::endl;

unsigned int GCPCount = image->GetGCPCount();
file << "GCP Count " << image->GetGCPCount() << std::endl;

One can also get the GCPs by number, as well as their coordinates in image and geographical
space.

for(unsigned int GCPnum = 0 ; GCPnum < GCPCount ; GCPnum++)
{
file << "GCP[" << GCPnum << "] Id " << image->GetGCPId(GCPnum) << std::endl;
file << "GCP[" << GCPnum << "] Info " << image->GetGCPInfo(GC Pnum) << std::endl;
file << "GCP[" << GCPnum << "] Row " << image->GetGCPRow(GCPn um) << std::endl;
file << "GCP[" << GCPnum << "] Col " << image->GetGCPCol(GCPn um) << std::endl;
file << "GCP[" << GCPnum << "] X " << image->GetGCPX(GCPnum) < < std::endl;
file << "GCP[" << GCPnum << "] Y " << image->GetGCPY(GCPnum) < < std::endl;
file << "GCP[" << GCPnum << "] Z " << image->GetGCPZ(GCPnum) < < std::endl;
file << "----------------" << std::endl;
}

5.1. Image 67

If a geographical transformation is available, it can be recovered as follows.

InputImageType::VectorType tab = image->GetGeoTransfor m();

file << "Geo Transform " << std::endl;
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " " <<i<<" -> "<<tab[i]<< std::endl;
}

tab.clear();

tab = image->GetUpperLeftCorner();
file << "Corners " << std::endl;
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " UL[" <<i<<"] -> "<<tab[i]<< std::endl;
}

tab.clear();

tab = image->GetUpperRightCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " UR[" <<i<<"] -> "<<tab[i]<< std::endl;
}

tab.clear();

tab = image->GetLowerLeftCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " LL[" <<i<<"] -> "<<tab[i]<< std::endl;
}

tab.clear();

tab = image->GetLowerRightCorner();
for(unsigned int i = 0 ; i < tab.size() ; i++)

{
file << " LR[" <<i<<"] -> "<<tab[i]<< std::endl;
}

tab.clear();

file.close();

5.1.6 RGB Images

The term RGB (Red, Green, Blue) stands for a color representation commonly used in digital
imaging. RGB is a representation of the human physiologicalcapability to analyze visual light

68 Chapter 5. Data Representation

using three spectral-selective sensors [62, 99]. The humanretina possess different types of light
sensitive cells. Three of them, known ascones, are sensitive to color [36] and their regions
of sensitivity loosely match regions of the spectrum that will be perceived as red, green and
blue respectively. Therods on the other hand provide no color discrimination and favor high
resolution and high sensitivity1. A fifth type of receptors, theganglion cells, also known as
circadian2 receptors are sensitive to the lighting conditions that differentiate day from night.
These receptors evolved as a mechanism for synchronizing the physiology with the time of the
day. Cellular controls for circadian rythms are present in every cell of an organism and are
known to be exquisitively precise [58].

The RGB space has been constructed as a representation of a physiological response to light by
the three types ofconesin the human eye. RGB is not a Vector space. For example, negative
numbers are not appropriate in a color space because they will be the equivalent of “negative
stimulation” on the human eye. In the context of colorimetry, negative color values are used as
an artificial construct for color comparison in the sense that

ColorA= ColorB−ColorC (5.1)

just as a way of saying that we can produceColorB by combiningColorA andColorC. How-
ever, we must be aware that (at least in emitted light) it is not possible tosubstract light. So
when we mention Equation 5.1 we actually mean

ColorB= ColorA+ColorC (5.2)

On the other hand, when dealing with printed color and with paint, as opposed to emitted light
like in computer screens, the physical behavior of color allows for subtraction. This is because
strictly speaking the objects that we see as red are those that absorb all light frequencies except
those in the red section of the spectrum [99].

The concept of addition and subtraction of colors has to be carefully interpreted. In fact, RGB
has a different definition regarding whether we are talking about the channels associated to the
three color sensors of the human eye, or to the three phosphors found in most computer monitors
or to the color inks that are used for printing reproduction.Color spaces are usually non linear
and do not even from a Group. For example, not all visible colors can be represented in RGB
space [99].

ITK introduces the itk::RGBPixel type as a support for representing the values of an RGB
color space. As such, the RGBPixel class embodies a different concept from the one of an
itk::Vector in space. For this reason, the RGBPixel lack many of the operators that may
be naively expected from it. In particular, there are no defined operations for subtraction or
addition.

When you anticipate to perform the operation of “Mean” on a RGBtype you are assuming that
in the color space provides the action of finding a color in themiddle of two colors, can be found

1The human eye is capable of perceiving a single isolated photon.
2The termCircadianrefers to the cycle of day and night, that is, events that are repeated with 24 hours intervals.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

5.1. Image 69

by using a linear operation between their numerical representation. This is unfortunately not the
case in color spaces due to the fact that they are based on a human physiological response [62].

If you decide to interpret RGB images as simply three independent channels then you should
rather use theitk::Vector type as pixel type. In this way, you will have access to the setof
operations that are defined in Vector spaces. The current implementation of the RGBPixel in
ITK presumes that RGB color images are intended to be used in applications where a formal
interpretation of color is desired, therefore only the operations that are valid in a color space are
available in the RGBPixel class.

The following example illustrates how RGB images can be represented in OTB.

The source code for this example can be found in the file
Examples/DataRepresentation/Image/RGBImage.cxx .

Thanks to the flexibility offered by the Generic Programmingstyle on which OTB is based, it
is possible to instantiate images of arbitrary pixel type. The following example illustrates how
a color image with RGB pixels can be defined.

A class intended to support the RGB pixel type is available inITK. You could also define
your own pixel class and use it to instantiate a custom image type. In order to use the
itk::RGBPixel class, it is necessary to include its header file.

#include "itkRGBPixel.h"

The RGB pixel class is templated over a type used to representeach one of the red, green and
blue pixel components. A typical instantiation of the templated class is as follows.

typedef itk::RGBPixel< unsigned char > PixelType;

The type is then used as the pixel template parameter of the image.

typedef otb::Image< PixelType, 2 > ImageType;

The image type can be used to instantiate other filter, for example, anotb::ImageFileReader
object that will read the image from a file.

typedef otb::ImageFileReader< ImageType > ReaderType;

Access to the color components of the pixels can now be performed using the methods provided
by the RGBPixel class.

PixelType onePixel = image->GetPixel(pixelIndex);

PixelType::ValueType red = onePixel.GetRed();
PixelType::ValueType green = onePixel.GetGreen();
PixelType::ValueType blue = onePixel.GetBlue();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

70 Chapter 5. Data Representation

The subindex notation can also be used since theitk::RGBPixel inherits the[] operator from
the itk::FixedArray class.

red = onePixel[0]; // extract Red component
green = onePixel[1]; // extract Green component
blue = onePixel[2]; // extract Blue component

std::cout << "Pixel values:" << std::endl;
std::cout << "Red = "

<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(red)
<< std::endl;

std::cout << "Green = "
<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(green)
<< std::endl;

std::cout << "Blue = "
<< itk::NumericTraits<PixelType::ValueType>::PrintTy pe(blue)
<< std::endl;

5.1.7 Vector Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/VectorImage.cxx .

Many image processing tasks require images of non-scalar pixel type. A typical example is a
multispectral image. The following code illustrates how toinstantiate and use an image whose
pixels are of vector type.

We could use theitk::Vector class to define the pixel type. The Vector class is intended to
represent a geometrical vector in space. It is not intended to be used as an array container like
the std::vector in STL. If you are interested in containers, theitk::VectorContainer
class may provide the functionality you want.

However, theitk::Vector is a fixed size array and it assumes that the number of channelsof
the image is known at compile time. Therefore, we prefer to use the otb::VectorImage class
which allows to choose the number of channels of the image at runtime. The pixels will be of
type itk::VariableLengthVector .

The first step is to include the header file of the VectorImage class.

#include "otbVectorImage.h"

The VectorImage class is templated over the type used to represent the coordinate in space and
over the dimension of the space. In this example, we want to represent Pĺeiades images which
have 4 bands.

typedef unsigned char PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html

5.1. Image 71

typedef otb::VectorImage< PixelType, 2 > ImageType;

Since the pixel dimensionality is choosen at runtime, one has to pass this parameter to the image
before memory allocation.

image->SetNumberOfComponentsPerPixel(4);
image->Allocate();

The VariableLengthVector class overloads the operator[] . This makes it possible to access the
Vector’s components using index notation. The user must notforget to allocate the memory for
each individual pixel by using theReserve method.

ImageType::PixelType pixelValue;
pixelValue.Reserve(4);

pixelValue[0] = 1; // Blue component
pixelValue[1] = 6; // Red component
pixelValue[2] = 100; // Green component
pixelValue[3] = 100; // NIR component

We can now store this vector in one of the image pixels by defining an index and invoking the
SetPixel() method.

image->SetPixel(pixelIndex, pixelValue);

The GetPixel method can also be used to read Vectors pixels from the image

ImageType::PixelType value = image->GetPixel(pixelInde x);

Lets repeat that bothSetPixel() andGetPixel() are inefficient and should only be used for
debugging purposes or for implementing interactions with agraphical user interface such as
querying pixel value by clicking with the mouse.

5.1.8 Importing Image Data from a Buffer

The source code for this example can be found in the file
Examples/DataRepresentation/Image/Image5.cxx .

This example illustrates how to import data into theotb::Image class. This is particularly
useful for interfacing with other software systems. Many systems use a contiguous block of
memory as a buffer for image pixel data. The current example assumes this is the case and
feeds the buffer into anotb::ImportImageFilter , thereby producing an Image as output.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImportImageFilter.html

72 Chapter 5. Data Representation

For fun we create a synthetic image with a centered sphere in alocally allocated buffer and pass
this block of memory to the ImportImageFilter. This exampleis set up so that on execution, the
user must provide the name of an output file as a command-line argument.

First, the header file of the ImportImageFilter class must beincluded.

#include "otbImage.h"
#include "otbImportImageFilter.h"

Next, we select the data type to use to represent the image pixels. We assume that the external
block of memory uses the same data type to represent the pixels.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

The type of the ImportImageFilter is instantiated in the following line.

typedef otb::ImportImageFilter< ImageType > ImportFilte rType;

A filter object created using theNew() method is then assigned to aSmartPointer .

ImportFilterType::Pointer importFilter = ImportFilterT ype::New();

This filter requires the user to specify the size of the image to be produced as output. The
SetRegion() method is used to this end. The image size should exactly match the number of
pixels available in the locally allocated buffer.

ImportFilterType::SizeType size;

size[0] = 200; // size along X
size[1] = 200; // size along Y

ImportFilterType::IndexType start;
start.Fill(0);

ImportFilterType::RegionType region;
region.SetIndex(start);
region.SetSize(size);

importFilter->SetRegion(region);

The origin of the output image is specified with theSetOrigin() method.

5.1. Image 73

double origin[Dimension];
origin[0] = 0.0; // X coordinate
origin[1] = 0.0; // Y coordinate

importFilter->SetOrigin(origin);

The spacing of the image is passed with theSetSpacing() method.

double spacing[Dimension];
spacing[0] = 1.0; // along X direction
spacing[1] = 1.0; // along Y direction

importFilter->SetSpacing(spacing);

Next we allocate the memory block containing the pixel data to be passed to the ImportImage-
Filter. Note that we use exactly the same size that was specified with theSetRegion() method.
In a practical application, you may get this buffer from someother library using a different data
structure to represent the images.

// MODIFIED
const unsigned int numberOfPixels = size[0] * size[1];
PixelType * localBuffer = new PixelType[numberOfPixels];

Here we fill up the buffer with a binary sphere. We use simplefor() loops here similar to
those found in the C or FORTRAN programming languages. Note that otb does not usefor()
loops in its internal code to access pixels. All pixel accesstasks are instead performed using
otb::ImageIterator s that support the management of n-dimensional images.

const double radius2 = radius * radius;
PixelType * it = localBuffer;

for(unsigned int y=0; y < size[1]; y++)
{
const double dy = static_cast<double>(y) - static_cast<do uble>(size[1])/2.0;
for(unsigned int x=0; x < size[0]; x++)

{
const double dx = static_cast<double>(x) - static_cast<do uble>(size[0])/2.0;
const double d2 = dx*dx + dy*dy ;
*it++ = (d2 < radius2) ? 255 : 0;
}

}

The buffer is passed to the ImportImageFilter with theSetImportPointer() . Note that the
last argument of this method specifies who will be responsible for deleting the memory block

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageIterator.html

74 Chapter 5. Data Representation

once it is no longer in use. Afalse value indicates that the ImportImageFilter will not try to
delete the buffer when its destructor is called. Atrue value, on the other hand, will allow the
filter to delete the memory block upon destruction of the import filter.

For the ImportImageFilter to appropriately delete the memory block, the memory must be al-
located with the C++new() operator. Memory allocated with other memory allocation mecha-
nisms, such as Cmalloc or calloc , will not be deleted properly by the ImportImageFilter. In
other words, it is the application programmer’s responsibility to ensure that ImportImageFilter
is only given permission to delete the C++new operator-allocated memory.

const bool importImageFilterWillOwnTheBuffer = true;
importFilter->SetImportPointer(localBuffer, numberOf Pixels,

importImageFilterWillOwnTheBuffer);

Finally, we can connect the output of this filter to a pipeline. For simplicity we just use a writer
here, but it could be any other filter.

writer->SetInput(dynamic_cast<ImageType*>(importFil ter->GetOutput()));

Note that we do not calldelete on the buffer since we passtrue as the last argument of
SetImportPointer() . Now the buffer is owned by the ImportImageFilter.

5.1.9 Image Lists

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageListExample. cxx .

This example illustrates the use of theotb::ImageList::c lass. This class provides the func-
tionnalities needed in order to integrate image lists as data objects into the OTB pipeline. In-
deed, if astd::list< ImageType > was used, the update operations on the pipeline might
not have the desired effects.

In this example, we will only present the basic operations which can be applied on an
otb::ImageList::o bject.

The first thing required to read an image from a file is to include the header file of the
otb::ImageFileReader::c lass.

#include "otbImageList.h"

As usual, we start by defining the types for the pixel and imagetypes, as well as those for the
readers and writers.

const unsigned int Dimension = 2;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1c.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1o.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader_1_1c.html

5.1. Image 75

typedef unsigned char InputPixelType;
typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
typedef otb::ImageFileWriter< InputImageType > WriterTy pe;

We can now define the type for the image list. Theotb::ImageList::c lass is templated over
the type of image contained in it. This means that all images in a list must have the same type.

typedef otb::ImageList< InputImageType > ImageListType;

Let us assume now that we want to read an image from a file and store it in a list. The first thing
to do is to instantiate the reader and set the image file name. We effectively read the image by
calling theUpdate() .

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
reader->Update();

We create an image list by using theNew() method.

ImageListType::Pointer imageList = ImageListType::New();

In order to store the image in the list, thePushBack() method is used.

imageList->PushBack(reader->GetOutput());

We could repeat this operation for other readers or the outputs of filters. We will now write an
image of the list to a file. We therefore instantiate a writer,set the image file name and set the
input image for it. This is done by calling theBack() method of the list, which allows us to get
the last element.

// Getting the image from the list and writing it to file
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList_1_1c.html

76 Chapter 5. Data Representation

writer->SetInput(imageList->Back());
writer->Update();

Other useful methods are:

• SetNthElement() andGetNthElement() allow to randomly access any element of the
list.

• Front() to access to the first element of the list.

• Erase() to remove an element.

Also, iterator classes are defined in order to have an efficient mean of moving through the list.
Finally, the otb::ImageListToImageListFilter::i s provided in order to implement filter
which operate on image lists and produce image lists.

5.2 PointSet

5.2.1 Creating a PointSet

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet1.cxx .

The itk::PointSet is a basic class intended to represent geometry in the form ofa set of
points in n-dimensional space. It is the base class for theitk::Mesh providing the methods
necessary to manipulate sets of point. Points can have values associated with them. The type of
such values is defined by a template parameter of theitk::PointSet class (i.e.,TPixelType .
Two basic interaction styles of PointSets are available in ITK. These styles are referred to as
static anddynamic. The first style is used when the number of points in the set is known in
advance and is not expected to change as a consequence of the manipulations performed on
the set. The dynamic style, on the other hand, is intended to support insertion and removal of
points in an efficient manner. Distinguishing between the two styles is meant to facilitate the
fine tuning of aPointSet ’s behavior while optimizing performance and memory management.

In order to use the PointSet class, its header file should be included.

#include "itkPointSet.h"

Then we must decide what type of value to associate with the points. This is generally called
thePixelType in order to make the terminology consistent with theitk::Image . The PointSet
is also templated over the dimension of the space in which thepoints are represented. The
following declaration illustrates a typical instantiation of the PointSet class.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageListToImageListFilter_1_1i.html

5.2. PointSet 77

typedef itk::PointSet< unsigned short, 2 > PointSetType;

A PointSet object is created by invoking theNew() method on its type. The resulting object
must be assigned to aSmartPointer . The PointSet is then reference-counted and can be shared
by multiple objects. The memory allocated for the PointSet will be released when the number
of references to the object is reduced to zero. This simply means that the user does not need to
be concerned with invoking theDelete() method on this class. In fact, theDelete() method
shouldneverbe called directly within any of the reference-counted ITK classes.

PointSetType::Pointer pointsSet = PointSetType::New();

Following the principles of Generic Programming, thePointSet class has a set of associated
defined types to ensure that interacting objects can be declared with compatible types. This
set of type definitions is commonly known as a set oftraits. Among them we can find the
PointType type, for example. This is the type used by the point set to represent points in space.
The following declaration takes the point type as defined in thePointSet traits and renames it
to be conveniently used in the global namespace.

typedef PointSetType::PointType PointType;

ThePointType can now be used to declare point objects to be inserted in thePointSet . Points
are fairly small objects, so it is inconvenient to manage them with reference counting and smart
pointers. They are simply instantiated as typical C++ classes. The Point class inherits the[]
operator from theitk::Array class. This makes it possible to access its components using
index notation. For efficiency’s sake no bounds checking is performed during index access.
It is the user’s responsibility to ensure that the index usedis in the range{0,Dimension−1}.
Each of the components in the point is associated with space coordinates. The following code
illustrates how to instantiate a point and initialize its components.

PointType p0;
p0[0] = -1.0; // x coordinate
p0[1] = -1.0; // y coordinate

Points are inserted in the PointSet by using theSetPoint() method. This method requires the
user to provide a unique identifier for the point. The identifier is typically an unsigned integer
that will enumerate the points as they are being inserted. The following code shows how three
points are inserted into the PointSet.

pointsSet->SetPoint(0, p0);
pointsSet->SetPoint(1, p1);
pointsSet->SetPoint(2, p2);

It is possible to query the PointSet in order to determine howmany points have been inserted
into it. This is done with theGetNumberOfPoints() method as illustrated below.

78 Chapter 5. Data Representation

const unsigned int numberOfPoints = pointsSet->GetNumber OfPoints();
std::cout << numberOfPoints << std::endl;

Points can be read from the PointSet by using theGetPoint() method and the integer identifier.
The point is stored in a pointer provided by the user. If the identifier provided does not match
an existing point, the method will returnfalse and the contents of the point will be invalid.
The following code illustrates point access using defensive programming.

PointType pp;
bool pointExists = pointsSet->GetPoint(1, & pp);

if(pointExists)
{
std::cout << "Point is = " << pp << std::endl;
}

GetPoint() and SetPoint() are not the most efficient methods to access points in the
PointSet. It is preferable to get direct access to the internal point container defined by the
traits and use iterators to walk sequentially over the list of points (as shown in the following
example).

5.2.2 Getting Access to Points

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet2.cxx .

The itk::PointSet class uses an internal container to manage the storage ofitk::Point s. It
is more efficient, in general, to manage points by using the access methods provided directly on
the points container. The following example illustrates how to interact with the point container
and how to use point iterators.

The type is defined by thetraits of the PointSet class. The following line conveniently takes the
PointsContainer type from the PointSet traits and declare it in the global namespace.

typedef PointSetType::PointsContainer PointsContainer ;

The actual type of the PointsContainer depends on what styleof PointSet is being used.
The dynamic PointSet use theitk::MapContainer while the static PointSet uses the
itk::VectorContainer . The vector and map containers are basically ITK wrappers around
the STL classesstd::map andstd::vector . By default, the PointSet uses a static style, hence
the default type of point container is an VectorContainer. Both the map and vector container
are templated over the type of the elements they contain. In this case they are templated over
PointType. Containers are reference counted object. They are then created with theNew()
method and assigned to aitk::SmartPointer after creation. The following line creates a
point container compatible with the type of the PointSet from which the trait has been taken.

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.2. PointSet 79

PointsContainer::Pointer points = PointsContainer::New ();

Points can now be defined using thePointType trait from the PointSet.

typedef PointSetType::PointType PointType;
PointType p0;
PointType p1;
p0[0] = -1.0; p0[1] = 0.0; // Point 0 = {-1,0 }
p1[0] = 1.0; p1[1] = 0.0; // Point 1 = { 1,0 }

The created points can be inserted in the PointsContainer using the generic method
InsertElement() which requires an identifier to be provided for each point.

unsigned int pointId = 0;
points->InsertElement(pointId++ , p0);
points->InsertElement(pointId++ , p1);

Finally the PointsContainer can be assigned to the PointSet. This will substitute any previ-
ously existing PointsContainer on the PointSet. The assignment is done using theSetPoints()
method.

pointSet->SetPoints(points);

The PointsContainer object can be obtained from the PointSet using theGetPoints() method.
This method returns a pointer to the actual container owned by the PointSet which is then
assigned to a SmartPointer.

PointsContainer::Pointer points2 = pointSet->GetPoints ();

The most efficient way to sequentially visit the points is to use the iterators provided by
PointsContainer. TheIterator type belongs to the traits of the PointsContainer classes. It
behaves pretty much like the STL iterators.3 The Points iterator is not a reference counted
class, so it is created directly from the traits without using SmartPointers.

typedef PointsContainer::Iterator PointsIterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The
iterator to the first point is obtained from the container with theBegin() method and assigned
to another iterator.

3If you dig deep enough into the code, you will discover that these iterators are actually ITK wrappers around STL
iterators.

80 Chapter 5. Data Representation

PointsIterator pointIterator = points->Begin();

The++ operator on the iterator can be used to advance from one pointto the next. The actual
value of the Point to which the iterator is pointing can be obtained with theValue() method.
The loop for walking through all the points can be controlledby comparing the current iterator
with the iterator returned by theEnd() method of the PointsContainer. The following lines
illustrate the typical loop for walking through the points.

PointsIterator end = points->End();
while(pointIterator != end)

{
PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point
}

Note that as in STL, the iterator returned by theEnd() method is not a valid iterator. This is
called a past-end iterator in order to indicate that it is thevalue resulting from advancing one
step after visiting the last element in the container.

The number of elements stored in a container can be queried with theSize() method. In the
case of the PointSet, the following two lines of code are equivalent, both of them returning the
number of points in the PointSet.

std::cout << pointSet->GetNumberOfPoints() << std::endl ;
std::cout << pointSet->GetPoints()->Size() << std::endl ;

5.2.3 Getting Access to Data in Points

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSet3.cxx .

The itk::PointSet class was designed to interact with the Image class. For thisreason
it was found convenient to allow the points in the set to hold values that could be computed
from images. The value associated with the point is referredasPixelType in order to make
it consistent with image terminology. Users can define the type as they please thanks to the
flexibility offered by the Generic Programming approach used in the toolkit. ThePixelType is
the first template parameter of the PointSet.

The following code defines a particular type for a pixel type and instantiates a PointSet class
with it.

typedef unsigned short PixelType;
typedef itk::PointSet< PixelType, 2 > PointSetType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

5.2. PointSet 81

Data can be inserted into the PointSet using theSetPointData() method. This method requires
the user to provide an identifier. The data in question will beassociated to the point holding
the same identifier. It is the user’s responsibility to verify the appropriate matching between
inserted data and inserted points. The following line illustrates the use of theSetPointData()
method.

unsigned int dataId = 0;
PixelType value = 79;
pointSet->SetPointData(dataId++, value);

Data associated with points can be read from the PointSet using theGetPointData() method.
This method requires the user to provide the identifier to thepoint and a valid pointer to a
location where the pixel data can be safely written. In case the identifier does not match any
existing identifier on the PointSet the method will returnfalse and the pixel value returned will
be invalid. It is the user’s responsibility to check the returned boolean value before attempting
to use it.

const bool found = pointSet->GetPointData(dataId, & value);
if(found)

{
std::cout << "Pixel value = " << value << std::endl;
}

The SetPointData() and GetPointData() methods are not the most efficient way to
get access to point data. It is far more efficient to use the Iterators provided by the
PointDataContainer .

Data associated with points is internally stored inPointDataContainer s. In the same way as
with points, the actual container type used depend on whether the style of the PointSet is static
or dynamic. Static point sets will use anitk::VectorContainer while dynamic point sets
will use an itk::MapContainer . The type of the data container is defined as one of the traits
in the PointSet. The following declaration illustrates howthe type can be taken from the traits
and used to conveniently declare a similar type on the globalnamespace.

typedef PointSetType::PointDataContainer PointDataCon tainer;

Using the type it is now possible to create an instance of the data container. This is a standard
reference counted object, henceforth it uses theNew() method for creation and assigns the
newly created object to a SmartPointer.

PointDataContainer::Pointer pointData = PointDataConta iner::New();

Pixel data can be inserted in the container with the methodInsertElement() . This method
requires an identified to be provided for each point data.

http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html

82 Chapter 5. Data Representation

unsigned int pointId = 0;

PixelType value0 = 34;
PixelType value1 = 67;

pointData->InsertElement(pointId++ , value0);
pointData->InsertElement(pointId++ , value1);

Finally the PointDataContainer can be assigned to the PointSet. This will substitute any
previously existing PointDataContainer on the PointSet. The assignment is done using the
SetPointData() method.

pointSet->SetPointData(pointData);

The PointDataContainer can be obtained from the PointSet using theGetPointData() method.
This method returns a pointer (assigned to a SmartPointer) to the actual container owned by the
PointSet.

PointDataContainer::Pointer pointData2 = pointSet->Get PointData();

The most efficient way to sequentially visit the data associated with points is to use the iterators
provided byPointDataContainer . TheIterator type belongs to the traits of the PointsCon-
tainer classes. The iterator is not a reference counted class, so it is just created directly from the
traits without using SmartPointers.

typedef PointDataContainer::Iterator PointDataIterato r;

The subsequent use of the iterator follows what you may expect from a STL iterator. The
iterator to the first point is obtained from the container with theBegin() method and assigned
to another iterator.

PointDataIterator pointDataIterator = pointData2->Begi n();

The ++ operator on the iterator can be used to advance from one data point to the next. The
actual value of the PixelType to which the iterator is pointing can be obtained with theValue()
method. The loop for walking through all the point data can becontrolled by comparing the
current iterator with the iterator returned by theEnd() method of the PointsContainer. The
following lines illustrate the typical loop for walking through the point data.

PointDataIterator end = pointData2->End();
while(pointDataIterator != end)

{
PixelType p = pointDataIterator.Value(); // access the pix el data
std::cout << p << std::endl; // print the pixel data
++pointDataIterator; // advance to next pixel/point
}

5.2. PointSet 83

Note that as in STL, the iterator returned by theEnd() method is not a valid iterator. This is
called apast-enditerator in order to indicate that it is the value resulting from advancing one
step after visiting the last element in the container.

5.2.4 Vectors as Pixel Type

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/PointSetWithVector s.cxx .

This example illustrates how a point set can be parameterized to manage a particular pixel type.
It is quite common to associate vector values with points forproducing geometric representa-
tions or storing multi-band informations. The following code shows how vector values can be
used as pixel type on the PointSet class. Theitk::Vector class is used here as the pixel type.
This class is appropriate for representing the relative position between two points. It could then
be used to manage displacements in disparity map estimations, for example.

In order to use the vector class it is necessary to include itsheader file along with the header of
the point set.

#include "itkVector.h"
#include "itkPointSet.h"

Figure 5.2:Vectors as PixelType.

The Vector class is templated over the type used
to represent the spatial coordinates and over the
space dimension. Since the PixelType is indepen-
dent of the PointType, we are free to select any
dimension for the vectors to be used as pixel type.
However, for the sake of producing an interesting
example, we will use vectors that represent dis-
placements of the points in the PointSet. Those
vectors are then selected to be of the same dimen-
sion as the PointSet.

const unsigned int Dimension = 2;
typedef itk::Vector< float, Dimension > PixelType;

Then we use the PixelType (which are actually Vectors) to instantiate the PointSet type and
subsequently create a PointSet object.

typedef itk::PointSet< PixelType, Dimension > PointSetTy pe;
PointSetType::Pointer pointSet = PointSetType::New();

The following code is generating a circle and assigning vector values to the points. The com-
ponents of the vectors in this example are computed to represent the tangents to the circle as
shown in Figure 5.2.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

84 Chapter 5. Data Representation

PointSetType::PixelType tangent;
PointSetType::PointType point;

unsigned int pointId = 0;
const double radius = 300.0;

for(unsigned int i=0; i<360; i++)
{
const double angle = i * atan(1.0) / 45.0;
point[0] = radius * sin(angle);
point[1] = radius * cos(angle);
tangent[0] = cos(angle);
tangent[1] = -sin(angle);
pointSet->SetPoint(pointId, point);
pointSet->SetPointData(pointId, tangent);
pointId++;
}

We can now visit all the points and use the vector on the pixel values to apply a displacement
on the points. This is along the spirit of what a deformable model could do at each one of its
iterations.

typedef PointSetType::PointDataContainer::ConstItera tor PointDataIterator;
PointDataIterator pixelIterator = pointSet->GetPointDa ta()->Begin();
PointDataIterator pixelEnd = pointSet->GetPointData()- >End();

typedef PointSetType::PointsContainer::Iterator Point Iterator;
PointIterator pointIterator = pointSet->GetPoints()->B egin();
PointIterator pointEnd = pointSet->GetPoints()->End();

while(pixelIterator != pixelEnd && pointIterator != point End)
{
pointIterator.Value() = pointIterator.Value() + pixelIt erator.Value();
++pixelIterator;
++pointIterator;
}

Note that theConstIterator was used here instead of the normalIterator since the pixel
values are only intended to be read and not modified. ITK supports const-correctness at the API
level.

The itk::Vector class has overloaded the+ operator with theitk::Point . In other words,
vectors can be added to points in order to produce new points.This property is exploited in the
center of the loop in order to update the points positions with a single statement.

We can finally visit all the points and print out the new values

pointIterator = pointSet->GetPoints()->Begin();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html

5.3. Mesh 85

pointEnd = pointSet->GetPoints()->End();
while(pointIterator != pointEnd)

{
std::cout << pointIterator.Value() << std::endl;
++pointIterator;
}

Note that itk::Vector is not the appropriate class for representing normals to surfaces and
gradients of functions. This is due to the way in which vectors behave under affine trans-
forms. ITK has a specific class for representing normals and function gradients. This is the
itk::CovariantVector class.

5.3 Mesh

5.3.1 Creating a Mesh

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh1.cxx .

The itk::Mesh class is intended to represent shapes in space. It derives from the
itk::PointSet class and hence inherits all the functionality related to points and access to
the pixel-data associated with the points. The mesh class isalso n-dimensional which allows a
great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to which cells (also known as elements) of
many different dimensions and shapes have been added. Cellsin the mesh are defined in terms
of the existing points using their point-identifiers.

In the same way as for the PointSet, two basic styles of Meshesare available in ITK. They are
referred to asstaticanddynamic. The first one is used when the number of points in the set can
be known in advance and it is not expected to change as a consequence of the manipulations
performed on the set. The dynamic style, on the other hand, isintended to support insertion
and removal of points in an efficient manner. The reason for making the distinction between
the two styles is to facilitate fine tuning its behavior with the aim of optimizing performance
and memory management. In the case of the Mesh, the dynamic/static aspect is extended to the
management of cells.

In order to use the Mesh class, its header file should be included.

#include "itkMesh.h"

Then, the type associated with the points must be selected and used for instantiating the Mesh
type.

typedef float PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

86 Chapter 5. Data Representation

The Mesh type extensively uses the capabilities provided byGeneric Programming. In par-
ticular the Mesh class is parameterized over the PixelType and the dimension of the space.
PixelType is the type of the value associated with every point just as is done with the PointSet.
The following line illustrates a typical instantiation of the Mesh.

const unsigned int Dimension = 2;
typedef itk::Mesh< PixelType, Dimension > MeshType;

Meshes are expected to take large amounts of memory. For thisreason they are reference
counted objects and are managed using SmartPointers. The following line illustrates how a
mesh is created by invoking theNew() method of the MeshType and the resulting object is
assigned to aitk::SmartPointer .

MeshType::Pointer mesh = MeshType::New();

The management of points in the Mesh is exactly the same as in the PointSet. The type point
associated with the mesh can be obtained through thePointType trait. The following code
shows the creation of points compatible with the mesh type defined above and the assignment
of values to its coordinates.

MeshType::PointType p0;
MeshType::PointType p1;
MeshType::PointType p2;
MeshType::PointType p3;

p0[0]= -1.0; p0[1]= -1.0; // first point (-1, -1)
p1[0]= 1.0; p1[1]= -1.0; // second point (1, -1)
p2[0]= 1.0; p2[1]= 1.0; // third point (1, 1)
p3[0]= -1.0; p3[1]= 1.0; // fourth point (-1, 1)

The points can now be inserted in the Mesh using theSetPoint() method. Note that points
are copied into the mesh structure. This means that the localinstances of the points can now be
modified without affecting the Mesh content.

mesh->SetPoint(0, p0);
mesh->SetPoint(1, p1);
mesh->SetPoint(2, p2);
mesh->SetPoint(3, p3);

The current number of points in the Mesh can be queried with the GetNumberOfPoints()
method.

std::cout << "Points = " << mesh->GetNumberOfPoints() << st d::endl;

http://www.boost.org/more/generic_programming.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

5.3. Mesh 87

The points can now be efficiently accessed using the Iteratorto the PointsContainer as it was
done in the previous section for the PointSet. First, the point iterator type is extracted through
the mesh traits.

typedef MeshType::PointsContainer::Iterator PointsIte rator;

A point iterator is initialized to the first point with theBegin() method of the PointsContainer.

PointsIterator pointIterator = mesh->GetPoints()->Begi n();

The++ operator on the iterator is now used to advance from one pointto the next. The actual
value of the Point to which the iterator is pointing can be obtained with theValue() method.
The loop for walking through all the points is controlled by comparing the current iterator with
the iterator returned by theEnd() method of the PointsContainer. The following lines illustrate
the typical loop for walking through the points.

PointsIterator end = mesh->GetPoints()->End();
while(pointIterator != end)

{
MeshType::PointType p = pointIterator.Value(); // access the point
std::cout << p << std::endl; // print the point
++pointIterator; // advance to next point
}

5.3.2 Inserting Cells

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh2.cxx .

A itk::Mesh can contain a variety of cell types. Typical cells are theitk::LineCell ,
itk::TriangleCell , itk::QuadrilateralCell and itk::TetrahedronCell . The latter
will not be used very often in the remote sensing context. Additional flexibility is provided for
managing cells at the price of a bit more of complexity than inthe case of point management.

The following code creates a polygonal line in order to illustrate the simplest case of cell man-
agement in a Mesh. The only cell type used here is the LineCell. The header file of this class
has to be included.

#include "itkLineCell.h"

In order to be consistent with the Mesh, cell types have to be configured with a number of
custom types taken from the mesh traits. The set of traits relevant to cells are packaged by the
Mesh class into theCellType trait. This trait needs to be passed to the actual cell types at the
moment of their instantiation. The following line shows howto extract the Cell traits from the
Mesh type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LineCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TriangleCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuadrilateralCell.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TetrahedronCell.html

88 Chapter 5. Data Representation

typedef MeshType::CellType CellType;

The LineCell type can now be instantiated using the traits taken from the Mesh.

typedef itk::LineCell< CellType > LineType;

The main difference in the way cells and points are managed bythe Mesh is that points are stored
by copy on the PointsContainer while cells are stored in the CellsContainer using pointers. The
reason for using pointers is that cells use C++ polymorphismon the mesh. This means that the
mesh is only aware of having pointers to a generic cell which is the base class of all the specific
cell types. This architecture makes it possible to combine different cell types in the same mesh.
Points, on the other hand, are of a single type and have a smallmemory footprint, which makes
it efficient to copy them directly into the container.

Managing cells by pointers add another level of complexity to the Mesh since it is now necessary
to establish a protocol to make clear who is responsible for allocating and releasing the cells’
memory. This protocol is implemented in the form of a specifictype of pointer called the
CellAutoPointer . This pointer, based on theitk::AutoPointer , differs in many respects
from the SmartPointer. The CellAutoPointer has an internalpointer to the actual object and a
boolean flag that indicates if the CellAutoPointer is responsible for releasing the cell memory
whenever the time comes for its own destruction. It is said that aCellAutoPointer ownsthe
cell when it is responsible for its destruction. Many CellAutoPointer can point to the same cell
but at any given time, onlyoneCellAutoPointer can own the cell.

The CellAutoPointer trait is defined in the MeshType and can be extracted as illustrated in
the following line.

typedef CellType::CellAutoPointer CellAutoPointer;

Note that the CellAutoPointer is pointing to a generic cell type. It is not aware of the actual type
of the cell, which can be for example LineCell, TriangleCellor TetrahedronCell. This fact will
influence the way in which we access cells later on.

At this point we can actually create a mesh and insert some points on it.

MeshType::Pointer mesh = MeshType::New();

MeshType::PointType p0;
MeshType::PointType p1;
MeshType::PointType p2;

p0[0] = -1.0; p0[1] = 0.0;
p1[0] = 1.0; p1[1] = 0.0;
p2[0] = 1.0; p2[1] = 1.0;

mesh->SetPoint(0, p0);

http://www.melaneum.com/OTB/doxygen/classitk_1_1AutoPointer.html

5.3. Mesh 89

mesh->SetPoint(1, p1);
mesh->SetPoint(2, p2);

The following code creates two CellAutoPointers and initializes them with newly created cell
objects. The actual cell type created in this case is LineCell. Note that cells are created with
the normalnew C++ operator. The CellAutoPointer takes ownership of the received pointer by
using the methodTakeOwnership() . Even though this may seem verbose, it is necessary in
order to make it explicit from the code that the responsibility of memory release is assumed by
the AutoPointer.

CellAutoPointer line0;
CellAutoPointer line1;

line0.TakeOwnership(new LineType);
line1.TakeOwnership(new LineType);

The LineCells should now be associated with points in the mesh. This is done using the iden-
tifiers assigned to points when they were inserted in the mesh. Every cell type has a specific
number of points that must be associated with it.4 For example a LineCell requires two points, a
TriangleCell requires three and a TetrahedronCell requires four. Cells use an internal numbering
system for points. It is simply an index in the range{0,NumberO f Points−1}. The association
of points and cells is done by theSetPointId() method which requires the user to provide the
internal index of the point in the cell and the correspondingPointIdentifier in the Mesh. The
internal cell index is the first parameter ofSetPointId() while the mesh point-identifier is the
second.

line0->SetPointId(0, 0); // line between points 0 and 1
line0->SetPointId(1, 1);

line1->SetPointId(0, 1); // line between points 1 and 2
line1->SetPointId(1, 2);

Cells are inserted in the mesh using theSetCell() method. It requires an identifier and the
AutoPointer to the cell. The Mesh will take ownership of the cell to which the AutoPointer is
pointing. This is done internally by theSetCell() method. In this way, the destruction of the
CellAutoPointer will not induce the destruction of the associated cell.

mesh->SetCell(0, line0);
mesh->SetCell(1, line1);

After serving as an argument of theSetCell() method, a CellAutoPointer no longer holds
ownership of the cell. It is important not to use this same CellAutoPointer again as argument to
SetCell() without first securing ownership of another cell.

4Some cell types like polygons have a variable number of points associated with them.

90 Chapter 5. Data Representation

The number of Cells currently inserted in the mesh can be queried with the
GetNumberOfCells() method.

std::cout << "Cells = " << mesh->GetNumberOfCells() << std: :endl;

In a way analogous to points, cells can be accessed using Iterators to the CellsContainer in the
mesh. The trait for the cell iterator can be extracted from the mesh and used to define a local
type.

typedef MeshType::CellsContainer::Iterator CellIterat or;

Then the iterators to the first and past-end cell in the mesh can be obtained respectively with the
Begin() andEnd() methods of the CellsContainer. The CellsContainer of the mesh is returned
by theGetCells() method.

CellIterator cellIterator = mesh->GetCells()->Begin();
CellIterator end = mesh->GetCells()->End();

Finally a standard loop is used to iterate over all the cells.Note the use of theValue() method
used to get the actual pointer to the cell from the CellIterator. Note also that the values returned
are pointers to the generic CellType. These pointers have tobe down-casted in order to be used
as actual LineCell types. Safe down-casting is performed with the dynamic cast operator
which will throw an exception if the conversion cannot be safely performed.

while(cellIterator != end)
{
MeshType::CellType * cellptr = cellIterator.Value();
LineType * line = dynamic_cast<LineType *>(cellptr);
std::cout << line->GetNumberOfPoints() << std::endl;
++cellIterator;
}

5.3.3 Managing Data in Cells

The source code for this example can be found in the file
Examples/DataRepresentation/Mesh/Mesh3.cxx .

In the same way that custom data can be associated with pointsin the mesh, it is also possible to
associate custom data with cells. The type of the data associated with the cells can be different
from the data type associated with points. By default, however, these two types are the same.
The following example illustrates how to access data associated with cells. The approach is
analogous to the one used to access point data.

Consider the example of a mesh containing lines on which values are associated with each line.
The mesh and cell header files should be included first.

5.3. Mesh 91

#include "itkMesh.h"
#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it.

typedef float PixelType;
typedef itk::Mesh< PixelType, 2 > MeshType;

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

typedef MeshType::CellType CellType;
typedef itk::LineCell< CellType > LineType;

Let’s now create a Mesh and insert some points into it. Note that the dimension of the points
matches the dimension of the Mesh. Here we insert a sequence of points that look like a plot of
the log() function.

MeshType::Pointer mesh = MeshType::New();

typedef MeshType::PointType PointType;
PointType point;

const unsigned int numberOfPoints = 10;
for(unsigned int id=0; id<numberOfPoints; id++)

{
point[0] = static_cast<PointType::ValueType>(id); // x
point[1] = log(static_cast<double>(id)); // y
mesh->SetPoint(id, point);
}

A set of line cells is created and associated with the existing points by using point identifiers.
In this simple case, the point identifiers can be deduced fromcell identifiers since the line cells
are ordered in the same way.

CellType::CellAutoPointer line;
const unsigned int numberOfCells = numberOfPoints-1;
for(unsigned int cellId=0; cellId<numberOfCells; cellId ++)

{
line.TakeOwnership(new LineType);
line->SetPointId(0, cellId); // first point
line->SetPointId(1, cellId+1); // second point
mesh->SetCell(cellId, line); // insert the cell
}

http://www.melaneum.com/OTB/doxygen/classitk_1_1LineCell.html

92 Chapter 5. Data Representation

Data associated with cells is inserted in theitk::Mesh by using theSetCellData() method.
It requires the user to provide an identifier and the value to be inserted. The identifier should
match one of the inserted cells. In this simple example, the square of the cell identifier is used
as cell data. Note the use ofstatic cast to PixelType in the assignment.

for(unsigned int cellId=0; cellId<numberOfCells; cellId ++)
{
mesh->SetCellData(cellId, static_cast<PixelType>(cel lId * cellId));
}

Cell data can be read from the Mesh with theGetCellData() method. It requires the user to
provide the identifier of the cell for which the data is to be retrieved. The user should provide
also a valid pointer to a location where the data can be copied.

for(unsigned int cellId=0; cellId<numberOfCells; cellId ++)
{
PixelType value;
mesh->GetCellData(cellId, &value);
std::cout << "Cell " << cellId << " = " << value << std::endl;
}

Neither SetCellData() or GetCellData() are efficient ways to access cell data. More
efficient access to cell data can be achieved by using the Iterators built into the
CellDataContainer .

typedef MeshType::CellDataContainer::ConstIterator Ce llDataIterator;

Note that theConstIterator is used here because the data is only going to be read. This
approach is exactly the same already illustrated for getting access to point data. The iterator to
the first cell data item can be obtained with theBegin() method of the CellDataContainer. The
past-end iterator is returned by theEnd() method. The cell data container itself can be obtained
from the mesh with the methodGetCellData() .

CellDataIterator cellDataIterator = mesh->GetCellData()->Begin();
CellDataIterator end = mesh->GetCellData()->End();

Finally a standard loop is used to iterate over all the cell data entries. Note the use of the
Value() method used to get the actual value of the data entry.PixelType elements are copied
into the local variablecellValue .

while(cellDataIterator != end)
{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html

5.4. Path 93

PixelType cellValue = cellDataIterator.Value();
std::cout << cellValue << std::endl;
++cellDataIterator;
}

More details about the use ofitk::Mesh can be found in the ITK Software Guide.

5.4 Path

5.4.1 Creating a PolyLineParametricPath

The source code for this example can be found in the file
Examples/DataRepresentation/Path/PolyLineParametric Path1.cxx .

This example illustrates how to use theitk::PolyLineParametricPath . This class will
typically be used for representing in a concise way the output of an image segmentation al-
gorithm in 2D. See section 13.3 for an example in the context of alignment detection. The
PolyLineParametricPath however could also be used for representing any open or close
curve in N-Dimensions as a linear piece-wise approximation.

First, the header file of thePolyLineParametricPath class must be included.

#include "itkPolyLineParametricPath.h"

The path is instantiated over the dimension of the image.

const unsigned int Dimension = 2;

typedef otb::Image< unsigned char, Dimension > ImageType;

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;

ImageType::ConstPointer image = reader->GetOutput();

PathType::Pointer path = PathType::New();

path->Initialize();

typedef PathType::ContinuousIndexType ContinuousIndex Type;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PolyLineParametricPath.html

94 Chapter 5. Data Representation

ContinuousIndexType cindex;

typedef ImageType::PointType ImagePointType;

ImagePointType origin = image->GetOrigin();

ImageType::SpacingType spacing = image->GetSpacing();
ImageType::SizeType size = image->GetBufferedRegion(). GetSize();

ImagePointType point;

point[0] = origin[0] + spacing[0] * size[0];
point[1] = origin[1] + spacing[1] * size[1];

image->TransformPhysicalPointToContinuousIndex(orig in, cindex);

path->AddVertex(cindex);

image->TransformPhysicalPointToContinuousIndex(poin t, cindex);

path->AddVertex(cindex);

CHAPTER

SIX

Reading and Writing Images

This chapter describes the toolkit architecture supporting reading and writing of images to files.
OTB does not enforce any particular file format, instead, it provides a structure inherited from
ITK, supporting a variety of formats that can be easily extended by the user as new formats
become available.

We begin the chapter with some simple examples of file I/O.

6.1 Basic Example

The source code for this example can be found in the file
Examples/IO/ImageReadWrite.cxx .

The classes responsible for reading and writing images are located at the beginning and end of
the data processing pipeline. These classes are known as data sources (readers) and data sinks
(writers). Generally speaking they are referred to as filters, although readers have no pipeline
input and writers have no pipeline output.

The reading of images is managed by the classotb::ImageFileReader while writing is per-
formed by the classotb::ImageFileWriter . These two classes are independent of any par-
ticular file format. The actual low level task of reading and writing specific file formats is done
behind the scenes by a family of classes of typeitk::ImageIO . Actually, the OTB image
Readers and Writers are very similar to those of ITK, but provide new functionnalities which
are specific to remote sensing images.

The first step for performing reading and writing is to include the following headers.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

Then, as usual, a decision must be made about the type of pixelused to represent the image
processed by the pipeline. Note that when reading and writing images, the pixel type of the

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

96 Chapter 6. Reading and Writing Images

imageis not necessarilythe same as the pixel type stored in the file. Your choice of thepixel
type (and hence template parameter) should be driven mainlyby two considerations:

• It should be possible to cast the file pixel type in the file to the pixel type you select. This
casting will be performed using the standard C-language rules, so you will have to make
sure that the conversion does not result in information being lost.

• The pixel type in memory should be appropriate to the type of processing you intended
to apply on the images.

A typical selection for remote sensing images is illustrated in the following lines.

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

Note that the dimension of the image in memory should match the one of the image in file.
There are a couple of special cases in which this condition may be relaxed, but in general it is
better to ensure that both dimensions match. This is not a real issue in remote sensing, unless
you want to consider multi-band images as volumes (3D) of data.

We can now instantiate the types of the reader and writer. These two classes are parameterized
over the image type.

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::ImageFileWriter< ImageType > WriterType;

Then, we create one object of each type using the New() methodand assigning the result to a
itk::SmartPointer .

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters to create a pipeline. For example, we
can create a short pipeline by passing the output of the reader directly to the input of the writer.

writer->SetInput(reader->GetOutput());

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

6.1. Basic Example 97

ImageFileWriterImageFileReader

PNGImageIO MetaImageIO

CanReadFile():bool
CanWriteFile():bool

ImageIO

VTKImageIO

RawImageIO

VOLImageIO

1

1 1

1

GDALImageIO

ONERAImageIO

Figure 6.1:Collaboration diagram of the ImageIO classes.

At first view, this may seem as a quite useless program, but it is actually implementing a pow-
erful file format conversion tool! The execution of the pipeline is triggered by the invocation of
theUpdate() methods in one of the final objects. In this case, the final datapipeline object is
the writer. It is a wise practice of defensive programming toinsert anyUpdate() call inside a
try/catch block in case exceptions are thrown during the execution of the pipeline.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

Note that exceptions should only be caught by pieces of code that know what to do with them.
In a typical application thiscatch block should probably reside on the GUI code. The action
on thecatch block could inform the user about the failure of the IO operation.

The IO architecture of the toolkit makes it possible to avoidexplicit specification of the file for-
mat used to read or write images.1 The object factory mechanism enables the ImageFileReader
and ImageFileWriter to determine (at run-time) with which file format it is working with. Typ-
ically, file formats are chosen based on the filename extension, but the architecture supports
arbitrarily complex processes to determine whether a file can be read or written. Alternatively,
the user can specify the data file format by explicit instantiation and assignment the appropriate
itk::ImageIO subclass.

To better understand the IO architecture, please refer to Figures 6.1, 6.2, and 6.3.

The following section describes the internals of the IO architecture provided in the toolbox.

1In this example no file format is specified; this program can be used as a general file conversion utility.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html

98 Chapter 6. Reading and Writing Images

Register

CanWrite ?

CanRead ?

MetaImageIOFactory

PNGImageIOFactory

ImageIOFactory

Pluggable Factories Pluggable Factories

ImageFileReader

ImageFileWriter

CreateImageIO
for Reading

CreateImageIO
for Writing

filename

filename

filename

file
name

Figure 6.2:Use cases of ImageIO factories.

PNGImageIOFactory VTKImageIOFactory

BMPImageIOFactory

MetaImageIOFactory

TIFFImageIOFactory

RegisterFactory(factory:ObjectFactoryBase)

ObjectFactoryBase

CreateImageIO(string)
RegisterBuiltInFactories()

ImageIOFactory

RawImageIOFactory

JPEGImageIOFactory

*1

GDALImageIOFactory

other ITK Factories

ONERAImageIOFactory

Figure 6.3:Class diagram of the ImageIO factories.

6.2. Pluggable Factories 99

6.2 Pluggable Factories

The principle behind the input/output mechanism used in ITKand therefore OTB is known
as pluggable-factories[33]. This concept is illustrated in the UML diagram in Figure 6.1.
From the user’s point of view the objects responsible for reading and writing files are the
otb::ImageFileReader and otb::ImageFileWriter classes. These two classes, however,
are not aware of the details involved in reading or writing particular file formats like PNG or
GeoTIFF. What they do is to dispatch the user’s requests to a set of specific classes that are
aware of the details of image file formats. These classes are the itk::ImageIO classes. The
ITK delegation mechanism enables users to extend the numberof supported file formats by just
adding new classes to the ImageIO hierarchy.

Each instance of ImageFileReader and ImageFileWriter has a pointer to an ImageIO object.
If this pointer is empty, it will be impossible to read or write an image and the image file
reader/writer must determine which ImageIO class to use to perform IO operations. This is
done basically by passing the filename to a centralized class, the itk::ImageIOFactory and
asking it to identify any subclass of ImageIO capable of reading or writing the user-specified
file. This is illustrated by the use cases on the right side of Figure 6.2. The ImageIOFactory
acts here as a dispatcher that help to locate the actual IO factory classes corresponding to each
file format.

Each class derived from ImageIO must provide an associated factory class capable of producing
an instance of the ImageIO class. For example, for PNG files, there is a itk::PNGImageIO
object that knows how to read this image files and there is aitk::PNGImageIOFactory class
capable of constructing a PNGImageIO object and returning apointer to it. Each time a new
file format is added (i.e., a new ImageIO subclass is created), a factory must be implemented as
a derived class of the ObjectFactoryBase class as illustrated in Figure 6.3.

For example, in order to read PNG files, a PNGImageIOFactory is created and registered with
the central ImageIOFactory singleton2 class as illustrated in the left side of Figure 6.2. When the
ImageFileReader asks the ImageIOFactory for an ImageIO capable of reading the file identified
with filenamethe ImageIOFactory will iterate over the list of registeredfactories and will ask
each one of them is they know how to read the file. The factory that responds affirmatively will
be used to create the specific ImageIO instance that will be returned to the ImageFileReader
and used to perform the read operations.

With respect to the ITK formats, OTB adds most of the remote sensing image formats. In
order to do so, the Geospatial Data Abstraction Library, GDAL http://www.gdal.org/ , is
encapsultated in a ImageIO factory. GDAL is a translator library for raster geospatial data
formats that is released under an X/MIT style Open Source license. As a library, it presents a
single abstract data model to the calling application for all supported formats, which include
CEOS, GeoTIFF, ENVI, and much more. Seehttp://www.gdal.org/formats list.html
for the full format list.

Since GDAL is itself a multi-format library, the GDAL IO factory is able to choose the appro-

2Singletonmeans that there is only one instance of this class in a particular application

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIOFactory.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PNGImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PNGImageIOFactory.html
http://www.gdal.org/
http://www.gdal.org/formats_list.html

100 Chapter 6. Reading and Writing Images

priate ressource for reading and writing images.

In most cases the mechanism is transparent to the user who only interacts with the Image-
FileReader and ImageFileWriter. It is possible, however, toexplicitly select the type of ImageIO
object to use. Please see the ITK Software for more details about this.

6.3 IO Streaming

6.3.1 Implicit Streaming

The source code for this example can be found in the file
Examples/IO/StreamingImageReadWrite.cxx .

As we have seen, the reading of images is managed by the classotb::ImageFileReader
while writing is performed by the classotb::ImageFileWriter . ITK’s pipeline implements
streaming. That means that a filter for which theThreadedGenerateData method is imple-
mented, will only produce the data for the region requested by the following filter in the pipeline.
Therefore, in order to use the streaming functionnality oneneeds to use a filter at the end of
the pipeline which requests for adjacent regions of the image to be processed. In ITK, the
itk::StreamingImageFilter class is used for this purpose. However, ITK does not imple-
ment streaming from/to files. This means that even if the pipeline has a small memory footprint,
the images have to be stored in memory at least after the read operation and before the write
operation.

OTB implements read/write streaming. For the image file reading, this is transparent for the
programmer, and if a streaming loop is used at the end of the pipeline, the read operation will
be streamed. For the file writing, theotb::StreamingImageFileWriter has to be used.

The first step for performing streamed reading and writing isto include the following headers.

#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"

Then, as usual, a decision must be made about the type of pixelused to represent the image
processed by the pipeline.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

We can now instantiate the types of the reader and writer. These two classes are parameter-
ized over the image type. We will rescale the intensities of the as an example of intermediate
processing step.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

6.3. IO Streaming 101

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef itk::RescaleIntensityImageFilter< ImageType, I mageType> RescalerType;
typedef otb::StreamingImageFileWriter< ImageType > Writ erType;

Then, we create one object of each type using the New() methodand assigning the result to a
itk::SmartPointer .

ReaderType::Pointer reader = ReaderType::New();
RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method. We also
choose the range of intensities for the rescaler.

reader->SetFileName(inputFilename);
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters to create a pipeline.

rescaler->SetInput(reader->GetOutput());
writer->SetInput(rescaler->GetOutput());

We can now trigger the pipeline execution by calling theUpdate method on the writer.

writer->Update();

The writer will ask its preceding filter to provide differentportions of the image. Each filter in
the pipeline will do the same until the request arrives to thereader. In this way, the pipeline will
be executed for each requested region and the whole input image will be read, processed and
written without being fully loaded in memory.

6.3.2 Explicit Streaming

The source code for this example can be found in the file
Examples/IO/ExplicitStreamingExample.cxx .

Usually, the streaming process is hidden within the pipeline. This allows the user to get rid
of the annoying task of splitting the images into tiles, and so on. However, for some kinds of
processing, we do not really need a pipeline: no writer is needed, only read access to pixel values
is wanted. In these cases, one has to explicitly set up the streaming procedure. Fortunately, OTB
offers a high level of abstraction for this task. We will needto include the following header files:

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

102 Chapter 6. Reading and Writing Images

#include "itkImageRegionSplitter.h"
#include "otbStreamingTraits.h"

The otb::StreamingTraits class manages the streaming approaches which are possible with
the image type over which it is templated. The classitk::ImageRegionSplitter is templated
over the number of dimensions of the image and will perform the actual image splitting. More
information on splitter can be found in section 21.3

typedef otb::StreamingTraits<ImageType> StreamingTrai tsType;
typedef itk::ImageRegionSplitter<2> SplitterType;

Once a region of the image is available, we will use classicalregion iterators to get the pixels.

typedef ImageType::RegionType RegionType;

typedef itk::ImageRegionConstIterator<ImageType> Iter atorType;

We instantiate the image file reader, but in order to avoid reading the whole im-
age, we call theGenerateOutputInformation() method instead of theUpdate() one.
GenerateOutputInformation() will make available the information about sizes, band, reso-
lutions, etc. After that, we can access the largest possibleregion of the input image.

ImageReaderType::Pointer reader = ImageReaderType::New ();

reader->SetFileName(infname);

reader->GenerateOutputInformation();

RegionType largestRegion = reader->GetOutput()->GetLar gestPossibleRegion();

We set up now the local streaming capabilities by asking the streaming traits to compute the
number of regions to split the image into given the splitter,the user defined number of lines,
and the input image information.

SplitterType::Pointer splitter = SplitterType::New();
unsigned int numberOfStreamDivisions =

StreamingTraitsType::CalculateNumberOfStreamDivisio ns(
reader->GetOutput(),
largestRegion,
splitter,
otb::SET_BUFFER_NUMBER_OF_LINES,
0,0,nbLinesForStreaming);

We can now get the split regions and iterate through them.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingTraits.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionSplitter.html

6.4. Reading and Writing RGB Images 103

unsigned int piece = 0;
RegionType streamingRegion;

for (piece = 0;
piece < numberOfStreamDivisions;
piece++)

{

We get the region

streamingRegion =
splitter->GetSplit(piece,numberOfStreamDivisions,la rgestRegion);

std::cout<<"Processing region: "<<streamingRegion<<st d::endl;

We ask the reader to provide the region.

reader->GetOutput()->SetRequestedRegion(streamingRe gion);
reader->GetOutput()->PropagateRequestedRegion();
reader->GetOutput()->UpdateOutputData();

We declare an iterator and walk through the region.

IteratorType it(reader->GetOutput(),streamingRegion) ;
it.GoToBegin();

while(!it.IsAtEnd())
{

std::cout << it.Get() << std::endl;
++it;

}

6.4 Reading and Writing RGB Images

The source code for this example can be found in the file
Examples/IO/RGBImageReadWrite.cxx .

RGB images are commonly used for representing data acquiredfrom multispectral sensors.
This example illustrates how to read and write RGB color images to and from a file. This
requires the following headers as shown.

104 Chapter 6. Reading and Writing Images

#include "itkRGBPixel.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

The itk::RGBPixel class is templated over the type used to represent each one ofthe red,
green and blue components. A typical instantiation of the RGB image class might be as follows.

typedef itk::RGBPixel< unsigned char > PixelType;
typedef otb::Image< PixelType, 2 > ImageType;

The image type is used as a template parameter to instantiatethe reader and writer.

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The filenames of the input and output files must be provided to the reader and writer respectively.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally, execution of the pipeline can be triggered by invoking the Update() method in the
writer.

writer->Update();

You may have noticed that apart from the declaration of thePixelType there is nothing in
this code that is specific for RGB images. All the actions required to support color images are
implemented internally in theitk::ImageIO objects.

6.5 Reading, Casting and Writing Images

The source code for this example can be found in the file
Examples/IO/ImageReadCastWrite.cxx .

Given that ITK and OTB are based on the Generic Programming paradigm, most of the types
are defined at compilation time. It is sometimes important toanticipate conversion between
different types of images. The following example illustrates the common case of reading an
image of one pixel type and writing it on a different pixel type. This process not only involves

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageIO.html
http://www.itk.org

6.5. Reading, Casting and Writing Images 105

casting but also rescaling the image intensity since the dynamic range of the input and output
pixel types can be quite different. Theitk::RescaleIntensityImageFilter is used here to
linearly rescale the image values.

The first step in this example is to include the appropriate headers.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"

Then, as usual, a decision should be made about the pixel typethat should be used to represent
the images. Note that when reading an image, this pixel typeis not necessarilythe pixel type
of the image stored in the file. Instead, it is the type that will be used to store the image as soon
as it is read into memory.

typedef float InputPixelType;
typedef unsigned char OutputPixelType;
const unsigned int Dimension = 2;

typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

We can now instantiate the types of the reader and writer. These two classes are parameterized
over the image type.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

Below we instantiate the RescaleIntensityImageFilter class that will linearly scale the image
intensities.

typedef itk::RescaleIntensityImageFilter<
InputImageType,
OutputImageType > FilterType;

A filter object is constructed and the minimum and maximum values of the output are selected
using the SetOutputMinimum() and SetOutputMaximum() methods.

FilterType::Pointer filter = FilterType::New();
filter->SetOutputMinimum(0);
filter->SetOutputMaximum(255);

Then, we create the reader and writer and connect the pipeline.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

106 Chapter 6. Reading and Writing Images

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

The name of the files to be read and written are passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally we trigger the execution of the pipeline with the Update() method on the writer. The
output image will then be the scaled and cast version of the input image.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

6.6 Extracting Regions

The source code for this example can be found in the file
Examples/IO/ImageReadRegionOfInterestWrite.cxx .

This example should arguably be placed in the filtering chapter. However its usefulness for
typical IO operations makes it interesting to mention here.The purpose of this example is to
read and image, extract a subregion and write this subregionto a file. This is a common task
when we want to apply a computationally intensive method to the region of interest of an image.

As usual with OTB IO, we begin by including the appropriate header files.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

The otb::ExtractROI is the filter used to extract a region from an image. Its headeris
included below.

#include "otbExtractROI.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractROI.html

6.6. Extracting Regions 107

Image types are defined below.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

The types for theotb::ImageFileReader and otb::ImageFileWriter are instantiated us-
ing the image types.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The ExtractROI type is instantiated using the input and output pixel types. Using the pixel
types as template parameters instead of the image types allows to restrict the use of this class
to otb::Image s which are used with scalar pixel types. See section 6.8.1 for the extraction of
ROIs on otb::VectorImage s. A filter object is created with the New() method and assigned
to a itk::SmartPointer .

typedef otb::ExtractROI< InputImageType::PixelType,
OutputImageType::PixelType > FilterType;

FilterType::Pointer filter = FilterType::New();

The ExtractROI requires a region to be defined by the user. This is done by defining a rectangle
with the following methods (the filter assumes that a 2D imageis being processed, for N-D
region extraction, you can use theitk::RegionOfInterestImageFilter class).

filter->SetStartX(atoi(argv[3]));
filter->SetStartY(atoi(argv[4]));
filter->SetSizeX(atoi(argv[5]));
filter->SetSizeY(atoi(argv[6]));

Below, we create the reader and writer using the New() methodand assigning the result to a
SmartPointer.

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegionOfInterestImageFilter.html

108 Chapter 6. Reading and Writing Images

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the dataprocessing pipeline.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a
try/catch block in case exceptions are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

6.7 Reading and Writing Vector Images

Images whose pixel type is a Vector, a CovariantVector, an Array, or a Complex are quite
common in image processing. One of the uses of these tye of images is the processing of SLC
SAR images, which are complex.

6.7.1 Reading and Writing Complex Images

The source code for this example can be found in the file
Examples/IO/ComplexImageReadWrite.cxx .

This example illustrates how to read and write an image of pixel type std::complex . The
complex type is defined as an integral part of the C++ language.

We start by including the headers of the complex class, the image, and the reader and writer
classes.

#include <complex>
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

6.7. Reading and Writing Vector Images 109

The image dimension and pixel type must be declared. In this case we use thestd::complex<>
as the pixel type. Using the dimension and pixel type we proceed to instantiate the image type.

const unsigned int Dimension = 2;

typedef std::complex< float > PixelType;
typedef otb::Image< PixelType, Dimension > ImageType;

The image file reader and writer types are instantiated usingthe image type. We can then create
objects for both of them.

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::ImageFileWriter< ImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Filenames should be provided for both the reader and the writer. In this particular example we
take those filenames from the command line arguments.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

Here we simply connect the output of the reader as input to thewriter. This simple program
could be used for converting complex images from one fileformat to another.

writer->SetInput(reader->GetOutput());

The execution of this short pipeline is triggered by invoking the Update() method of the writer.
This invocation must be placed inside a try/catch block since its execution may result in excep-
tions being thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

For a more interesting use of this code, you may want to add a filter in between the reader and
the writer and perform any complex image to complex image operation.

110 Chapter 6. Reading and Writing Images

6.8 Reading and Writing Multiband Images

The source code for this example can be found in the file
Examples/IO/MultibandImageReadWrite.cxx .

The otb::Image class with a vector pixel type could be used for representingmultispectral
images, with one band per vector component, however, this isnot a practical way, since the di-
mensionality of the vector must be known at compile time. OTBoffers theotb::VectorImage
where the dimensionality of the vector stored for each pixelcan be chosen at runtime. This is
needed for the image file readers in order to dynamically set the number of bands of an image
read from a file.

The OTB Readers and Writers are able to deal withotb::VectorImage s transparently for the
user.

The first step for performing reading and writing is to include the following headers.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

Then, as usual, a decision must be made about the type of pixelused to represent the image
processed by the pipeline. The pixel type corresponds to thescalar type stored in the vector
components. Therefore, for a multiband Pléiades image we will do:

typedef unsigned short PixelType;
const unsigned int Dimension = 2;
typedef otb::VectorImage< PixelType, Dimension > ImageTy pe;

We can now instantiate the types of the reader and writer. These two classes are parameterized
over the image type.

typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::ImageFileWriter< ImageType > WriterType;

Then, we create one object of each type using the New() methodand assigning the result to a
itk::SmartPointer .

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

6.8. Reading and Writing Multiband Images 111

We can now connect these readers and writers to filters to create a pipeline. The only thig to take
care of is, when executing the program, choosing an output image file format which supports
multiband images.

writer->SetInput(reader->GetOutput());

try
{
writer->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}

6.8.1 Extracting ROIs

The source code for this example can be found in the file
Examples/IO/ExtractROI.cxx .

This example shows the use of the otb::MultiChannelExtractROI and
otb::MultiToMonoChannelExtractROI which allow the extraction of ROIs from multiband
images stored intootb::VectorImage s. The first one povides a Vector Image as output, while
the second one provides a classicalotb::Image with a scalar pixel type. The present example
shows how to extract a ROI from a 4-band SPOT 5 image and to produce a first multi-band
3-channel image and a second mono-channel one for the SWIR band.

We start by including the needed header files.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMultiChannelExtractROI.h"
#include "otbMultiToMonoChannelExtractROI.h"

The program arguments define the image file names as well as therectangular area to be ex-
tracted.

const char * inputFilename = argv[1];
const char * outputFilenameRGB = argv[2];
const char * outputFilenameMIR = argv[3];

unsigned int startX((unsigned int)::atoi(argv[4]));
unsigned int startY((unsigned int)::atoi(argv[5]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

112 Chapter 6. Reading and Writing Images

unsigned int sizeX((unsigned int)::atoi(argv[6]));
unsigned int sizeY((unsigned int)::atoi(argv[7]));

As usual, we define the input and output pixel types.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

First of all, we extract the multiband part by using theotb::MultiChannelExtractROI class,
which is templated over the input and output pixel types. This class in not templated over the
images types in order to force these images to be ofotb::VectorImage type.

typedef otb::MultiChannelExtractROI< InputPixelType,
OutputPixelType > ExtractROIFilterType;

We create the extractor filter by using theNewmethod of the class and we set its parameters.

ExtractROIFilterType::Pointer extractROIFilter = Extra ctROIFilterType::New();

extractROIFilter->SetStartX(startX);
extractROIFilter->SetStartY(startY);
extractROIFilter->SetSizeX(sizeX);
extractROIFilter->SetSizeY(sizeY);

We must tell the filter which are the channels to be used. When selecting contiguous bands,
we can use theSetFirstChannel and theSetLastChannel . Otherwise, we select individual
channels by using theSetChannel method.

extractROIFilter->SetFirstChannel(1);
extractROIFilter->SetLastChannel(3);

We will use the OTB readers and writers for file access.

typedef otb::ImageFileReader< ExtractROIFilterType::I nputImageType > ReaderType;
typedef otb::ImageFileWriter< ExtractROIFilterType::I nputImageType > WriterType;

ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();

Since the number of bands of the input image is dynamically set at runtime, theUpdate method
of the reader must be called before using the extractor filter.

reader->SetFileName(inputFilename);
reader->Update();
writer->SetFileName(outputFilenameRGB);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

6.9. Reading Image Series 113

We can then build the pipeline as usual.

extractROIFilter->SetInput(reader->GetOutput());

writer->SetInput(extractROIFilter->GetOutput());

And execute the pipeline by calling theUpdate method of the writer.

writer->Update();

The usage of the otb::MultiToMonoChannelExtractROI is similar to the one of the
otb::MultiChannelExtractROI described above.

The goal now is to extract an ROI from a multi-band image and generate a mono-channel image
as output.

We could use the otb::MultiChannelExtractROI and select a single channel, but us-
ing the otb::MultiToMonoChannelExtractROI we generate aotb::Image instead of an
otb::VectorImage . This is useful from a computing and memory usage point of view. This
class is also templated over the pixel types.

typedef otb::MultiToMonoChannelExtractROI< InputPixel Type,
OutputPixelType > ExtractROIMonoFilterType;

For this filter, only one output channel has to be selected.

extractROIMonoFilter->SetChannel(4);

Figure 6.5 illustrates the result of the application of bothextraction filters on the image presented
in figure 6.4.

6.9 Reading Image Series

The source code for this example can be found in the file
Examples/IO/ImageSeriesIOExample.cxx .

This example shows how to read a list of images and concatenate them into a vector image. We
will write a program which is able to perform this operation taking advantage of the streaming
functionnalities of the processing pipeline. We will assume that all the input images have the
same size and a single band.

The following header files will be needed:

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

114 Chapter 6. Reading and Writing Images

Figure 6.4:Quicklook of the original SPOT 5 image.

Figure 6.5:Result of the extraction. Left: 3-channel image. Right: mono-band image.

6.9. Reading Image Series 115

#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbObjectList.h"
#include "otbImageList.h"
#include "otbImageListToVectorImageFilter.h"
#include "otbStreamingImageFileWriter.h"

We will start by defining the types for the input images and theassociated readers.

typedef unsigned short int PixelType;
const unsigned int Dimension = 2;

typedef otb::Image< PixelType, Dimension > InputImageTyp e;

typedef otb::ImageFileReader< InputImageType > ImageRea derType;

We will use a list of image file readers in order to open all the input images at once. For this,
we use theotb::ObjectList object and we template it over the type of the readers.

typedef otb::ObjectList< ImageReaderType > ReaderListTy pe;

ReaderListType::Pointer readerList = ReaderListType::N ew();

We will also build a list of input images in order to store the smart pointers obtained at the
output of each reader. This allows us to build a pipeline without really reading the images and
using lots of RAM. Theotb::ImageList object will be used.

typedef otb::ImageList< InputImageType > ImageListType;

ImageListType::Pointer imageList = ImageListType::New();

We can now loop over the input image list in order to populate the reader list and the input
image list.

for(unsigned int i = 0; i<NbImages; i++)
{

ImageReaderType::Pointer imageReader = ImageReaderType ::New();

imageReader->SetFileName(argv[i+2]);

std::cout << "Adding image " << argv[i+2] << std::endl;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ObjectList.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageList.html

116 Chapter 6. Reading and Writing Images

imageReader->UpdateOutputInformation();

imageList->PushBack(imageReader->GetOutput());

readerList->PushBack(imageReader);

}

All the input images will be concatenated into a single output vector image. For this matter, we
will use the otb::ImageListToVectorImageFilter which is templated over the input image
list type and the output vector image type.

typedef otb::VectorImage< PixelType, Dimension > VectorI mageType;

typedef otb::ImageListToVectorImageFilter< ImageListT ype, VectorImageType >
ImageListToVectorImageFilterType;

ImageListToVectorImageFilterType::Pointer iL2VI =
ImageListToVectorImageFilterType::New();

We plug the image list as input of the filter and use aotb::StreamingImageFileWriter to
write the result image to a file, so that the streaming capabilities of all the readers and the filter
are used.

iL2VI->SetInput(imageList);

typedef otb::StreamingImageFileWriter< VectorImageTyp e > ImageWriterType;

ImageWriterType::Pointer imageWriter = ImageWriterType ::New();

imageWriter->SetFileName(argv[1]);

We can tune the size of the image tiles as a function of the number of input images, so that the
total memory footprint of the pipeline is constant for any execution of the program.

unsigned long size = (10000 * 10000 * sizeof(PixelType)) / Nb Images;

std::cout<<"Streaming size: "<<size<<std::endl;

imageWriter->SetBufferMemorySize(size);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageListToVectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

6.10. Reading and Writing Vector Data 117

imageWriter->SetInput(iL2VI->GetOutput());

imageWriter->Update();

6.10 Reading and Writing Vector Data

In Remote Sensing the use of vector data is common. Vector data is used to represent carto-
graphic objects, segmentation results, etc. OTB provides functionnalities for accessing this kind
of data.

6.10.1 Reading DXF Files

The source code for this example can be found in the file
Examples/IO/DXFReaderExample.cxx .

This example illustrates how to read a DXF file and how to draw objects on a 2D binary image.
The graphical DXF objects which can be read are the following: Point, Line Polyline, Circle
and 3DFace. The example begins by including the appropriateheaders.

#include "itkExceptionObject.h"
#include "otbImage.h"
#include "otbImageFileWriter.h"
#include "otbSpatialObjectDXFReader.h"
#include "otbSpatialObjectToImageDrawingFilter.h"
#include "itkRescaleIntensityImageFilter.h"

Then, as usual, we select the pixel types and the image dimension.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned char OutputPixelType;

The DXF file reader and the image file writer types are instantiated. We can then create objects
for both of them. Graphical DXF objects will be represented in a GroupSpatialObject.

typedef itk::GroupSpatialObject<Dimension> GroupType;
typedef otb::Image<PixelType,Dimension> ImageType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;
typedef otb::SpatialObjectDXFReader<GroupType>

SpatialObjectDXFReaderType;
typedef otb::SpatialObjectToImageDrawingFilter<Group Type,ImageType>

118 Chapter 6. Reading and Writing Images

SpatialObjectToImageDrawingFilterType;
typedef itk::RescaleIntensityImageFilter< ImageType,

OutputImageType > CastFilterType;
typedef itk::SpatialObject<Dimension> SpatialObjectTy pe;

// Instantiating object
SpatialObjectDXFReaderType::Pointer reader =

SpatialObjectDXFReaderType::New();
SpatialObjectToImageDrawingFilterType::Pointer image Generator =

SpatialObjectToImageDrawingFilterType::New();
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer castFilter = CastFilterType::N ew();

Filenames should be provided for both the reader and the writer. In this particular example we
take those filenames from the command line arguments. The size of the output image is also
specified. Thanks to the SetLayerName() method, a particular layer can be specified and other
layers will not be read. If no layer name is specified, all layers are read.

reader->SetFileName(inputFilename);
reader->SetLayerName(argv[2]);
writer->SetFileName(outputFilename);
const unsigned int outputSize = atoi(argv[3]);

The reading of the DXF file is performed with the Update() method. Consequently the group of
Spatial Objects is created.

reader->Update();
GroupType::Pointer group = reader->GetOutput();

We check if the group is empty. If it is not the case we will represent the Spatial Object group
on the output image. To determine the minimum and maximum coordinates of the group we
compute the bounding box of each element of the group.

if(group->GetNumberOfChildren() != 0)
{

/** Writing image **/
SpatialObjectType::ChildrenListType* children=group- >GetChildren(0);
SpatialObjectType::ChildrenListType::iterator it = chi ldren->begin();
SpatialObjectType::ChildrenListType::iterator end = ch ildren->end();
double maximum[Dimension],minimum[Dimension];
(*it)->ComputeBoundingBox();
minimum[0]=(*it)->GetBoundingBox()->GetMinimum()[0] ;
minimum[1]=(*it)->GetBoundingBox()->GetMinimum()[1] ;

while(it != end)
{

6.10. Reading and Writing Vector Data 119

(*it)->ComputeBoundingBox();

if ((*it)->GetBoundingBox()->GetMinimum()[0] < minimum [0])
{
minimum[0]=(*it)->GetBoundingBox()->GetMinimum()[0] ;
}
if ((*it)->GetBoundingBox()->GetMinimum()[1] < minimum [1])
{
minimum[1]=(*it)->GetBoundingBox()->GetMinimum()[1] ;
}
it++;
}

Origin can be set at the minimum coordinate of the group and the spacing be adapted to the
specified output image size in order to represent all SpatialObjects in the output image.

ImageType::SpacingType spacing;
spacing[0]=(maximum[0]-origin[0])/size[0];
spacing[1]=(maximum[1]-origin[1])/size[1];
imageGenerator->SetSpacing(spacing);

The output image is created with previously specified origin, spacing and size.

imageGenerator->SetInput(group);
imageGenerator->Update();

The output image is written by calling the Update() method.

writer->Update();

Figure 6.6 represents Spatial Objects extracted from a DXF file.

6.10.2 Reading and Writing Vector Data Files

The source code for this example can be found in the file
Examples/IO/VectorDataIOExample.cxx .

Although specific vector data import approaches, as the one presented in 6.10.1, can be useful, it
is even more interesting to have available approaches whichare independent of the input format.
Unfortunately, many vector data formats do not share the models for the data they represent.
However, in some cases, when simple data is stored, it can be decomposed in simple objects
as for instance polylines, polygons and points. This is the case for the Shapefile and the KML
(Keyhole Markup Language), for instance.

Even though specific reader/writer for Shapefile (and soon KML) are available in OTB, we
designed a generic approach for the IO of this kind of data.

120 Chapter 6. Reading and Writing Images

Figure 6.6:Representation of a DXF file on an image.

This example illustrates the use of OTB’s vector data IO framework.

We will start by including the header files for the classes describing the vector data and the
corresponding reader and writer.

#include "otbVectorData.h"
#include "otbVectorDataFileReader.h"
#include "otbVectorDataFileWriter.h"

We will also need to include the header files for the classes which model the individual objects
that we get from the vector data structure.

#include "itkPreOrderTreeIterator.h"
#include "otbObjectList.h"
#include "otbPolygon.h"

We define the types for the vector data structure and the corresponding file reader.

typedef otb::VectorData<PixelType,2> VectorDataType;

typedef otb::VectorDataFileReader<VectorDataType>
VectorDataFileReaderType;

We can now instantiate the reader and read the data.

VectorDataFileReaderType::Pointer reader = VectorDataF ileReaderType::New();

6.10. Reading and Writing Vector Data 121

reader->SetFileName(argv[1]);
reader->Update();

The vector data obtained from the reader wil provide a tree ofnodes containing the actual
objects of the scene. This tree will be accessed using anitk::PreOrderTreeIterator .

typedef VectorDataType::DataTreeType DataTreeType;
typedef itk::PreOrderTreeIterator<DataTreeType> TreeI teratorType;

In this example we will only read polygon objects from the input file before writing them to the
output file. We define the type for the polygon object as well asan iterator to the vertices. The
polygons obtained will be stored in anotb::ObjectList .

typedef otb::Polygon<PixelType> PolygonType;
typedef PolygonType::VertexListIteratorType PolygonIt eratorType;
typedef otb::ObjectList<PolygonType> PolygonListType;

typedef PolygonListType::Iterator PolygonListIterator Type;

PolygonListType::Pointer polygonList = PolygonListType ::New();

We get the data tree and instantiate an iterator to walk through it.

TreeIteratorType it(reader->GetOutput()->GetDataTree ());

it.GoToBegin();

We check that the current object is a polygon using theIsPolygonFeature() method and get
its exterior ring in order to sore it into the list.

while(!it.IsAtEnd())
{

if(it.Get()->IsPolygonFeature())
{

polygonList->PushBack(it.Get()->GetPolygonExteriorR ing());
}
++it;

}

http://www.melaneum.com/OTB/doxygen/classitk_1_1PreOrderTreeIterator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ObjectList.html

122 Chapter 6. Reading and Writing Images

Before writing the polygons to the output file, we have to build the vector data structure. This
structure will be build up of nodes. We define the types neededfor that.

VectorDataType::Pointer outVectorData = VectorDataType ::New();

typedef VectorDataType::DataNodeType DataNodeType;

We fill the data structure with the nodes. The root node is a document which is composed of
folders. A list of polygons can be seen as a multi polygon object.

DataNodeType::Pointer document = DataNodeType::New();
document->SetNodeType(otb::DOCUMENT);
document->SetNodeId("polygon");
DataNodeType::Pointer folder = DataNodeType::New();
folder->SetNodeType(otb::FOLDER);
DataNodeType::Pointer multiPolygon = DataNodeType::New ();
multiPolygon->SetNodeType(otb::FEATURE_MULTIPOLYGON);

We assign these objects to the data tree stored by the vector data object.

DataTreeType::Pointer tree = outVectorData->GetDataTre e();
DataNodeType::Pointer root = tree->GetRoot()->Get();

tree->Add(document,root);
tree->Add(folder,document);
tree->Add(multiPolygon,folder);

We can now iterate through the polygon list and fill the vectordata structure.

for(PolygonListType::Iterator it = polygonList->Begin();
it != polygonList->End(); ++it)

{
DataNodeType::Pointer newPolygon = DataNodeType::New() ;
newPolygon->SetPolygonExteriorRing(it.Get());
tree->Add(newPolygon,multiPolygon);

}

An finally we write the vector data to a file using a genericotb::VectorDataFileWriter .

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorDataFileWriter.html

6.11. Reading DEM Files 123

typedef otb::VectorDataFileWriter<VectorDataType> Wri terType;

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->Update();

6.11 Reading DEM Files

The source code for this example can be found in the file
Examples/IO/DEMToImageGenerator.cxx .

The following example illustrates the use of the otb::DEMToImageGenerator class. The aim of
this class is to generate an image from the srtm data (precising the start extraction latitude and
longitude point). Each pixel is a geographic point and its intensity is the altitude of the point.
If srtm doesn’t have altitude information for a point, the altitude value is set at -32768 (value of
the srtm norm).

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the otb::DEMToImageGenerator class must be included.

#include "otbDEMToImageGenerator.h"

The image type is now defined using pixel type and dimension. The output image is defined as
an otb::Image .

const unsigned int Dimension = 2;
typedef otb::Image<double , Dimension> ImageType;

The DEMToImageGenerator is defined using the image pixel type as a template parameter.
After that, the object can be instancied.

typedef otb::DEMToImageGenerator<ImageType> DEMToImag eGeneratorType;

DEMToImageGeneratorType::Pointer object = DEMToImageGe neratorType::New();

Input parameter types are defined to set the value in the DEMToImageGenerator.

typedef DEMToImageGeneratorType::SizeType SizeType;
typedef DEMToImageGeneratorType::SpacingType SpacingT ype;
typedef DEMToImageGeneratorType::DEMHandlerType DEMHa ndlerType;
typedef DEMHandlerType::PointType PointType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1DEMToImageGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

124 Chapter 6. Reading and Writing Images

The path to the DEM folder is given to the filter.

object->SetDEMDirectoryPath(folderPath);

The origin (Longitude/Latitude) of the output image in the DEM is given to the filter.

PointType origin;
origin[0] = ::atof(argv[3]);
origin[1] = ::atof(argv[4]);

object->SetOutputOrigin(origin);

The size (in Pixel) of the output image is given to the filter.

SizeType size;
size[0] = ::atoi(argv[5]);
size[1] = ::atoi(argv[6]);

object->SetOutputSize(size);

The spacing (step between to consecutive pixel) is given to the filter. By default, this spacing is
set at 0.001.

SpacingType spacing;
spacing[0] = ::atof(argv[7]);
spacing[1] = ::atof(argv[8]);

object->SetOutputSpacing(spacing);

The output image name is given to the writer and the filter output is linked to the writer input.

writer->SetFileName(outputName);

writer->SetInput(object->GetOutput());

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place update calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{

writer->Update();
}

6.11. Reading DEM Files 125

Figure 6.7:DEMToImageGenerator image.

catch(itk::ExceptionObject & err)
{

std::cout << "Exception itk::ExceptionObject thrown !" << std::endl;
std::cout << err << std::endl;

return EXIT_FAILURE;
}

Let’s now run this example using as input the SRTM data contained inDEM srtm folder. Figure
6.7 shows the obtained DEM. Invalid data values – hidden areas due to SAR shadowing – are
set to zero.

CHAPTER

SEVEN

Basic Filtering

This chapter introduces the most commonly used filters foundin OTB. Most of these filters are
intended to process images. They will accept one or more images as input and will produce one
or more images as output. OTB is based ITK’s data pipeline architecture in which the output of
one filter is passed as input to another filter. (See Section 3.5 on page 28 for more information.)

7.1 Thresholding

The thresholding operation is used to change or identify pixel values based on specifying one
or more values (called thethresholdvalue). The following sections describe how to perform
thresholding operations using OTB.

7.1.1 Binary Thresholding

The source code for this example can be found in the file
Examples/Filtering/BinaryThresholdImageFilter.cxx .

128 Chapter 7. Basic Filtering

Lower
Threshold

Upper
Threshold

Output
Intensity

Input
Intensity

Outside
Value

Inside
Value

Figure 7.1: Transfer function of the BinaryThresholdImage-

Filter.

This example illustrates the use
of the binary threshold image fil-
ter. This filter is used to transform
an image into a binary image by
changing the pixel values according
to the rule illustrated in Figure 7.1.
The user defines two thresholds—
Upper and Lower—and two inten-
sity values—Inside and Outside.
For each pixel in the input image,
the value of the pixel is compared
with the lower and upper thresh-
olds. If the pixel value is inside the
range defined by[Lower,U pper]
the output pixel is assigned the In-
sideValue. Otherwise the output pixels are assigned to the OutsideValue. Thresholding is com-
monly applied as the last operation of a segmentation pipeline.

The first step required to use theitk::BinaryThresholdImageFilter is to include its header
file.

#include "itkBinaryThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using their respective pixel types and dimen-
sions.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type can be instantiated using the input and outputimage types defined above.

typedef itk::BinaryThresholdImageFilter<
InputImageType, OutputImageType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.
(See Section 6 on page 95 for more information about reading and writing data.)

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

7.1. Thresholding 129

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< InputImageType > WriterTy pe;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to itk::SmartPointer s.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to the BinaryThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds. The method
SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValue(insideValue);

The methodsSetLowerThreshold() andSetUpperThreshold() define the range of the input
image intensities that will be transformed into theInsideValue . Note that the lower and upper
thresholds are values of the type of the input image pixels, while the inside and outside values
are of the type of the output image pixels.

filter->SetLowerThreshold(lowerThreshold);
filter->SetUpperThreshold(upperThreshold);

The execution of the filter is triggered by invoking theUpdate() method. If the filter’s output
has been passed as input to subsequent filters, theUpdate() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

Figure 7.2 illustrates the effect of this filter on a ROI of a Spot 5 image of an agricultural area.
This figure shows the limitations of this filter for performing segmentation by itself. These
limitations are particularly noticeable in noisy images and in images lacking spatial uniformity.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

130 Chapter 7. Basic Filtering

Figure 7.2:Effect of the BinaryThresholdImageFilter on a ROI of a Spot 5 image.

7.1.2 General Thresholding

The source code for this example can be found in the file
Examples/Filtering/ThresholdImageFilter.cxx .

This example illustrates the use of theitk::ThresholdImageFilter . This filter can be used
to transform the intensity levels of an image in three different ways.

• First, the user can define a single threshold. Any pixels withvalues below this threshold
will be replaced by a user defined value, called here theOutsideValue . Pixels with
values above the threshold remain unchanged. This type of thresholding is illustrated in
Figure 7.3.

• Second, the user can define a particular threshold such that all the pixels with values
above the threshold will be replaced by theOutsideValue . Pixels with values below the
threshold remain unchanged. This is illustrated in Figure 7.4.

• Third, the user can provide two thresholds. All the pixels with intensity values inside the
range defined by the two thresholds will remain unchanged. Pixels with values outside
this range will be assigned to theOutsideValue . This is illustrated in Figure 7.5.

The following methods choose among the three operating modes of the filter.

• ThresholdBelow()

• ThresholdAbove()

• ThresholdOutside()

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

7.1. Thresholding 131

Outside
Value

Output
Intensity

Input
Intensity

Threshold
Below

Unchanged
Intensities

Figure 7.3:ThresholdImageFilter using the threshold-below mode.

Output
Intensity

Input
Intensity

Unchanged
Intensities

Threshold
Above

Outside
Value

Figure 7.4:ThresholdImageFilter using the threshold-above mode.

Outside
Value

Output
Intensity

Lower
Threshold

Unchanged
Intensities

Upper
Threshold

Input
Intensity

Figure 7.5:ThresholdImageFilter using the threshold-outside mode.

132 Chapter 7. Basic Filtering

The first step required to use this filter is to include its header file.

#include "itkThresholdImageFilter.h"

Then we must decide what pixel type to use for the image. This filter is templated over a single
image type because the algorithm only modifies pixel values outside the specified range, passing
the rest through unchanged.

typedef unsigned char PixelType;

The image is defined using the pixel type and the dimension.

typedef otb::Image< PixelType, 2 > ImageType;

The filter can be instantiated using the image type defined above.

typedef itk::ThresholdImageFilter< ImageType > FilterTy pe;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< ImageType > ReaderType;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< ImageType > WriterType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to theitk::ThresholdImageFilter .

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds.

filter->SetOutsideValue(0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html

7.1. Thresholding 133

The methodThresholdBelow() defines the intensity value below which pixels of the input
image will be changed to theOutsideValue .

filter->ThresholdBelow(40);

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

The output of this example is shown in Figure 7.3. The second operating mode of the filter is
now enabled by calling the methodThresholdAbove() .

filter->ThresholdAbove(100);
filter->SetOutsideValue(255);
filter->Update();

Updating the filter with this new setting produces the outputshown in Figure 7.4. The third
operating mode of the filter is enabled by callingThresholdOutside() .

filter->ThresholdOutside(40,100);
filter->SetOutsideValue(0);
filter->Update();

The output of this third, “band-pass” thresholding mode is shown in Figure 7.5.

The examples in this section also illustrate the limitations of the thresholding filter for perform-
ing segmentation by itself. These limitations are particularly noticeable in noisy images and in
images lacking spatial uniformity.

The following classes provide similar functionality:

• itk::BinaryThresholdImageFilter

7.1.3 Threshold to Point Set

The source code for this example can be found in the file
Examples/FeatureExtraction/ThresholdToPointSetExamp le.cxx .

Sometimes, it may be more valuable not to get an image from thethreshold step but rather a list
of coordinates. This can be done with theotb::ThresholdImageToPointSetFilter .

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ThresholdImageToPointSetFilter.html

134 Chapter 7. Basic Filtering

The following example illustrates the use of theotb::ThresholdImageToPointSetFilter
which provide a list of points within given thresholds. Points set are described in section 5.2 on
page 76.

The first step required to use this filter is to include the header

#include "otbThresholdImageToPointSetFilter.h"
#include "itkPointSet.h"

The next step is to decide which pixel types to use for the input image and the Point Set as well
as their dimension.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef otb::Image<PixelType, Dimension> ImageType;
typedef itk::PointSet<PixelType, Dimension> PointSetTy pe;

A reader is instanciated to read the input image

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

const char * filenamereader = argv[1];
reader->SetFileName(filenamereader);

We get the parameters from the command line for the thresholdfilter. The lower and upper
thresholds parameters are similar to those of theitk::BinaryThresholdImageFilter (see
Section 7.1.1 on page 127 for more information).

int lowerThreshold = atoi(argv[2]);
int upperThreshold = atoi(argv[3]);

Then we create the ThresholdImageToPointSetFilter and we pass the parameters.

typedef otb::ThresholdImageToPointSetFilter
< ImageType, PointSetType > FilterThresholdType;

FilterThresholdType::Pointer filterThreshold = FilterT hresholdType::New();
filterThreshold->SetLowerThreshold(lowerThreshold);
filterThreshold->SetUpperThreshold(upperThreshold);
filterThreshold->SetInput(0, reader->GetOutput());

To manipulate and display the result of this filter, we manually instanciate a point set and we
call theUpdate() method on the threshold filter to trigger the pipeline execution.

After this step, thepointSet variable contains the point set.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ThresholdImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html

7.2. Gradients 135

PointSetType::Pointer pointSet = PointSetType::New();
pointSet = filterThreshold->GetOutput();

filterThreshold->Update();

To display each point, we create an iterator on the list of points, which is accessible through the
methodGetPoints() of the PointSet.

typedef PointSetType::PointsContainer ContainerType;
ContainerType* pointsContainer = pointSet->GetPoints() ;
typedef ContainerType::Iterator IteratorType;
IteratorType itList = pointsContainer->Begin();

A while loop enable us to through the list a display the coordinate of each point.

while(itList != pointsContainer->End())
{

std::cout << itList.Value() << std::endl;
++itList;

}

7.2 Gradients

Computation of gradients is a fairly common operation in image processing. The term “gradi-
ent” may refer in some contexts to the gradient vectors and inothers to the magnitude of the
gradient vectors. ITK filters attempt to reduce this ambiguity by including themagnitudeterm
when appropriate. ITK provides filters for computing both the image of gradient vectors and
the image of magnitudes.

7.2.1 Gradient Magnitude

The source code for this example can be found in the file
Examples/Filtering/GradientMagnitudeImageFilter.cxx .

The magnitude of the image gradient is extensively used in image analysis, mainly to help
in the determination of object contours and the separation of homogeneous regions. The
itk::GradientMagnitudeImageFilter computes the magnitude of the image gradient at
each pixel location using a simple finite differences approach. For example, in the case of
2D the computation is equivalent to convolving the image with masks of type

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

136 Chapter 7. Basic Filtering

-1 0 1

1

0

-1

then adding the sum of their squares and computing the squareroot of the sum.

This filter will work on images of any dimension thanks to the internal use of
itk::NeighborhoodIterator and itk::NeighborhoodOperator .

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeImageFilter.h"

Types should be chosen for the pixels of the input and output images.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types can be defined using the pixeltypes.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The type of the gradient magnitude filter is defined by the input image and the output image
types.

typedef itk::GradientMagnitudeImageFilter<
InputImageType, OutputImageType > FilterType;

A filter object is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, the source is an image
reader.

filter->SetInput(reader->GetOutput());

Finally, the filter is executed by invoking theUpdate() method.

filter->Update();

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.2. Gradients 137

Figure 7.6:Effect of the GradientMagnitudeImageFilter.

If the output of this filter has been connected to other filtersin a pipeline, updating any of the
downstream filters will also trigger an update of this filter.For example, the gradient magnitude
filter may be connected to an image writer.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 7.6 illustrates the effect of the gradient magnitude. The figure shows the sensitivity of
this filter to noisy data.

Attention should be paid to the image type chosen to represent the output image since the
dynamic range of the gradient magnitude image is usually smaller than the dynamic range of
the input image. As always, there are exceptions to this rule, for example, images of man-made
objects that contain high contrast objects.

This filter does not apply any smoothing to the image before computing the gradients. The
results can therefore be very sensitive to noise and may not be best choice for scale space
analysis.

7.2.2 Gradient Magnitude With Smoothing

The source code for this example can be found in the file
Examples/Filtering/GradientMagnitudeRecursiveGaussi anImageFilter.cxx .

Differentiation is an ill-defined operation over digital data. In practice it is convenient to define
a scale in which the differentiation should be performed. This is usually done by preprocessing

138 Chapter 7. Basic Filtering

the data with a smoothing filter. It has been shown that a Gaussian kernel is the most convenient
choice for performing such smoothing. By choosing a particular value for the standard devi-
ation (σ) of the Gaussian, an associated scale is selected that ignores high frequency content,
commonly considered image noise.

The itk::GradientMagnitudeRecursiveGaussianImageFilter computes the magnitude
of the image gradient at each pixel location. The computational process is equivalent to first
smoothing the image by convolving it with a Gaussian kernel and then applying a differential
operator. The user selects the value ofσ.

Internally this is done by applying an IIR1 filter that approximates a convolution with the
derivative of the Gaussian kernel. Traditional convolution will produce a more accurate result,
but the IIR approach is much faster, especially using largeσs [22, 23].

GradientMagnitudeRecursiveGaussianImageFilter will work on images of any dimension by
taking advantage of the natural separability of the Gaussian kernel and its derivatives.

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeRecursiveGaussianImage Filter.h"

Types should be instantiated based on the pixels of the inputand output images.

typedef float InputPixelType;
typedef float OutputPixelType;

With them, the input and output image types can be instantiated.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::GradientMagnitudeRecursiveGaussianImage Filter<
InputImageType, OutputImageType > FilterType;

A filter object is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

1Infinite Impulse Response

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.2. Gradients 139

Figure 7.7:Effect of the GradientMagnitudeRecursiveGaussianImageFilter.

filter->SetInput(reader->GetOutput());

The standard deviation of the Gaussian smoothing kernel is now set.

filter->SetSigma(sigma);

Finally the filter is executed by invoking theUpdate() method.

filter->Update();

If connected to other filters in a pipeline, this filter will automatically update when any down-
stream filters are updated. For example, we may connect this gradient magnitude filter to an
image file writer and then update the writer.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 7.7 illustrates the effect of this filter usingσ values of 3 (left) and 5 (right). The figure
shows how the sensitivity to noise can be regulated by selecting an appropriateσ. This type of
scale-tunable filter is suitable for performing scale-space analysis.

Attention should be paid to the image type chosen to represent the output image since the
dynamic range of the gradient magnitude image is usually smaller than the dynamic range of
the input image.

140 Chapter 7. Basic Filtering

7.2.3 Derivative Without Smoothing

The source code for this example can be found in the file
Examples/Filtering/DerivativeImageFilter.cxx .

The itk::DerivativeImageFilter is used for computing the partial derivative of an image,
the derivative of an image along a particular axial direction.

The header file corresponding to this filter should be included first.

#include "itkDerivativeImageFilter.h"

Next, the pixel types for the input and output images must be defined and, with them, the image
types can be instantiated. Note that it is important to select a signed type for the image, since
the values of the derivatives will be positive as well as negative.

typedef float InputPixelType;
typedef float OutputPixelType;

const unsigned int Dimension = 2;

typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::DerivativeImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The order of the derivative is selected with theSetOrder() method. The direction along which
the derivative will be computed is selected with theSetDirection() method.

filter->SetOrder(atoi(argv[4]));
filter->SetDirection(atoi(argv[5]));

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the derivative filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure 7.8 illustrates the effect of the DerivativeImageFilter. The derivative is taken along thex
direction. The sensitivity to noise in the image is evident from this result.

http://www.melaneum.com/OTB/doxygen/classitk_1_1DerivativeImageFilter.html

7.3. Second Order Derivatives 141

Figure 7.8:Effect of the Derivative filter.

7.3 Second Order Derivatives

7.3.1 Laplacian Filters

Laplacian Filter Recursive Gaussian

The source code for this example can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianImageF ilter1.cxx .

This example illustrates how to use theitk::RecursiveGaussianImageFilter for comput-
ing the Laplacian of an image.

The first step required to use this filter is to include its header file.

#include "itkRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated using the pixel types.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type is now instantiated using both the input imageand the output image types.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

142 Chapter 7. Basic Filtering

typedef itk::RecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

This filter applies the approximation of the convolution along a single dimension. It is therefore
necessary to concatenate several of these filters to producesmoothing in all directions. In this
example, we create a pair of filters since we are processing a 2D image. The filters are created
by invoking theNew() method and assigning the result to aitk::SmartPointer .

We need two filters for computing the X component of the Laplacian and two other filters for
computing the Y component.

FilterType::Pointer filterX1 = FilterType::New();
FilterType::Pointer filterY1 = FilterType::New();

FilterType::Pointer filterX2 = FilterType::New();
FilterType::Pointer filterY2 = FilterType::New();

Since each one of the newly created filters has the potential to perform filtering along any
dimension, we have to restrict each one to a particular direction. This is done with the
SetDirection() method.

filterX1->SetDirection(0); // 0 --> X direction
filterY1->SetDirection(1); // 1 --> Y direction

filterX2->SetDirection(0); // 0 --> X direction
filterY2->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianImageFilter can approximate the convolution with the Gaus-
sian or with its first and second derivatives. We select one ofthese options by using the
SetOrder() method. Note that the argument is anenum whose values can beZeroOrder ,
FirstOrder andSecondOrder . For example, to compute thex partial derivative we should
selectFirstOrder for x andZeroOrder for y. Here we want only to smooth inx andy, so we
selectZeroOrder in both directions.

filterX1->SetOrder(FilterType::ZeroOrder);
filterY1->SetOrder(FilterType::SecondOrder);

filterX2->SetOrder(FilterType::SecondOrder);
filterY2->SetOrder(FilterType::ZeroOrder);

There are two typical ways of normalizing Gaussians depending on their application. For scale-
space analysis it is desirable to use a normalization that will preserve the maximum value of the
input. This normalization is represented by the following equation.

1

σ
√

2π
(7.1)

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

7.3. Second Order Derivatives 143

In applications that use the Gaussian as a solution of the diffusion equation it is desirable to
use a normalization that preserve the integral of the signal. This last approach can be seen as a
conservation of mass principle. This is represented by the following equation.

1

σ2
√

2π
(7.2)

The itk::RecursiveGaussianImageFilter has a boolean flag that allows users to
select between these two normalization options. Selectionis done with the method
SetNormalizeAcrossScale() . Enable this flag to analyzing an image across scale-space.
In the current example, this setting has no impact because weare actually renormalizing the
output to the dynamic range of the reader, so we simply disable the flag.

const bool normalizeAcrossScale = false;
filterX1->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filterY1->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filterX2->SetNormalizeAcrossScale(normalizeAcrossSc ale);
filterY2->SetNormalizeAcrossScale(normalizeAcrossSc ale);

The input image can be obtained from the output of another filter. Here, an image reader is
used as the source. The image is passed to thex filter and then to they filter. The reason
for keeping these two filters separate is that it is usual in scale-space applications to compute
not only the smoothing but also combinations of derivativesat different orders and smoothing.
Some factorization is possible when separate filters are used to generate the intermediate results.
Here this capability is less interesting, though, since we only want to smooth the image in all
directions.

filterX1->SetInput(reader->GetOutput());
filterY1->SetInput(filterX1->GetOutput());

filterY2->SetInput(reader->GetOutput());
filterX2->SetInput(filterY2->GetOutput());

It is now time to select theσ of the Gaussian used to smooth the data. Note thatσ must be
passed to both filters and that sigma is considered to be in theunits of the image spacing. That
is, at the moment of applying the smoothing process, the filter will take into account the spacing
values defined in the image.

filterX1->SetSigma(sigma);
filterY1->SetSigma(sigma);
filterX2->SetSigma(sigma);
filterY2->SetSigma(sigma);

Finally the two components of the Laplacian should be added together. The
itk::AddImageFilter is used for this purpose.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1AddImageFilter.html

144 Chapter 7. Basic Filtering

typedef itk::AddImageFilter<
OutputImageType,
OutputImageType,
OutputImageType > AddFilterType;

AddFilterType::Pointer addFilter = AddFilterType::New();

addFilter->SetInput1(filterY1->GetOutput());
addFilter->SetInput2(filterX2->GetOutput());

The filters are triggered by invokingUpdate() on the Add filter at the end of the pipeline.

try
{
addFilter->Update();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

The resulting image could be saved to a file using theotb::ImageFileWriter class.

typedef float WritePixelType;

typedef otb::Image< WritePixelType, 2 > WriteImageType;

typedef otb::ImageFileWriter< WriteImageType > WriterTy pe;

WriterType::Pointer writer = WriterType::New();

writer->SetInput(addFilter->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

Figure 7.9 illustrates the effect of this filter usingσ values of 3 (left) and 5 (right). The fig-
ure shows how the attenuation of noise can be regulated by selecting the appropriate standard
deviation. This type of scale-tunable filter is suitable forperforming scale-space analysis.

The source code for this example can be found in the file
Examples/Filtering/LaplacianRecursiveGaussianImageF ilter2.cxx .

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

7.3. Second Order Derivatives 145

Figure 7.9:Effect of the LaplacianRecursiveGaussianImageFilter.

The previous exampled showed how to use theitk::RecursiveGaussianImageFilter
for computing the equivalent of a Laplacian of an image aftersmoothing with a Gaus-
sian. The elements used in this previous example have been packaged together in the
itk::LaplacianRecursiveGaussianImageFilter in order to simplify its usage. This cur-
rent example shows how to use this convenience filter for achieving the same results as the
previous example.

The first step required to use this filter is to include its header file.

#include "itkLaplacianRecursiveGaussianImageFilter.h "

Types should be selected on the desired input and output pixel types.

typedef float InputPixelType;
typedef float OutputPixelType;

The input and output image types are instantiated using the pixel types.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type is now instantiated using both the input imageand the output image types.

typedef itk::LaplacianRecursiveGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianRecursiveGaussianImageFilter.html

146 Chapter 7. Basic Filtering

This filter packages all the components illustrated in the previous example. The filter is created
by invoking theNew() method and assigning the result to aitk::SmartPointer .

FilterType::Pointer laplacian = FilterType::New();

The option for normalizing across scale space can also be selected in this filter.

laplacian->SetNormalizeAcrossScale(false);

The input image can be obtained from the output of another filter. Here, an image reader is used
as the source.

laplacian->SetInput(reader->GetOutput());

It is now time to select theσ of the Gaussian used to smooth the data. Note thatσ must be
passed to both filters and that sigma is considered to be in theunits of the image spacing. That
is, at the moment of applying the smoothing process, the filter will take into account the spacing
values defined in the image.

laplacian->SetSigma(sigma);

Finally the pipeline is executed by invoking theUpdate() method.

try
{
laplacian->Update();
}

catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

Figure 7.10 illustrates the effect of this filter usingσ values of 3 (left) and 5 (right). The
figure shows how the attenuation of noise can be regulated by selecting the appropriate standard
deviation. This type of scale-tunable filter is suitable forperforming scale-space analysis.

7.4 Edge Detection

7.4.1 Canny Edge Detection

The source code for this example can be found in the file
Examples/Filtering/CannyEdgeDetectionImageFilter.cx x .

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.4. Edge Detection 147

Figure 7.10:Effect of the LaplacianRecursiveGaussianImageFilter.

This example introduces the use of theitk::CannyEdgeDetectionImageFilter . This filter
is widely used for edge detection since it is the optimal solution satisfying the constraints of
good sensitivity, localization and noise robustness.

The first step required for using this filter is to include its header file

#include "itkCannyEdgeDetectionImageFilter.h"

This filter operates on image of pixel type float. It is then necessary to cast the type of the input
images that are usually of integer type. Theitk::CastImageFilter is used here for that
purpose. Its image template parameters are defined for casting from the input type to the float
type using for processing.

typedef itk::CastImageFilter< CharImageType, RealImage Type> CastToRealFilterType;

The itk::CannyEdgeDetectionImageFilter is instantiated using the float image type.

Figure 7.11 illustrates the effect of this filter on a ROI of a Spot 5 image of an agricultural area.

7.4.2 Ratio of Means Detector

The source code for this example can be found in the file
Examples/FeatureExtraction/TouziEdgeDetectorExample .cxx .

This example illustrates the use of theotb::TouziEdgeDetectorImageFilter . This filter
belongs to the family of the fixed false alarm rate edge detectors but it is apropriate for SAR
images, where the speckle noise is considered as multiplicative. By analogy with the classical

http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannyEdgeDetectionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

148 Chapter 7. Basic Filtering

Figure 7.11:Effect of the CannyEdgeDetectorImageFilter on a ROI of a Spot 5 image.

gradient-based edge detectors which are suited to the additive noise case, this filter computes a
ratio of local means in both sides of the edge [85]. In order tohave a normalized response, the
following computation is performed :

r = 1−min{µA

µB
,
µB

µA
}, (7.3)

whereµA andµB are the local means computed at both sides of the edge. In order to detect edges
with any orientation,r is computed for the 4 principal directions and the maximum response is
kept.

The first step required to use this filter is to include its header file.

#include "otbTouziEdgeDetectorImageFilter.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with floating point precision and rescale the results between 0 and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > InternalImage Type;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter can be instantiated using the image types defined above.

7.4. Edge Detection 149

typedef otb::TouziEdgeDetectorImageFilter< InternalIm ageType, InternalImageType > FilterType;

An ImageFileReader::c lass is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InternalImageType > Reade rType;

An ImageFileWriter::i s instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The intensity rescaling of the results will be carried out bythe
itk::RescaleIntensityImageFilter which is templated by the input and output im-
age types.

typedef itk::RescaleIntensityImageFilter< InternalIma geType,
OutputImageType > RescalerType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescaleIntensityImageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be chosenin a generic way by using the
NumericTraits functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

The image obtained with the reader is passed as input to the
otb::TouziEdgeDetectorImageFilter . The pipeline is built as follows.

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

http://www.melaneum.com/OTB/doxygen/classImageFileReader_1_1c.html
http://www.melaneum.com/OTB/doxygen/classImageFileWriter_1_1i.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

150 Chapter 7. Basic Filtering

Figure 7.12:Result of applying the otb::TouziEdgeDetectorImageFilter to a SAR image. From left

to right : original image, edge intensity and edge orientation.

The methodSetRadius() defines the size of the window to be used for the computation ofthe
local means.

FilterType::SizeType Radius;
Radius[0]= atoi(argv[4]);
Radius[1]= atoi(argv[4]);

filter->SetRadius(Radius);

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

We can also obtain the direction of the edges by invoking theGetOutputDirection() method.

rescaler->SetInput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 7.12 shows the result of applying the Touzi edge detector filter to a SAR image.

7.5 Neighborhood Filters

The concept of locality is frequently encountered in image processing in the form of filters that
compute every output pixel using information from a small region in the neighborhood of the
input pixel. The classical form of these filters are the 3×3 filters in 2D images. Convolution
masks based on these neighborhoods can perform diverse tasks ranging from noise reduction,
to differential operations, to mathematical morphology.

http://www.melaneum.com/OTB/doxygen/classotb_1_1TouziEdgeDetectorImageFilter.html

7.5. Neighborhood Filters 151

The Insight toolkit implements an elegant approach to neighborhood-based image filtering. The
input image is processed using a special iterator called theitk::NeighborhoodIterator .
This iterator is capable of moving over all the pixels in an image and, for each position, it can
address the pixels in a local neighborhood. Operators are defined that apply an algorithmic
operation in the neighborhood of the input pixel to produce avalue for the output pixel. The
following section describes some of the more commonly used filters that take advantage of this
construction. (See Chapter 19 on page 471 for more information about iterators.)

7.5.1 Mean Filter

The source code for this example can be found in the file
Examples/Filtering/MeanImageFilter.cxx .

The itk::MeanImageFilter is commonly used for noise reduction. The filter computes the
value of each output pixel by finding the statistical mean of the neighborhood of the correspond-
ing input pixel. The following figure illustrates the local effect of the MeanImageFilter. The
statistical mean of the neighborhood on the left is passed asthe output value associated with the
pixel at the center of the neighborhood.

25 30 32

27 25 29

28 26 50
- 30.22 - 30

Note that this algorithm is sensitive to the presence of outliers in the neighbor-
hood. This filter will work on images of any dimension thanks to the internal use of
itk::SmartNeighborhoodIterator and itk::NeighborhoodOperator . The size of the
neighborhood over which the mean is computed can be set by theuser.

The header file corresponding to this filter should be included first.

#include "itkMeanImageFilter.h"

Then the pixel types for input and output image must be definedand, with them, the image types
can be instantiated.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

Using the image types it is now possible to instantiate the filter type and create the filter object.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

152 Chapter 7. Basic Filtering

Figure 7.13:Effect of the MeanImageFilter.

typedef itk::MeanImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the mean filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure 7.13 illustrates the effect of this filter using neighborhood radii of 1,1 which corresponds
to a 3×3 classical neighborhood. It can be seen from this picture that edges are rapidly degraded
by the diffusion of intensity values among neighbors.

7.5. Neighborhood Filters 153

7.5.2 Median Filter

The source code for this example can be found in the file
Examples/Filtering/MedianImageFilter.cxx .

The itk::MedianImageFilter is commonly used as a robust approach for noise reduction.
This filter is particularly efficient againstsalt-and-peppernoise. In other words, it is robust
to the presence of gray-level outliers. MedianImageFiltercomputes the value of each output
pixel as the statistical median of the neighborhood of values around the corresponding input
pixel. The following figure illustrates the local effect of this filter. The statistical median of the
neighborhood on the left is passed as the output value associated with the pixel at the center of
the neighborhood.

25 30 32

27 25 29

28 26 50
- 28

This filter will work on images of any dimension thanks to the internal use of
itk::NeighborhoodIterator and itk::NeighborhoodOperator . The size of the neigh-
borhood over which the median is computed can be set by the user.

The header file corresponding to this filter should be included first.

#include "itkMedianImageFilter.h"

Then the pixel and image types of the input and output must be defined.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

Using the image types, it is now possible to define the filter type and create the filter object.

typedef itk::MedianImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The size of the neighborhood is defined along every dimensionby passing aSizeType object
with the corresponding values. The value on each dimension is used as the semi-size of a
rectangular box. For example, in 2D a size of 1,2 will result in a 3×5 neighborhood.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MedianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

154 Chapter 7. Basic Filtering

Figure 7.14:Effect of the MedianImageFilter.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x
indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output
can be passed down the pipeline to other filters, for example,a writer. An update call on any
downstream filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();

Figure 7.14 illustrates the effect of the MedianImageFilter filter a neighborhood radius of 1,1,
which corresponds to a 3× 3 classical neighborhood. The filtered image demonstrates the
moderate tendency of the median filter to preserve edges.

7.5.3 Mathematical Morphology

Mathematical morphology has proved to be a powerful resource for image processing and anal-
ysis [79]. ITK implements mathematical morphology filters using NeighborhoodIterators and
itk::NeighborhoodOperator s. The toolkit contains two types of image morphology algo-
rithms, filters that operate on binary images and filters thatoperate on grayscale images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html

7.5. Neighborhood Filters 155

Binary Filters

The source code for this example can be found in the file
Examples/Filtering/MathematicalMorphologyBinaryFilt ers.cxx .

The following section illustrates the use of filters that perform basic mathematical
morphology operations on binary images. Theitk::BinaryErodeImageFilter and
itk::BinaryDilateImageFilter are described here. The filter names clearly specify the
type of image on which they operate. The header files requiredto construct a simple example
of the use of the mathematical morphology filters are included below.

#include "itkBinaryErodeImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types and their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

Mathematical morphology operations are implemented by applying an operator over the neigh-
borhood of each input pixel. The combination of the rule and the neighborhood is known as
structuring element. Although some rules have become de facto standards for image process-
ing, there is a good deal of freedom as to what kind of algorithmic rule should be applied to the
neighborhood. The implementation in ITK follows the typical rule of minimum for erosion and
maximum for dilation.

The structuring element is implemented as a NeighborhoodOperator. In particular, the default
structuring element is theitk::BinaryBallStructuringElement class. This class is instan-
tiated using the pixel type and dimension of the input image.

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with the input and output image types for
instantiating the type of the filters.

typedef itk::BinaryErodeImageFilter<
InputImageType,

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryErodeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryDilateImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html

156 Chapter 7. Basic Filtering

OutputImageType,
StructuringElementType > ErodeFilterType;

typedef itk::BinaryDilateImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking theNew() method and assigning the result to
itk::SmartPointer s.

ErodeFilterType::Pointer binaryErode = ErodeFilterType ::New();
DilateFilterType::Pointer binaryDilate = DilateFilterT ype::New();

The structuring element is not a reference counted class. Thus it is created as a C++
stack object instead of usingNew() and SmartPointers. The radius of the neighborhood
associated with the structuring element is defined with theSetRadius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathematical morphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring ele ment

structuringElement.CreateStructuringElement();

binaryErode->SetKernel(structuringElement);
binaryDilate->SetKernel(structuringElement);

A binary image is provided as input to the filters. This image might be, for example, the output
of a binary threshold image filter.

thresholder->SetInput(reader->GetOutput());

InputPixelType background = 0;
InputPixelType foreground = 255;

thresholder->SetOutsideValue(background);
thresholder->SetInsideValue(foreground);

thresholder->SetLowerThreshold(lowerThreshold);
thresholder->SetUpperThreshold(upperThreshold);

binaryErode->SetInput(thresholder->GetOutput());
binaryDilate->SetInput(thresholder->GetOutput());

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

7.5. Neighborhood Filters 157

Figure 7.15:Effect of erosion and dilation in a binary image.

The values that correspond to “objects” in the binary image are specified with the methods
SetErodeValue() andSetDilateValue() . The value passed to these methods will be con-
sidered the value over which the dilation and erosion rules will apply.

binaryErode->SetErodeValue(foreground);
binaryDilate->SetDilateValue(foreground);

The filter is executed by invoking itsUpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->SetInput(binaryDilate->GetOutput()) ;
writerDilation->Update();

Figure 7.15 illustrates the effect of the erosion and dilation filters. The figure shows how these
operations can be used to remove spurious details from segmented images.

Grayscale Filters

The source code for this example can be found in the file
Examples/Filtering/MathematicalMorphologyGrayscaleF ilters.cxx .

The following section illustrates the use of filters for performing basic mathematical mor-
phology operations on grayscale images. Theitk::GrayscaleErodeImageFilter and
itk::GrayscaleDilateImageFilter are covered in this example. The filter names clearly
specify the type of image on which they operate. The header files required for a simple example
of the use of grayscale mathematical morphology filters are presented below.

#include "itkGrayscaleErodeImageFilter.h"
#include "itkGrayscaleDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1GrayscaleErodeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GrayscaleDilateImageFilter.html

158 Chapter 7. Basic Filtering

The following code defines the input and output pixel types and their associated image types.

const unsigned int Dimension = 2;

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

Mathematical morphology operations are based on the application of an operator over a neigh-
borhood of each input pixel. The combination of the rule and the neighborhood is known as
structuring element. Although some rules have become the de facto standard in image process-
ing there is a good deal of freedom as to what kind of algorithmic rule should be applied on the
neighborhood. The implementation in ITK follows the typical rule of minimum for erosion and
maximum for dilation.

The structuring element is implemented as aitk::NeighborhoodOperator . In particular, the
default structuring element is theitk::BinaryBallStructuringElement class. This class is
instantiated using the pixel type and dimension of the inputimage.

typedef itk::BinaryBallStructuringElement<
InputPixelType,
Dimension > StructuringElementType;

The structuring element type is then used along with the input and output image types for
instantiating the type of the filters.

typedef itk::GrayscaleErodeImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > ErodeFilterType;

typedef itk::GrayscaleDilateImageFilter<
InputImageType,
OutputImageType,
StructuringElementType > DilateFilterType;

The filters can now be created by invoking theNew() method and assigning the result to Smart-
Pointers.

ErodeFilterType::Pointer grayscaleErode = ErodeFilterT ype::New();
DilateFilterType::Pointer grayscaleDilate = DilateFilt erType::New();

The structuring element is not a reference counted class. Thus it is created as a C++
stack object instead of usingNew() and SmartPointers. The radius of the neighborhood

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html

7.6. Smoothing Filters 159

Figure 7.16:Effect of erosion and dilation in a grayscale image.

associated with the structuring element is defined with theSetRadius() method and the
CreateStructuringElement() method is invoked in order to initialize the operator. The
resulting structuring element is passed to the mathematical morphology filter through the
SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring ele ment

structuringElement.CreateStructuringElement();

grayscaleErode->SetKernel(structuringElement);
grayscaleDilate->SetKernel(structuringElement);

A grayscale image is provided as input to the filters. This image might be, for example, the
output of a reader.

grayscaleErode->SetInput(reader->GetOutput());
grayscaleDilate->SetInput(reader->GetOutput());

The filter is executed by invoking itsUpdate() method, or by updating any downstream filter,
like, for example, an image writer.

writerDilation->SetInput(grayscaleDilate->GetOutput ());
writerDilation->Update();

Figure 7.16 illustrates the effect of the erosion and dilation filters. The figure shows how these
operations can be used to remove spurious details from segmented images.

7.6 Smoothing Filters

Real image data has a level of uncertainty that is manifestedin the variability of measures
assigned to pixels. This uncertainty is usually interpreted as noise and considered an undesirable

160 Chapter 7. Basic Filtering

component of the image data. This section describes severalmethods that can be applied to
reduce noise on images.

7.6.1 Blurring

Blurring is the traditional approach for removing noise from images. It is usually implemented
in the form of a convolution with a kernel. The effect of blurring on the image spectrum is
to attenuate high spatial frequencies. Different kernels attenuate frequencies in different ways.
One of the most commonly used kernels is the Gaussian. Two implementations of Gaussian
smoothing are available in the toolkit. The first one is basedon a traditional convolution while
the other is based on the application of IIR filters that approximate the convolution with a
Gaussian [22, 23].

Discrete Gaussian

The source code for this example can be found in the file
Examples/Filtering/DiscreteGaussianImageFilter.cxx .

KernelWidth

Error

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
�� ������

��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 7.17:Discretized Gaussian.

The itk::DiscreteGaussianImageFilter
computes the convolution of the input im-
age with a Gaussian kernel. This is
done in ND by taking advantage of the
separability of the Gaussian kernel. A
one-dimensional Gaussian function is
discretized on a convolution kernel. The
size of the kernel is extended until there
are enough discrete points in the Gaussian
to ensure that a user-provided maximum
error is not exceeded. Since the size of the
kernel is unknown a priori, it is necessary
to impose a limit to its growth. The user can thus provide a value to be the maximum admissible
size of the kernel. Discretization error is defined as the difference between the area under the
discrete Gaussian curve (which has finite support) and the area under the continuous Gaussian.

Gaussian kernels in ITK are constructed according to the theory of Tony Lindeberg [57] so that
smoothing and derivative operations commute before and after discretization. In other words,
finite difference derivatives on an imageI that has been smoothed by convolution with the
Gaussian are equivalent to finite differences computed onI by convolving with a derivative of
the Gaussian.

The first step required to use this filter is to include its header file.

#include "itkDiscreteGaussianImageFilter.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1DiscreteGaussianImageFilter.html

7.6. Smoothing Filters 161

Types should be chosen for the pixels of the input and output images. Image types can be
instantiated using the pixel type and dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The discrete Gaussian filter type is instantiated using the input and output image types. A
corresponding filter object is created.

typedef itk::DiscreteGaussianImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used
as its input.

filter->SetInput(reader->GetOutput());

The filter requires the user to provide a value for the variance associated with the Gaussian
kernel. The methodSetVariance() is used for this purpose. The discrete Gaussian is con-
structed as a convolution kernel. The maximum kernel size can be set by the user. Note that the
combination of variance and kernel-size values may result in a truncated Gaussian kernel.

filter->SetVariance(gaussianVariance);
filter->SetMaximumKernelWidth(maxKernelWidth);

Finally, the filter is executed by invoking theUpdate() method.

filter->Update();

If the output of this filter has been connected to other filtersdown the pipeline, updating any
of the downstream filters would have triggered the executionof this one. For example, a writer
could have been used after the filter.

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 7.18 illustrates the effect of this filter.

Note that large Gaussian variances will produce large convolution kernels and correspondingly
slower computation times. Unless a high degree of accuracy is required, it may be more desir-
able to use the approximatingitk::RecursiveGaussianImageFilter with large variances.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RecursiveGaussianImageFilter.html

162 Chapter 7. Basic Filtering

Figure 7.18:Effect of the DiscreteGaussianImageFilter.

7.6.2 Edge Preserving Smoothing

Introduction to Anisotropic Diffusion

The drawback of image denoising (smoothing) is that it tendsto blur away the sharp boundaries
in the image that help to distinguish between the larger-scale anatomical structures that one
is trying to characterize (which also limits the size of the smoothing kernels in most applica-
tions). Even in cases where smoothing does not obliterate boundaries, it tends to distort the fine
structure of the image and thereby changes subtle aspects ofthe anatomical shapes in question.

Perona and Malik [70] introduced an alternative to linear-filtering that they calledanisotropic
diffusion. Anisotropic diffusion is closely related to the earlier work of Grossberg [37],
who used similar nonlinear diffusion processes to model human vision. The motivation for
anisotropic diffusion (also callednonuniformor variable conductancediffusion) is that a Gaus-
sian smoothed image is a single time slice of the solution to the heat equation, that has the
original image as its initial conditions. Thus, the solution to

∂g(x,y, t)
∂t

= ∇ ·∇g(x,y, t), (7.4)

whereg(x,y,0) = f (x,y) is the input image, isg(x,y, t) = G(
√

2t)⊗ f (x,y), whereG(σ) is a
Gaussian with standard deviationσ.

Anisotropic diffusion includes a variable conductance term that, in turn, depends on the dif-
ferential structure of the image. Thus, the variable conductance can be formulated to limit the
smoothing at “edges” in images, as measured by high gradientmagnitude, for example.

gt = ∇ ·c(|∇g|)∇g, (7.5)

where, for notational convenience, we leave off the independent parameters ofg and use the
subscripts with respect to those parameters to indicate partial derivatives. The functionc(|∇g|)
is a fuzzy cutoff that reduces the conductance at areas of large |∇g|, and can be any one of a

7.6. Smoothing Filters 163

number of functions. The literature has shown

c(|∇g|) = e
− |∇g|2

2k2 (7.6)

to be quite effective. Notice that conductance term introduces a free parameterk, theconduc-
tance parameter, that controls the sensitivity of the process to edge contrast. Thus, anisotropic
diffusion entails two free parameters: the conductance parameter,k, and the time parameter,t,
that is analogous toσ, the effective width of the filter when using Gaussian kernels.

Equation 7.5 is a nonlinear partial differential equation that can be solved on a discrete grid
using finite forward differences. Thus, the smoothed image is obtained only by an iterative
process, not a convolution or non-stationary, linear filter. Typically, the number of iterations
required for practical results are small, and large 2D images can be processed in several tens of
seconds using carefully written code running on modern, general purpose, single-processor
computers. The technique applies readily and effectively to 3D images, but requires more
processing time.

In the early 1990’s several research groups [34, 92] demonstrated the effectiveness of
anisotropic diffusion on medical images. In a series of papers on the subject [97, 94, 96, 92, 93,
95], Whitaker described a detailed analytical and empiricalanalysis, introduced a smoothing
term in the conductance that made the process more robust, invented a numerical scheme that
virtually eliminated directional artifacts in the original algorithm, and generalized anisotropic
diffusion to vector-valued images, an image processing technique that can be used on vector-
valued medical data (such as the color cryosection data of the Visible Human Project).

For a vector-valued input~F : U 7→ ℜm the process takes the form

~Ft = ∇ ·c(D~F)~F , (7.7)

whereD~F is adissimilaritymeasure of~F , a generalization of the gradient magnitude to vector-
valued images, that can incorporate linear and nonlinear coordinate transformations on the range
of ~F . In this way, the smoothing of the multiple images associated with vector-valued data is
coupled through the conductance term, that fuses the information in the different images. Thus
vector-valued, nonlinear diffusion can combine low-levelimage features (e.g. edges) across
all “channels” of a vector-valued image in order to preserveor enhance those features in all of
image “channels”.

Vector-valued anisotropic diffusion is useful for denoising data from devices that produce mul-
tiple values such as MRI or color photography. When performing nonlinear diffusion on a color
image, the color channels are diffused separately, but linked through the conductance term.
Vector-valued diffusion it is also useful for processing registered data from different devices or
for denoising higher-order geometric or statistical features from scalar-valued images [95, 102].

The output of anisotropic diffusion is an image or set of images that demonstrates reduced noise
and texture but preserves, and can also enhance, edges. Suchimages are useful for a variety
of processes including statistical classification, visualization, and geometric feature extraction.
Previous work has shown [93] that anisotropic diffusion, over a wide range of conductance

164 Chapter 7. Basic Filtering

parameters, offers quantifiable advantages over linear filtering for edge detection in medical
images.

Since the effectiveness of nonlinear diffusion was first demonstrated, numerous variations of
this approach have surfaced in the literature [84]. These include alternatives for constructing
dissimilarity measures [78], directional (i.e., tensor-valued) conductance terms [90, 4] and level
set interpretations [98].

Gradient Anisotropic Diffusion

The source code for this example can be found in the file
Examples/Filtering/GradientAnisotropicDiffusionImag eFilter.cxx .

The itk::GradientAnisotropicDiffusionImageFilter implements anN-dimensional
version of the classic Perona-Malik anisotropic diffusionequation for scalar-valued images [70].

The conductance term for this implementation is chosen as a function of the gradient magnitude
of the image at each point, reducing the strength of diffusion at edge pixels.

C(x) = e−(
‖∇U(x)‖

K)2
(7.8)

The numerical implementation of this equation is similar tothat described in the Perona-Malik
paper [70], but uses a more robust technique for gradient magnitude estimation and has been
generalized toN-dimensions.

The first step required to use this filter is to include its header file.

#include "itkGradientAnisotropicDiffusionImageFilter .h"

Types should be selected based on the pixel types required for the input and output images. The
image types are defined using the pixel type and the dimension.

typedef float InputPixelType;
typedef float OutputPixelType;

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type is now instantiated using both the input imageand the output image types. The
filter object is created by theNew() method.

typedef itk::GradientAnisotropicDiffusionImageFilter <
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

7.6. Smoothing Filters 165

Figure 7.19:Effect of the GradientAnisotropicDiffusionImageFilter.

The input image can be obtained from the output of another filter. Here, an image reader is used
as source.

filter->SetInput(reader->GetOutput());

This filter requires three parameters, the number of iterations to be performed, the time
step and the conductance parameter used in the computation of the level set evolution.
These parameters are set using the methodsSetNumberOfIterations() , SetTimeStep() and
SetConductanceParameter() respectively. The filter can be executed by invoking Update().

filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(conductance);

filter->Update();

A typical value for the time step is 0.125. The number of iterations is typically set to 5; more
iterations result in further smoothing and will increase the computing time linearly.

Figure 7.19 illustrates the effect of this filter. In this example the filter was run with a time step
of 0.125, and 5 iterations. The figure shows how homogeneous regions are smoothed and edges
are preserved.

The following classes provide similar functionality:

• itk::BilateralImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::CurvatureFlowImageFilter

http://www.melaneum.com/OTB/doxygen/classitk_1_1BilateralImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

166 Chapter 7. Basic Filtering

7.6.3 Edge Preserving Speckle Reduction Filters

The source code for this example can be found in the file
Examples/BasicFilters/LeeImageFilter.cxx .

This example illustrates the use of theotb::LeeImageFilter . This filter belongs to the family
of the edge-preserving smoothing filters which are usually used for speckle reduction in radar
images. The Lee filter [56] aplies a linear regression which minimizes the mean-square error in
the frame of a multiplicative speckle model.

The first step required to use this filter is to include its header file.

#include "otbLeeImageFilter.h"

Then we must decide what pixel type to use for the image.

typedef unsigned char PixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< PixelType, 2 > InputImageType;
typedef otb::Image< PixelType, 2 > OutputImageType;

The filter can be instantiated using the image types defined above.

typedef otb::LeeImageFilter< InputImageType, OutputIma geType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to theotb::LeeImageFilter .

http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html

7.6. Smoothing Filters 167

Figure 7.20:Result of applying the otb::LeeImageFilter to a SAR image.

filter->SetInput(reader->GetOutput());

The methodSetRadius() defines the size of the window to be used for the computation ofthe
local statistics. The methodSetNbLooks() sets the number of looks of the input image.

FilterType::SizeType Radius;
Radius[0]= atoi(argv[3]);
Radius[1]= atoi(argv[3]);

filter->SetRadius(Radius);
filter->SetNbLooks(atoi(argv[4]));

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

Figure 7.20 shows the result of applying the Lee filter to a SARimage.

The following classes provide similar functionality:

• otb::FrostImageFilter

7.6.4 Edge preserving Markov Random Field

The Markov Random Field framework for OTB is more detailled in 17.1.5 (p. 419).

The source code for this example can be found in the file
Examples/Markov/MarkovRestaurationExample.cxx .

http://www.melaneum.com/OTB/doxygen/classotb_1_1LeeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FrostImageFilter.html

168 Chapter 7. Basic Filtering

The Markov Random Field framework can be used to apply an edgepreserving filtering, thus
playing a role of restauration.

This example applies theotb::MarkovRandomFieldFilter for image restauration. The struc-
ture of the example is similar to the other MRF example. The original image is assumed to be
coded in one byte, thus 256 states are possible for each pixel. The only other modifications
reside in the energy function chosen for the fidelity and for the regularization.

For the regularization energy function, we choose an edge preserving function:

Φ(u) =
u2

1+u2 (7.9)

and for the fidelity function, we choose a gaussian model.

The starting state of the Markov Random Field is given by the image itself as the final state
should not be too far from it.

The first step toward the use of this filter is the inclusion of the proper header files:

#include "otbMRFEnergyEdgeFidelity.h"
#include "otbMRFEnergyGaussian.h"
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"

We declare the usual types:

const unsigned int Dimension = 2;

typedef double InternalPixelType;
typedef unsigned char LabelledPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType;
typedef otb::Image<LabelledPixelType, Dimension> Label ledImageType;

We need to declare an additional reader for the initial stateof the MRF. This reader has to be
instantiated on the LabelledImageType.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
typedef otb::ImageFileReader< LabelledImageType > Reade rLabelledType;
typedef otb::ImageFileWriter< LabelledImageType > Write rType;

ReaderType::Pointer reader = ReaderType::New();
ReaderLabelledType::Pointer reader2 = ReaderLabelledTy pe::New();
WriterType::Pointer writer = WriterType::New();

const char * inputFilename = argv[1];
const char * labelledFilename = argv[2];

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

7.6. Smoothing Filters 169

const char * outputFilename = argv[3];

reader->SetFileName(inputFilename);
reader2->SetFileName(labelledFilename);
writer->SetFileName(outputFilename);

We declare all the necessary types for the MRF:

typedef otb::MarkovRandomFieldFilter
<InputImageType,LabelledImageType> MarkovRandomField FilterType;

typedef otb::MRFSamplerRandom< InputImageType, Labelle dImageType> SamplerType;

typedef otb::MRFOptimizerMetropolis OptimizerType;

The regularization and the fidelity energy are declared and instanciated:

typedef otb::MRFEnergyEdgeFidelity
<LabelledImageType, LabelledImageType> EnergyRegulari zationType;
typedef otb::MRFEnergyGaussian
<InputImageType, LabelledImageType> EnergyFidelityTyp e;

MarkovRandomFieldFilterType::Pointer markovFilter = Ma rkovRandomFieldFilterType::New();

EnergyRegularizationType::Pointer energyRegularizati on = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFid elityType::New();

OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();

The number of possible states for each pixel is 256 as the image is assumed to be coded on one
byte and we pass the parameters to the markovFilter.

unsigned int nClass = 256;

optimizer->SetSingleParameter(atof(argv[6]));
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(arg v[5]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[4]));
markovFilter->SetNeighborhoodRadius(1);

170 Chapter 7. Basic Filtering

Figure 7.21:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-

bird image for restauration. From left to right : original image, restaured image with edge preservation.

markovFilter->SetEnergyRegularization(energyRegular ization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);

The original state of the MRF filter is passed through theSetTrainingInput() method:

markovFilter->SetTrainingInput(reader2->GetOutput());

And we plug the pipeline:

markovFilter->SetInput(reader->GetOutput());

typedef itk::RescaleIntensityImageFilter
< LabelledImageType, LabelledImageType > RescaleType;

RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);

rescaleFilter->SetInput(markovFilter->GetOutput());

writer->SetInput(rescaleFilter->GetOutput());

writer->Update();

Figure 7.21 shows the output of the Markov Random Field restauration.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

7.7. Distance Map 171

7.7 Distance Map

The source code for this example can be found in the file
Examples/Filtering/DanielssonDistanceMapImageFilter .cxx .

This example illustrates the use of theitk::DanielssonDistanceMapImageFilter . This fil-
ter generates a distance map from the input image using the algorithm developed by Danielsson
[19]. As secondary outputs, a Voronoi partition of the inputelements is produced, as well as a
vector image with the components of the distance vector to the closest point. The input to the
map is assumed to be a set of points on the input image. Each point/pixel is considered to be a
separate entity even if they share the same gray level value.

The first step required to use this filter is to include its header file.

#include "itkDanielssonDistanceMapImageFilter.h"

Then we must decide what pixel types to use for the input and output images. Since the output
will contain distances measured in pixels, the pixel type should be able to represent at least
the width of the image, or said inN−D terms, the maximum extension along all the dimen-
sions. The input and output image types are now defined using their respective pixel type and
dimension.

typedef unsigned char InputPixelType;
typedef unsigned short OutputPixelType;
typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type can be instantiated using the input and outputimage types defined above. A filter
object is created with theNew() method.

typedef itk::DanielssonDistanceMapImageFilter<
InputImageType, OutputImageType > FilterType;

FilterType::Pointer filter = FilterType::New();

The input to the filter is taken from a reader and its output is passed to a
itk::RescaleIntensityImageFilter and then to a writer.

filter->SetInput(reader->GetOutput());
scaler->SetInput(filter->GetOutput());
writer->SetInput(scaler->GetOutput());

The type of input image has to be specified. In this case, a binary image is selected.

filter->InputIsBinaryOn();

http://www.melaneum.com/OTB/doxygen/classitk_1_1DanielssonDistanceMapImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

172 Chapter 7. Basic Filtering

Figure 7.22:DanielssonDistanceMapImageFilter output. Set of pixels, distance map and Voronoi parti-

tion.

Figure 7.22 illustrates the effect of this filter on a binary image with a set of points. The input
image is shown at left, the distance map at the center and the Voronoi partition at right. This
filter computes distance maps in N-dimensions and is therefore capable of producingN−D
Voronoi partitions.

The Voronoi map is obtained with theGetVoronoiMap() method. In the lines below we connect
this output to the intensity rescaler and save the result in afile.

scaler->SetInput(filter->GetVoronoiMap());
writer->SetFileName(voronoiMapFileName);
writer->Update();

The distance filter also produces an image ofitk::Offset pixels representing the vectorial
distance to the closest object in the scene. The type of this output image is defined by the
VectorImageType trait of the filter type.

typedef FilterType::VectorImageType OffsetImageType;

We can use this type for instantiating anotb::ImageFileWriter type and creating an object
of this class in the following lines.

typedef otb::ImageFileWriter< OffsetImageType > WriterO ffsetType;
WriterOffsetType::Pointer offsetWriter = WriterOffsetT ype::New();

The output of the distance filter can be connected as input to the writer.

offsetWriter->SetInput(filter->GetVectorDistanceMap ());

Execution of the writer is triggered by the invocation of theUpdate() method. Since this
method can potentially throw exceptions it must be placed ina try/catch block.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

7.7. Distance Map 173

try
{
offsetWriter->Update();
}

catch(itk::ExceptionObject exp)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << exp << std::endl;
}

Note that only theitk::MetaImageIO class supports reading and writing images of pixel type
itk::Offset .

http://www.melaneum.com/OTB/doxygen/classitk_1_1MetaImageIO.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

CHAPTER

EIGHT

Image Registration

p qT

Figure 8.1: Image registration is the task of finding a spatial

transform mapping on image into another.

This chapter introduces OTB’s (ac-
tually mainly ITK’s) capabilities
for performing image registration.
Please note that the disparity map
estimation approach presented in
chapter 9 are very closely related
to image registration. Image regis-
tration is the process of determin-
ing the spatial transform that maps
points from one image to homolo-
gous points on a object in the second image. This concept is schematically represented in
Figure 8.1. In OTB, registration is performed within a framework of pluggable components
that can easily be interchanged. This flexibility means thata combinatorial variety of registra-
tion methods can be created, allowing users to pick and choose the right tools for their specific
application.

8.1 Registration Framework

The components of the registration framework and their interconnections are shown in Figure
8.2. The basic input data to the registration process are twoimages: one is defined as thefixed
image f (X) and the other as themoving imagem(X). WhereX represents a position in N-
dimensional space. Registration is treated as an optimization problem with the goal of finding
the spatial mapping that will bring the moving image into alignment with the fixed image.

The transformcomponentT(X) represents the spatial mapping of points from the fixed image
space to points in the moving image space. Theinterpolator is used to evaluate moving image
intensities at non-grid positions. ThemetriccomponentS(f ,m◦T) provides a measure of how
well the fixed image is matched by the transformed moving image. This measure forms the
quantitative criterion to be optimized by theoptimizerover the search space defined by the

176 Chapter 8. Image Registration

Optimizer

Transform

Interpolator

Metric

Moving Image

Fixed Image
fitness value

points

pixels

pixels

pixels

Transform
parameters

Figure 8.2: The basic components of the registration framework are two input images, a transform, a

metric, an interpolator and an optimizer.

parameters of thetransform.

These various OTB/ITK registration components will be described in later sections. First, we
begin with some simple registration examples.

8.2 ”Hello World” Registration

The source code for this example can be found in the file
Examples/Registration/ImageRegistration1.cxx .

This example illustrates the use of the image registration framework in ITK/OTB. It should
be read as a ”Hello World” for registration. Which means that for now, you don’t ask “why?”.
Instead, use the example as an introduction to the elements that are typically involved in solving
an image registration problem.

A registration method requires the following set of components: two input images, a trans-
form, a metric, an interpolator and an optimizer. Some of these components are parameterized
by the image type for which the registration is intended. Thefollowing header files provide
declarations of common types used for these components.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "otbImage.h"

The types of each one of the components in the registration methods should be instantiated first.
With that purpose, we start by selecting the image dimensionand the type used for representing
image pixels.

const unsigned int Dimension = 2;

8.2. ”Hello World” Registration 177

typedef float PixelType;

The types of the input images are instantiated by the following lines.

typedef otb::Image< PixelType, Dimension > FixedImageTyp e;
typedef otb::Image< PixelType, Dimension > MovingImageTy pe;

The transform that will map the fixed image space into the moving image space is defined below.

typedef itk::TranslationTransform< double, Dimension > T ransformType;

An optimizer is required to explore the parameter space of the transform in search of optimal
values of the metric.

typedef itk::RegularStepGradientDescentOptimizer Opti mizerType;

The metric will compare how well the two images match each other. Metric types are usually
parameterized by the image types as it can be seen in the following type declaration.

typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;

Finally, the type of the interpolator is declared. The interpolator will evaluate the intensities of
the moving image at non-grid positions.

typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;

The registration method type is instantiated using the types of the fixed and moving images.
This class is responsible for interconnecting all the components that we have described so far.

typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;

Each one of the registration components is created using itsNew() method and is assigned to
its respectiveitk::SmartPointer .

MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorT ype::New();
RegistrationType::Pointer registration = RegistrationT ype::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

178 Chapter 8. Image Registration

Each component is now connected to the instance of the registration method.

registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);

Since we are working with high resolution images and expected shifts are larger than the reso-
lution, we will need to smooth the images in order to avoid theoptimizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanImageFilter<
FixedImageType, FixedImageType > FixedFilterType;

typedef itk::MeanImageFilter<
MovingImageType, MovingImageType > MovingFilterType;

FixedFilterType::Pointer fixedFilter = FixedFilterType ::New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New();

FixedImageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; // radius along y

fixedFilter->SetRadius(indexFRadius);

MovingImageType::SizeType indexMRadius;

indexMRadius[0] = 4; // radius along x
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->SetInput(fixedImageReader->GetOutput());
movingFilter->SetInput(movingImageReader->GetOutput ());

Now we can plug the output of the smoothing filters at the inputof the registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovingImage(movingFilter->GetOutpu t());

8.2. ”Hello World” Registration 179

The registration can be restricted to consider only a particular region of the fixed image as
input to the metric computation. This region is defined with the SetFixedImageRegion()
method. You could use this feature to reduce the computational time of the registration or
to avoid unwanted objects present in the image from affecting the registration outcome. In
this example we use the full available content of the image. This region is identified by the
BufferedRegion of the fixed image. Note that for this region to be valid the reader must first
invoke itsUpdate() method.

fixedFilter->Update();
registration->SetFixedImageRegion(

fixedFilter->GetOutput()->GetBufferedRegion());

The parameters of the transform are initialized by passing them in an array. This can be used
to setup an initial known correction of the misalignment. Inthis particular case, a translation
transform is being used for the registration. The array of parameters for this transform is simply
composed of the translation values along each dimension. Setting the values of the parameters
to zero initializes the transform to anIdentitytransform. Note that the array constructor requires
the number of elements to be passed as an argument.

typedef RegistrationType::ParametersType ParametersTy pe;
ParametersType initialParameters(transform->GetNumbe rOfParameters());

initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y

registration->SetInitialTransformParameters(initial Parameters);

At this point the registration method is ready for execution. The optimizer is the component
that drives the execution of the registration. However, theImageRegistrationMethod class or-
chestrates the ensemble to make sure that everything is in place before control is passed to the
optimizer.

It is usually desirable to fine tune the parameters of the optimizer. Each optimizer has particular
parameters that must be interpreted in the context of the optimization strategy it implements.
The optimizer used in this example is a variant of gradient descent that attempts to prevent it
from taking steps that are too large. At each iteration, thisoptimizer will take a step along
the direction of the itk::ImageToImageMetric derivative. The initial length of the step is
defined by the user. Each time the direction of the derivativeabruptly changes, the optimizer
assumes that a local extrema has been passed and reacts by reducing the step length by a half.
After several reductions of the step length, the optimizer may be moving in a very restricted
area of the transform parameter space. The user can define howsmall the step length should be
to consider convergence to have been reached. This is equivalent to defining the precision with
which the final transform should be known.

The initial step length is defined with the methodSetMaximumStepLength() , while the toler-
ance for convergence is defined with the methodSetMinimumStepLength() .

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html

180 Chapter 8. Image Registration

optimizer->SetMaximumStepLength(3);
optimizer->SetMinimumStepLength(0.01);

In case the optimizer never succeeds reaching the desired precision tolerance, it is prudent to
establish a limit on the number of iterations to be performed. This maximum number is defined
with the methodSetNumberOfIterations() .

optimizer->SetNumberOfIterations(200);

The registration process is triggered by an invocation to the Update() method. If something
goes wrong during the initialization or execution of the registration an exception will be thrown.
We should therefore place theUpdate() method inside atry/catch block as illustrated in the
following lines.

try
{
registration->Update();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

In a real life application, you may attempt to recover from the error by taking more effective
actions in the catch block. Here we are simply printing out a message and then terminating the
execution of the program.

The result of the registration process is an array of parameters that defines the spatial transforma-
tion in an unique way. This final result is obtained using theGetLastTransformParameters()
method.

ParametersType finalParameters = registration->GetLast TransformParameters();

In the case of theitk::TranslationTransform , there is a straightforward interpretation of
the parameters. Each element of the array corresponds to a translation along one spatial dimen-
sion.

const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];

The optimizer can be queried for the actual number of iterations performed to reach conver-
gence. TheGetCurrentIteration() method returns this value. A large number of iterations
may be an indication that the maximum step length has been settoo small, which is undesirable
since it results in long computational times.

http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

8.2. ”Hello World” Registration 181

Figure 8.3:Fixed and Moving image provided as input to the registration method.

const unsigned int numberOfIterations = optimizer->GetCu rrentIteration();

The value of the image metric corresponding to the last set ofparameters can be obtained with
theGetValue() method of the optimizer.

const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided inExamples/Data :

• QB Suburb.png

• QB Suburb13x17y.png

The second image is the result of intentionally translatingthe first image by(13,17) pixels.
Both images have unit-spacing and are shown in Figure 8.3. The registration takes 18 iterations
and the resulting transform parameters are:

Translation X = 12.0192
Translation Y = 16.0231

As expected, these values match quite well the misalignmentthat we intentionally introduced
in the moving image.

It is common, as the last step of a registration task, to use the resulting transform
to map the moving image into the fixed image space. This is easily done with the
itk::ResampleImageFilter . First, a ResampleImageFilter type is instantiated using the im-
age types. It is convenient to use the fixed image type as the output type since it is likely that
the transformed moving image will be compared with the fixed image.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ResampleImageFilter.html

182 Chapter 8. Image Registration

Figure 8.4:Mapped moving image and its difference with the fixed image before and after registration

typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;

A resampling filter is created and the moving image is connected as its input.

ResampleFilterType::Pointer resampler = ResampleFilter Type::New();
resampler->SetInput(movingImageReader->GetOutput()) ;

The Transform that is produced as output of the Registrationmethod is also passed as input to
the resampling filter. Note the use of the methodsGetOutput() andGet() . This combination
is needed here because the registration method acts as a filter whose output is a transform
decorated in the form of aitk::DataObject . For details in this construction you may want to
read the documentation of theitk::DataObjectDecorator .

resampler->SetTransform(registration->GetOutput()-> Get());

The ResampleImageFilter requires additional parameters to be specified, in particular, the spac-
ing, origin and size of the output image. The default pixel value is also set to a distinct gray
level in order to highlight the regions that are mapped outside of the moving image.

FixedImageType::Pointer fixedImage = fixedImageReader- >GetOutput();
resampler->SetSize(fixedImage->GetLargestPossibleRe gion().GetSize());
resampler->SetOutputOrigin(fixedImage->GetOrigin()) ;
resampler->SetOutputSpacing(fixedImage->GetSpacing());
resampler->SetDefaultPixelValue(100);

The output of the filter is passed to a writer that will store the image in a file. An
itk::CastImageFilter is used to convert the pixel type of the resampled image to thefinal
type used by the writer. The cast and writer filters are instantiated below.

typedef unsigned char OutputPixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObjectDecorator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html

8.2. ”Hello World” Registration 183

Optimizer

Transform

Interpolator

MetricFixed Image

Moving Image

Filter
Resample

Transform

Subtract
Filter Writer

Subtract
Filter WriterFilter

Resample

Reader

Reader Smooth

Smooth

Registration Method

Parameters

Figure 8.5:Pipeline structure of the registration example.

typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;
typedef itk::CastImageFilter<

FixedImageType,
OutputImageType > CastFilterType;

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The filters are created by invoking theirNew() method.

WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New() ;

The filters are connected together and theUpdate() method of the writer is invoked in order to
trigger the execution of the pipeline.

caster->SetInput(resampler->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();

The fixed image and the transformed moving image can easily becompared using the
itk::SubtractImageFilter . This pixel-wise filter computes the difference between homol-
ogous pixels of its two input images.

typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;

DifferenceFilterType::Pointer difference = DifferenceF ilterType::New();

difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resampler->GetOutput());

Note that the use of subtraction as a method for comparing theimages is appropriate here
because we chose to represent the images using a pixel typefloat . A different filter would
have been used if the pixel type of the images were any of theunsigned integer type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SubtractImageFilter.html

184 Chapter 8. Image Registration

Since the differences between the two images may correspondto very low values of intensity,
we rescale those intensities with aitk::RescaleIntensityImageFilter in order to make
them more visible. This rescaling will also make possible tovisualize the negative values even
if we save the difference image in a file format that only support unsigned pixel values1. We
also reduce theDefaultPixelValue to “1” in order to prevent that value from absorbing the
dynamic range of the differences between the two images.

typedef itk::RescaleIntensityImageFilter<
FixedImageType,
OutputImageType > RescalerType;

RescalerType::Pointer intensityRescaler = RescalerType ::New();

intensityRescaler->SetInput(difference->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);

resampler->SetDefaultPixelValue(1);

Its output can be passed to another writer.

WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput(intensityRescaler->GetOutput());

For the purpose of comparison, the difference between the fixed image and the moving im-
age before registration can also be computed by simply setting the transform to an identity
transform. Note that the resampling is still necessary because the moving image does not nec-
essarily have the same spacing, origin and number of pixels as the fixed image. Therefore a
pixel-by-pixel operation cannot in general be performed. The resampling process with an iden-
tity transform will ensure that we have a representation of the moving image in the grid of the
fixed image.

TransformType::Pointer identityTransform = TransformTy pe::New();
identityTransform->SetIdentity();
resampler->SetTransform(identityTransform);

The complete pipeline structure of the current example is presented in Figure 8.5. The com-
ponents of the registration method are depicted as well. Figure 8.4 (left) shows the result of
resampling the moving image in order to map it onto the fixed image space. The top and right
borders of the image appear in the gray level selected with the SetDefaultPixelValue() in
the ResampleImageFilter. The center image shows the difference between the fixed image and
the original moving image. That is, the difference before the registration is performed. The
right image shows the difference between the fixed image and the transformed moving image.

1This is the case of PNG, BMP, JPEG and TIFF among other common file formats.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

8.3. Features of the Registration Framework 185

Fixed Image Grid
i

j

Moving Image Grid
i

j

x

y

Fixed Image
Physical Coordinates

x

y

Fixed Im
age

x

y

Moving Image
Physical Coordinates

Space Transform

T2T1

Figure 8.6:Different coordinate systems involved in the image registration process. Note that the trans-

form being optimized is the one mapping from the physical space of the fixed image into the physical space

of the moving image.

That is, after the registration has been performed. Both difference images have been rescaled
in intensity in order to highlight those pixels where differences exist. Note that the final reg-
istration is still off by a fraction of a pixel, which resultsin bands around edges of anatomical
structures to appear in the difference image. A perfect registration would have produced a null
difference image.

8.3 Features of the Registration Framework

This section presents a discussion on the two most common difficulties that users encounter
when they start using the ITK registration framework. They are, in order of difficulty

• The direction of the Transform mapping

• The fact that registration is done in physical coordinates

Probably the reason why these two topics tend to create confusion is that they are implemented
in different ways in other systems and therefore users tend to have different expectations regard-
ing how things should work in OTB. The situation is further complicated by the fact that most
people describe image operations as if they were manually performed in a picture in paper.

186 Chapter 8. Image Registration

8.3.1 Direction of the Transform Mapping

The Transform that is optimized in the ITK registration framework is the one that maps points
from the physical space of the fixed image into the physical space of the moving image. This
is illustrated in Figure 8.6. This implies that the Transform will accept as input points from the
fixed image and it will compute the coordinates of the analogous points in the moving image.
What tends to create confusion is the fact that when the Transform shifts a point on thepositive
X direction, the visual effect of this mapping, once the moving image is resampled, is equivalent
to manually shiftingthe moving image along thenegativeX direction. In the same way, when
the Transform applies aclock-wiserotation to the fixed image points, the visual effect of this
mapping once the moving image has been resampled is equivalent to manually rotatingthe
moving imagecounter-clock-wise.

The reason why this direction of mapping has been chosen for the ITK implementation of the
registration framework is that this is the direction that better fits the fact that the moving image
is expected to be resampled using the grid of the fixed image. The nature of the resampling pro-
cess is such that an algorithm must go through every pixel of thefixedimage and compute the
intensity that should be assigned to this pixel from the mapping of themovingimage. This com-
putation involves taking the integral coordinates of the pixel in the image grid, usually called
the “(i,j)” coordinates, mapping them into the physical space of the fixed image (transformT1
in Figure 8.6), mapping those physical coordinates into thephysical space of the moving image
(Transform to be optimized), then mapping the physical coordinates of the moving image in to
the integral coordinates of the discrete grid of the moving image (transformT2 in the figure),
where the value of the pixel intensity will be computed by interpolation.

If we have used the Transform that maps coordinates from the moving image physical space
into the fixed image physical space, then the resampling process could not guarantee that every
pixel in the grid of the fixed image was going to receive one andonly one value. In other words,
the resampling will have resulted in an image with holes and with redundant or overlapped pixel
values.

As you have seen in the previous examples, and you will corroborate in the remaining examples
in this chapter, the Transform computed by the registrationframework is the Transform that can
be used directly in the resampling filter in order to map the moving image into the discrete grid
of the fixed image.

There are exceptional cases in which the transform that you want is actually the inverse trans-
form of the one computed by the ITK registration framework. Only in those cases you may
have to recur to invoking theGetInverse() method that most transforms offer. Make sure
that before you consider following that dark path, you interact with the examples of resampling
illustrated in section?? in order to get familiar with the correct interpretation of the transforms.

8.4. Multi-Modality Registration 187

8.3.2 Registration is done in physical space

The second common difficulty that users encounter with the ITK registration framework is
related to the fact that ITK performs registration in the context of physical space and not in
the discrete space of the image grid. Figure 8.6 show this concept by crossing the transform
that goes between the two image grids. One important consequence of this fact is that having
the correct image origin and image pixel size is fundamentalfor the success of the registration
process in ITK. Users must make sure that they provide correct values for the origin and spacing
of both the fixed and moving images.

A typical case that helps to understand this issue, is to consider the registration of two images
where one has a pixel size different from the other. For example, a SPOt 5 image and a Quick-
Bird image. Typically a Quickbird image will have a pixel size in the order of 0.6 m, while a
SPOT 5 image will have a pixel size of 2.5 m.

A user performing registration between a SPOT 5 image and a Quickbird image may be naively
expecting that because the SPOT 5 image has less pixels, ascaling factor is required in the
Transform in order to map this image into the Quickbird image. At that point, this person is
attempting to interpret the registration process directlybetween the two image grids, or inpixel
space. What ITK will do in this case is to take into account the pixel size that the user has
provided and it will use that pixel size in order to compute a scaling factor for TransformsT1
andT2 in Figure 8.6. Since these two transforms take care of the required scaling factor, the
spatial Transform to be computed during the registration process does not need to be concerned
about such scaling. The transform that ITK is computing is the one that will physically map the
landscape the moving image into the landscape of the fixed image.

In order to better understand this concepts, it is very useful to draw sketches of the fixed and
moving imageat scalein the same physical coordinate system. That is the geometrical config-
uration that the ITK registration framework uses as context. Keeping this in mind helps a lot for
interpreting correctly the results of a registration process performed with ITK.

8.4 Multi-Modality Registration

Some of the most challenging cases of image registration arise when images of different modal-
ities are involved. In such cases, metrics based on direct comparison of gray levels are not
applicable. It has been extensively shown that metrics based on the evaluation of mutual infor-
mation are well suited for overcoming the difficulties of multi-modality registration.

The concept of Mutual Information is derived from Information Theory and its application to
image registration has been proposed in different forms by different groups [17, 61, 89], a more
detailed review can be found in [45]. The OTB, through ITK, currently provides five different
implementations of Mutual Information metrics (see section 8.7 for details). The following
example illustrates the practical use of some of these metrics.

188 Chapter 8. Image Registration

8.4.1 Viola-Wells Mutual Information

The source code for this example can be found in the file
Examples/Registration/ImageRegistration2.cxx .

The following simple example illustrates how multiple imaging modalities can be registered
using the ITK registration framework. The first difference between this and previous examples
is the use of theitk::MutualInformationImageToImageMetric as the cost-function to be
optimized. The second difference is the use of theitk::GradientDescentOptimizer . Due
to the stochastic nature of the metric computation, the values are too noisy to work successfully
with the itk::RegularStepGradientDescentOptimizer . Therefore, we will use the simpler
GradientDescentOptimizer with a user defined learning rate. The following headers declare the
basic components of this registration method.

#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "otbImage.h"

One way to simplify the computation of the mutual information is to normalize the statistical
distribution of the two input images. Theitk::NormalizeImageFilter is the perfect tool for
this task. It rescales the intensities of the input images inorder to produce an output image with
zero mean and unit variance.

#include "itkNormalizeImageFilter.h"

Additionally, low-pass filtering of the images to be registered will also increase robustness
against noise. In this example, we will use theitk::DiscreteGaussianImageFilter for
that purpose. The characteristics of this filter have been discussed in Section 7.6.1.

#include "itkDiscreteGaussianImageFilter.h"

The moving and fixed images types should be instantiated first.

const unsigned int Dimension = 2;
typedef unsigned short PixelType;

typedef otb::Image< PixelType, Dimension > FixedImageTyp e;
typedef otb::Image< PixelType, Dimension > MovingImageTy pe;

It is convenient to work with an internal image type because mutual information will perform
better on images with a normalized statistical distribution. The fixed and moving images will
be normalized and converted to this internal type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1DiscreteGaussianImageFilter.html

8.4. Multi-Modality Registration 189

typedef float InternalPixelType;
typedef otb::Image< InternalPixelType, Dimension > Inter nalImageType;

The rest of the image registration components are instantiated as illustrated in Section 8.2 with
the use of theInternalImageType .

typedef itk::TranslationTransform< double, Dimension > T ransformType;
typedef itk::GradientDescentOptimizer OptimizerType;
typedef itk::LinearInterpolateImageFunction<

InternalImageType,
double > InterpolatorType;

typedef itk::ImageRegistrationMethod<
InternalImageType,
InternalImageType > RegistrationType;

The mutual information metric type is instantiated using the image types.

typedef itk::MutualInformationImageToImageMetric<
InternalImageType,
InternalImageType > MetricType;

The metric is created using theNew() method and then connected to the registration object.

MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);

The metric requires a number of parameters to be selected, including the standard deviation of
the Gaussian kernel for the fixed image density estimate, thestandard deviation of the kernel for
the moving image density and the number of samples use to compute the densities and entropy
values. Details on the concepts behind the computation of the metric can be found in Section
8.7.4. Experience has shown that a kernel standard deviation of 0.4 works well for images
which have been normalized to a mean of zero and unit variance. We will follow this empirical
rule in this example.

metric->SetFixedImageStandardDeviation(0.4);
metric->SetMovingImageStandardDeviation(0.4);

The normalization filters are instantiated using the fixed and moving image types as input and
the internal image type as output.

typedef itk::NormalizeImageFilter<
FixedImageType,
InternalImageType

190 Chapter 8. Image Registration

> FixedNormalizeFilterType;

typedef itk::NormalizeImageFilter<
MovingImageType,
InternalImageType

> MovingNormalizeFilterType;

FixedNormalizeFilterType::Pointer fixedNormalizer =
FixedNormalizeFilterType::New();

MovingNormalizeFilterType::Pointer movingNormalizer =
MovingNormalizeFilterType::New();

The blurring filters are declared using the internal image type as both the input and output types.
In this example, we will set the variance for both blurring filters to 2.0.

typedef itk::DiscreteGaussianImageFilter<
InternalImageType,
InternalImageType

> GaussianFilterType;

GaussianFilterType::Pointer fixedSmoother = GaussianFi lterType::New();
GaussianFilterType::Pointer movingSmoother = GaussianF ilterType::New();

fixedSmoother->SetVariance(4.0);
movingSmoother->SetVariance(4.0);

The output of the readers becomes the input to the normalization filters. The output of the
normalization filters is connected as input to the blurring filters. The input to the registration
method is taken from the blurring filters.

fixedNormalizer->SetInput(fixedImageReader->GetOutp ut());
movingNormalizer->SetInput(movingImageReader->GetOu tput());

fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutpu t());

registration->SetFixedImage(fixedSmoother->GetOutpu t());
registration->SetMovingImage(movingSmoother->GetOut put());

We should now define the number of spatial samples to be considered in the metric computation.
Note that we were forced to postpone this setting until we haddone the preprocessing of the
images because the number of samples is usually defined as a fraction of the total number of
pixels in the fixed image.

The number of spatial samples can usually be as low as 1% of thetotal number of pixels in the
fixed image. Increasing the number of samples improves the smoothness of the metric from one

8.4. Multi-Modality Registration 191

iteration to another and therefore helps when this metric isused in conjunction with optimizers
that rely of the continuity of the metric values. The trade-off, of course, is that a larger number
of samples result in longer computation times per every evaluation of the metric.

It has been demonstrated empirically that the number of samples is not a critical parameter for
the registration process. When you start fine tuning your own registration process, you should
start using high values of number of samples, for example in the range of 20% to 50% of the
number of pixels in the fixed image. Once you have succeeded toregister your images you can
then reduce the number of samples progressively until you find a good compromise on the time
it takes to compute one evaluation of the Metric. Note that itis not useful to have very fast
evaluations of the Metric if the noise in their values results in more iterations being required by
the optimizer to converge.

const unsigned int numberOfPixels = fixedImageRegion.Get NumberOfPixels();

const unsigned int numberOfSamples =
static_cast< unsigned int >(numberOfPixels * 0.01);

metric->SetNumberOfSpatialSamples(numberOfSamples);

Since larger values of mutual information indicate better matches than smaller values, we need
to maximize the cost function in this example. By default theGradientDescentOptimizer class is
set to minimize the value of the cost-function. It is therefore necessary to modify its default be-
havior by invoking theMaximizeOn() method. Additionally, we need to define the optimizer’s
step size using theSetLearningRate() method.

optimizer->SetLearningRate(150.0);
optimizer->SetNumberOfIterations(300);
optimizer->MaximizeOn();

Note that large values of the learning rate will make the optimizer unstable. Small values,
on the other hand, may result in the optimizer needing too many iterations in order to walk
to the extrema of the cost function. The easy way of fine tuningthis parameter is to start
with small values, probably in the range of{5.0,10.0}. Once the other registration parameters
have been tuned for producing convergence, you may want to revisit the learning rate and start
increasing its value until you observe that the optimization becomes unstable. The ideal value
for this parameter is the one that results in a minimum numberof iterations while still keeping
a stable path on the parametric space of the optimization. Keep in mind that this parameter is a
multiplicative factor applied on the gradient of the Metric. Therefore, its effect on the optimizer
step length is proportional to the Metric values themselves. Metrics with large values will
require you to use smaller values for the learning rate in order to maintain a similar optimizer
behavior.

Let’s execute this example over two of the images provided inExamples/Data :

• RamsesROISmall.png

192 Chapter 8. Image Registration

Figure 8.7:A SAR image (fixed image) and an aerial photograph (moving image) are provided as input to

the registration method.

• ADS40RoiSmall.png

The moving image after resampling is presented on the left side of Figure 8.8. The center
and right figures present a checkerboard composite of the fixed and moving images before and
after registration. Since the real deformation between the2 images is not simply a shift, some
registration errors remain, but the left part of the images is correctly registered.

Figure 8.8:Mapped moving image (left) and composition of fixed and moving images before (center) and

after (right) registration.

8.5. Centered Transforms 193

8.5 Centered Transforms

The OTB/ITK image coordinate origin is typically located inone of the image corners (see
section 5.1.4 for details). This results in counter-intuitive transform behavior when rotations
and scaling are involved. Users tend to assume that rotations and scaling are performed around
a fixed point at the center of the image. In order to compensatefor this difference in natural
interpretation, the concept ofcenteredtransforms have been introduced into the toolkit. The
following sections describe the main characteristics of such transforms.

8.5.1 Rigid Registration in 2D

The source code for this example can be found in the file
Examples/Registration/ImageRegistration5.cxx .

This example illustrates the use of theitk::CenteredRigid2DTransform for performing
rigid registration in 2D. The example code is for the most part identical to that presented in
Section 8.2. The main difference is the use of the CenteredRigid2DTransform here instead of
the itk::TranslationTransform .

In addition to the headers included in previous examples, the following header must also be
included.

#include "itkCenteredRigid2DTransform.h"

The transform type is instantiated using the code below. Theonly template parameter for this
class is the representation type of the space coordinates.

typedef itk::CenteredRigid2DTransform< double > Transfo rmType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Since we are working with high resolution images and expected shifts are larger than the reso-
lution, we will need to smooth the images in order to avoid theoptimizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanImageFilter<
FixedImageType, FixedImageType > FixedFilterType;

typedef itk::MeanImageFilter<
MovingImageType, MovingImageType > MovingFilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

194 Chapter 8. Image Registration

FixedFilterType::Pointer fixedFilter = FixedFilterType ::New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New();

FixedImageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; // radius along y

fixedFilter->SetRadius(indexFRadius);

MovingImageType::SizeType indexMRadius;

indexMRadius[0] = 4; // radius along x
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->SetInput(fixedImageReader->GetOutput());
movingFilter->SetInput(movingImageReader->GetOutput ());

Now we can plug the output of the smoothing filters at the inputof the registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovingImage(movingFilter->GetOutpu t());

In this example, the input images are taken from readers. Thecode below updates the readers
in order to ensure that the image parameters (size, origin and spacing) are valid when used to
initialize the transform. We intend to use the center of the fixed image as the rotation center and
then use the vector between the fixed image center and the moving image center as the initial
translation to be applied after the rotation.

fixedImageReader->Update();
movingImageReader->Update();

The center of rotation is computed using the origin, size andspacing of the fixed image.

FixedImageType::Pointer fixedImage = fixedImageReader- >GetOutput();

const SpacingType fixedSpacing = fixedImage->GetSpacing ();
const OriginType fixedOrigin = fixedImage->GetOrigin();
const RegionType fixedRegion = fixedImage->GetLargestPo ssibleRegion();
const SizeType fixedSize = fixedRegion.GetSize();

8.5. Centered Transforms 195

TransformType::InputPointType centerFixed;

centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixed Size[0] / 2.0;
centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixed Size[1] / 2.0;

The center of the moving image is computed in a similar way.

MovingImageType::Pointer movingImage = movingImageRead er->GetOutput();

const SpacingType movingSpacing = movingImage->GetSpaci ng();
const OriginType movingOrigin = movingImage->GetOrigin();
const RegionType movingRegion = movingImage->GetLargest PossibleRegion();
const SizeType movingSize = movingRegion.GetSize();

TransformType::InputPointType centerMoving;

centerMoving[0] = movingOrigin[0] + movingSpacing[0] * mo vingSize[0] / 2.0;
centerMoving[1] = movingOrigin[1] + movingSpacing[1] * mo vingSize[1] / 2.0;

The most straightforward method of initializing the transform parameters is to configure the
transform and then get its parameters with the methodGetParameters() . Here we initialize the
transform by passing the center of the fixed image as the rotation center with theSetCenter()
method. Then the translation is set as the vector relating the center of the moving image to the
center of the fixed image. This last vector is passed with the methodSetTranslation() .

transform->SetCenter(centerFixed);
transform->SetTranslation(centerMoving - centerFixed) ;

Let’s finally initialize the rotation with a zero angle.

transform->SetAngle(0.0);

Now we pass the current transform’s parameters as the initial parameters to be used when the
registration process starts.

registration->SetInitialTransformParameters(transfo rm->GetParameters());

Keeping in mind that the scale of units in rotation and translation is quite different, we take ad-
vantage of the scaling functionality provided by the optimizers. We know that the first element
of the parameters array corresponds to the angle that is measured in radians, while the other
parameters correspond to translations that are measured inthe units of the spacin (pixels in our
case). For this reason we use small factors in the scales associated with translations and the
coordinates of the rotation center .

196 Chapter 8. Image Registration

typedef OptimizerType::ScalesType OptimizerScalesType ;
OptimizerScalesType optimizerScales(transform->GetNu mberOfParameters());
const double translationScale = 1.0 / 1000.0;

optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;

optimizer->SetScales(optimizerScales);

Next we set the normal parameters of the optimization method. In this case we are using an
itk::RegularStepGradientDescentOptimizer . Below, we define the optimization param-
eters like the relaxation factor, initial step length, minimal step length and number of iterations.
These last two act as stopping criteria for the optimization.

double initialStepLength = 0.1;

optimizer->SetRelaxationFactor(0.6);
optimizer->SetMaximumStepLength(initialStepLength);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetNumberOfIterations(200);

Let’s execute this example over two of the images provided inExamples/Data :

• QB Suburb.png

• QB SuburbRotated10.png

The second image is the result of intentionally rotating thefirst image by 10 degrees around the
geometrical center of the image. Both images have unit-spacing and are shown in Figure 8.9.
The registration takes 21 iterations and produces the results:

[0.176168, 134.515, 103.011, -0.00182313, 0.0717891]

These results are interpreted as

• Angle = 0.176168 radians

• Center =(134.515,103.011) pixels

• Translation =(−0.00182313,0.0717891) pixels

http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html

8.5. Centered Transforms 197

Figure 8.9:Fixed and moving images are provided as input to the registration method using the Centered-

Rigid2D transform.

Figure 8.10:Resampled moving image (left). Differences between the fixed and moving images, before

(center) and after (right) registration using the CenteredRigid2D transform.

198 Chapter 8. Image Registration

As expected, these values match the misalignment intentionally introduced into the moving
image quite well, since 10 degrees is about 0.174532 radians.

Figure 8.10 shows from left to right the resampled moving image after registration, the differ-
ence between fixed and moving images before registration, and the difference between fixed
and resampled moving image after registration. It can be seen from the last difference image
that the rotational component has been solved but that a small centering misalignment persists.

Let’s now consider the case in which rotations and translations are present in the initial regis-
tration, as in the following pair of images:

• QB Suburb.png

• QB SuburbR10X13Y17.png

The second image is the result of intentionally rotating thefirst image by 10 degrees and then
translating it 13 pixels inX and 17 pixels inY. Both images have unit-spacing and are shown
in Figure 8.11. In order to accelerate convergence it is convenient to use a larger step length as
shown here.

optimizer->SetMaximumStepLength(1.0);

The registration now takes 34 iterations and produces the following results:

[0.176125, 135.553, 102.159, -11.9102, -15.8045]

These parameters are interpreted as

• Angle = 0.176125 radians

• Center =(135.553,102.159) millimeters

• Translation =(−11.9102,−15.8045) millimeters

These values approximately match the initial misalignmentintentionally introduced into the
moving image, since 10 degrees is about 0.174532 radians. The horizontal translation is well
resolved while the vertical translation ends up being off byabout one millimeter.

Figure 8.12 shows the output of the registration. The rightmost image of this figure shows the
difference between the fixed image and the resampled moving image after registration.

8.5.2 Centered Affine Transform

The source code for this example can be found in the file
Examples/Registration/ImageRegistration9.cxx .

8.5. Centered Transforms 199

Figure 8.11:Fixed and moving images provided as input to the registration method using the Centered-

Rigid2D transform.

Figure 8.12:Resampled moving image (left). Differences between the fixed and moving images, before

(center) and after (right) registration with the CenteredRigid2D transform.

200 Chapter 8. Image Registration

This example illustrates the use of theitk::AffineTransform for performing registration.
The example code is, for the most part, identical to previousones. The main difference is the
use of the AffineTransform here instead of theitk::CenteredRigid2DTransform . We will
focus on the most relevant changes in the current code and skip the basic elements already
explained in previous examples.

Let’s start by including the header file of the AffineTransform.

#include "itkAffineTransform.h"

We define then the types of the images to be registered.

const unsigned int Dimension = 2;
typedef float PixelType;

typedef otb::Image< PixelType, Dimension > FixedImageTyp e;
typedef otb::Image< PixelType, Dimension > MovingImageTy pe;

The transform type is instantiated using the code below. Thetemplate parameters of this class
are the representation type of the space coordinates and thespace dimension.

typedef itk::AffineTransform<
double,
Dimension > TransformType;

The transform object is constructed below and passed to the registration method.

TransformType::Pointer transform = TransformType::New();
registration->SetTransform(transform);

Since we are working with high resolution images and expected shifts are larger than the reso-
lution, we will need to smooth the images in order to avoid theoptimizer to get stucked on local
minima. In order to do this, we will use a simple mean filter.

typedef itk::MeanImageFilter<
FixedImageType, FixedImageType > FixedFilterType;

typedef itk::MeanImageFilter<
MovingImageType, MovingImageType > MovingFilterType;

FixedFilterType::Pointer fixedFilter = FixedFilterType ::New();
MovingFilterType::Pointer movingFilter = MovingFilterT ype::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1AffineTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html

8.5. Centered Transforms 201

FixedImageType::SizeType indexFRadius;

indexFRadius[0] = 4; // radius along x
indexFRadius[1] = 4; // radius along y

fixedFilter->SetRadius(indexFRadius);

MovingImageType::SizeType indexMRadius;

indexMRadius[0] = 4; // radius along x
indexMRadius[1] = 4; // radius along y

movingFilter->SetRadius(indexMRadius);

fixedFilter->SetInput(fixedImageReader->GetOutput());
movingFilter->SetInput(movingImageReader->GetOutput ());

Now we can plug the output of the smoothing filters at the inputof the registration method.

registration->SetFixedImage(fixedFilter->GetOutput());
registration->SetMovingImage(movingFilter->GetOutpu t());

In this example, we use theitk::CenteredTransformInitializer helper class in order to
compute a reasonable value for the initial center of rotation and the translation. The initializer
is set to use the center of mass of each image as the initial correspondence correction.

typedef itk::CenteredTransformInitializer<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;

TransformInitializerType::Pointer initializer = Transf ormInitializerType::New();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOut put());
initializer->SetMovingImage(movingImageReader->GetO utput());
initializer->MomentsOn();
initializer->InitializeTransform();

Now we pass the parameters of the current transform as the initial parameters to be used when
the registration process starts.

registration->SetInitialTransformParameters(
transform->GetParameters());

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredTransformInitializer.html

202 Chapter 8. Image Registration

Keeping in mind that the scale of units in scaling, rotation and translation are quite different,
we take advantage of the scaling functionality provided by the optimizers. We know that the
first N×N elements of the parameters array correspond to the rotationmatrix factor, the next
N correspond to the rotation center, and the lastN are the components of the translation to be
applied after multiplication with the matrix is performed.

typedef OptimizerType::ScalesType OptimizerScalesType ;
OptimizerScalesType optimizerScales(transform->GetNu mberOfParameters());

optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;

optimizer->SetScales(optimizerScales);

We also set the usual parameters of the optimization method.In this case we are using an
itk::RegularStepGradientDescentOptimizer . Below, we define the optimization param-
eters like initial step length, minimal step length and number of iterations. These last two act as
stopping criteria for the optimization.

optimizer->SetMaximumStepLength(steplength);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(maxNumberOfIterati ons);

We also set the optimizer to do minimization by calling theMinimizeOn() method.

optimizer->MinimizeOn();

Finally we trigger the execution of the registration methodby calling theUpdate() method.
The call is placed in atry/catch block in case any exceptions are thrown.

try
{
registration->StartRegistration();
}

catch(itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return -1;
}

http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html

8.5. Centered Transforms 203

Once the optimization converges, we recover the parametersfrom the registration method. This
is done with theGetLastTransformParameters() method. We can also recover the final
value of the metric with theGetValue() method and the final number of iterations with the
GetCurrentIteration() method.

OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();

const double finalRotationCenterX = transform->GetCente r()[0];
const double finalRotationCenterY = transform->GetCente r()[1];
const double finalTranslationX = finalParameters[4];
const double finalTranslationY = finalParameters[5];

const unsigned int numberOfIterations = optimizer->GetCu rrentIteration();
const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided inExamples/Data :

• QB Suburb.png

• QB SuburbR10X13Y17.png

The second image is the result of intentionally rotating thefirst image by 10 degrees and then
translating by(13,17). Both images have unit-spacing and are shown in Figure 8.13.We
execute the code using the following parameters: step length=1.0, translation scale= 0.0001 and
maximum number of iterations = 300. With these images and parameters the registration takes
83 iterations and produces

20.2134 [0.983291, -0.173507, 0.174626, 0.983028, -12.18 99, -16.0882]

These results are interpreted as

• Iterations = 83

• Final Metric = 20.2134

• Center =(134.152,104.067) pixels

• Translation =(−12.1899,−16.0882) pixels

• Affine scales =(0.999024,0.997875)

The second component of the matrix values is usually associated with sinθ. We obtain the ro-
tation through SVD of the affine matrix. The value is 10.0401 degrees, which is approximately
the intentional misalignment of 10.0 degrees.

Figure 8.14 shows the output of the registration. The right most image of this figure shows the
squared magnitude difference between the fixed image and theresampled moving image.

204 Chapter 8. Image Registration

Figure 8.13:Fixed and moving images provided as input to the registration method using the AffineTrans-

form.

Figure 8.14:The resampled moving image (left), and the difference between the fixed and moving images

before (center) and after (right) registration with the AffineTransform transform.

8.6. Transforms 205

Vector

Covariant

Vectors

Point

Figure 8.15:Geometric representation objects in ITK.

8.6 Transforms

In OTB, we use the Insight Toolkititk::Transform objects encapsulate the mapping of points
and vectors from an input space to an output space. If a transform is invertible, back transform
methods are also provided. Currently, ITK provides a variety of transforms from simple transla-
tion, rotation and scaling to general affine and kernel transforms. Note that, while in this section
we discuss transforms in the context of registration, transforms are general and can be used for
other applications. Some of the most commonly used transforms will be discussed in detail
later. Let’s begin by introducing the objects used in ITK forrepresenting basic spatial concepts.

8.6.1 Geometrical Representation

ITK implements a consistent geometric representation of the space. The characteristics of
classes involved in this representation are summarized in Table 8.1. In this regard, ITK takes
full advantage of the capabilities of Object Oriented programming and resists the temptation
of using simple arrays offloat or double in order to represent geometrical objects. The use
of basic arrays would have blurred the important distinction between the different geometrical
concepts and would have allowed for the innumerable conceptual and programming errors that
result from using a vector where a point is needed or vice versa.

Additional uses of theitk::Point , itk::Vector and itk::CovariantVector classes have
been discussed in Chapter 5. Each one of these classes behaves differently under spatial trans-
formations. It is therefore quite important to keep their distinction clear. Figure 8.15 illustrates
the differences between these concepts.

Transform classes provide different methods for mapping each one of the basic space-
representation objects. Points, vectors and covariant vectors are transformed using the methods
TransformPoint() , TransformVector() andTransformCovariantVector() respectively.

One of the classes that deserve further comments is theitk::Vector . This ITK class tend to
be misinterpreted as a container of elements instead of a geometrical object. This is a common
misconception originated by the fact that Computer Scientist and Software Engineers misuse
the term “Vector”. The actual word “Vector” is relatively young. It was coined by William

http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html

206 Chapter 8. Image Registration

Class Geometrical concept
itk::Point Position in space. InN-dimensional space it is repre-

sented by an array ofN numbers associated with space
coordinates.

itk::Vector Relative position between two points. InN-dimensional
space it is represented by an array ofN numbers, each one
associated with the distance along a coordinate axis. Vec-
tors do not have a position in space. A vector is defined
as the subtraction of two points.

itk::CovariantVector Orthogonal direction to a(N−1)-dimensional manifold
in space. For example, in 3D it corresponds to the vector
orthogonal to a surface. This is the appropriate class for
representing Gradients of functions. Covariant vectors do
not have a position in space. Covariant vector should not
be added to Points, nor to Vectors.

Table 8.1:Summary of objects representing geometrical concepts in ITK.

Hamilton in his book “Elements of Quaternions” published in 1886 (post-mortem)[39]. In the
same text Hamilton coined the terms: “Scalar”, “ Versor” and “Tensor”. Although the modern
term of “Tensor” is used in Calculus in a different sense of what Hamilton defined in his book
at the time [26].

A “ Vector” is, by definition, a mathematical object that embodies the concept of “direction in
space”. Strictly speaking, a Vector describes the relationship between two Points in space, and
captures both their relative distance and orientation.

Computer scientists and software engineers misused the term vector in order to represent the
concept of an “Indexed Set” [5]. Mechanical Engineers and Civil Engineers, who deal with the
real world of physical objects will not commit this mistake and will keep the word “Vector”
attached to a geometrical concept. Biologists, on the otherhand, will associate “Vector” to a
“vehicle” that allows them to direct something in a particular direction, for example, a virus that
allows them to insert pieces of code into a DNA strand [58].

Textbooks in programming do not help to clarify those concepts and loosely use the term “Vec-
tor” for the purpose of representing an “enumerated set of common elements”. STL follows this
trend and continue using the word “Vector” for what it was not supposed to be used [5, 1]. Lin-
ear algebra separates the “Vector” from its notion of geometric reality and makes it an abstract
set of numbers with arithmetic operations associated.

For those of you who are looking for the “Vector” in the Software Engineering sense, please
look at the itk::Array and itk::FixedArray classes that actually provide such functional-
ities. Additionally, the itk::VectorContainer and itk::MapContainer classes may be of
interest too. These container classes are intended for algorithms that require to insert and delete
elements, and that may have large numbers of elements.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Array.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorContainer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MapContainer.html

8.6. Transforms 207

The Insight Toolkit deals with real objects that inhabit thephysical space. This is particularly
true in the context of the image registration framework. We chose to give the appropriate name
to the mathematical objects that describe geometrical relationships in N-Dimensional space. It
is for this reason that we explicitly make clear the distinction between Point, Vector and Covari-
antVector, despite the fact that most people would be happy with a simple use ofdouble[3] for
the three concepts and then will proceed to perform all sort of conceptually flawed operations
such as

• Adding two Points

• Dividing a Point by a Scalar

• Adding a Covariant Vector to a Point

• Adding a Covariant Vector to a Vector

In order to enforce the correct use of the Geometrical concepts in ITK we organized these
classes in a hierarchy that supports reuse of code and yet compartmentalize the behavior of the
individual classes. The use of theitk::FixedArray as base class of theitk::Point , the
itk::Vector and the itk::CovariantVector was a design decision based on calling things
by their correct name.

An itk::FixedArray is an enumerated collection with a fixed number of elements. You can
instantiate a fixed array of letters, or a fixed array of images, or a fixed array of transforms, or a
fixed array of geometrical shapes. Therefore, the FixedArray only implements the functionality
that is necessary to access those enumerated elements. No assumptions can be made at this
point on any other operations required by the elements of theFixedArray, except the fact of
having a default constructor.

The itk::Point is a type that represents the spatial coordinates of a spatial location. Based on
geometrical concepts we defined the valid operations of the Point class. In particular we made
sure that nooperator+() was defined between Points, and that nooperator*(scalar) nor
operator/(scalar) were defined for Points.

In other words, you could do in ITK operations such as:

• Vector = Point - Point

• Point += Vector

• Point -= Vector

• Point = BarycentricCombination(Point, Point)

and you cannot (because youshould not) do operation such as

• Point = Point * Scalar

http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FixedArray.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Point.html

208 Chapter 8. Image Registration

• Point = Point + Point

• Point = Point / Scalar

The itk::Vector is, by Hamilton’s definition, the subtraction between two points. Therefore
a Vector must satisfy the following basic operations:

• Vector = Point - Point

• Point = Point + Vector

• Point = Point - Vector

• Vector = Vector + Vector

• Vector = Vector - Vector

An itk::Vector object is intended to be instantiated over elements that support mathematical
operation such as addition, subtraction and multiplication by scalars.

8.6.2 Transform General Properties

Each transform class typically has several methods for setting its parameters. For example,
itk::Euler2DTransform provides methods for specifying the offset, angle, and the entire ro-
tation matrix. However, for use in the registration framework, the parameters are represented by
a flat Array of doubles to facilitate communication with generic optimizers. In the case of the
Euler2DTransform, the transform is also defined by three doubles: the first representing the an-
gle, and the last two the offset. The flat array of parameters is defined usingSetParameters() .
A description of the parameters and their ordering is documented in the sections that follow.

In the context of registration, the transform parameters define the search space for optimizers.
That is, the goal of the optimization is to find the set of parameters defining a transform that
results in the best possible value of an image metric. The more parameters a transform has, the
longer its computational time will be when used in a registration method since the dimension
of the search space will be equal to the number of transform parameters.

Another requirement that the registration framework imposes on the transform classes is the
computation of their Jacobians. In general, metrics require the knowledge of the Jacobian in
order to compute Metric derivatives. The Jacobian is a matrix whose element are the partial
derivatives of the output point with respect to the array of parameters that defines the transform:2

2Note that the termJacobianis also commonly used for the matrix representing the derivatives of output point
coordinates with respect to input point coordinates. Sometimes the term is loosely used to refer to the determinant of
such a matrix. [26]

http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

8.6. Transforms 209

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Maps every point to
itself, every vector to
itself and every co-
variant vector to it-
self.

0 NA Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.2:Characteristics of the identity transform.

J =













∂x1
∂p1

∂x1
∂p2

· · · ∂x1
∂pm

∂x2
∂p1

∂x2
∂p2

· · · ∂x2
∂pm

...
...

.. .
...

∂xn
∂p1

∂xn
∂p2

· · · ∂xn
∂pm













(8.1)

where{pi} are the transform parameters and{xi} are the coordinates of the output point. Within
this framework, the Jacobian is represented by anitk::Array2D of doubles and is obtained
from the transform by methodGetJacobian() . The Jacobian can be interpreted as a matrix that
indicates for a point in the input space how much its mapping on the output space will change
as a response to a small variation in one of the transform parameters. Note that the values of the
Jacobian matrix depend on the point in the input space. So actually the Jacobian can be noted
asJ(X), whereX = {xi}. The use of transform Jacobians enables the efficient computation of
metric derivatives. When Jacobians are not available, metrics derivatives have to be computed
using finite difference at a price of 2M evaluations of the metric value, whereM is the number
of transform parameters.

The following sections describe the main characteristics of the transform classes available in
ITK.

8.6.3 Identity Transform

The identity transformitk::IdentityTransform is mainly used for debugging purposes. It
is provided to methods that require a transform and in cases where we want to have the certainty
that the transform will have no effect whatsoever in the outcome of the process. It is just aNULL
operation. The main characteristics of the identity transform are summarized in Table 8.2

8.6.4 Translation Transform

The itk::TranslationTransform is probably the simplest yet one of the most useful trans-
formations. It maps all Points by adding a Vector to them. Vector and covariant vectors remain

http://www.melaneum.com/OTB/doxygen/classitk_1_1Array2D.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1IdentityTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html

210 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a simple
translation of points
in the input space and
has no effect on vec-
tors or covariant vec-
tors.

Same as the
input space
dimension.

The i-th parame-
ter represents the
translation in the
i-th dimension.

Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.3:Characteristics of the TranslationTransform class.

unchanged under this transformation since they are not associated with a particular position
in space. Translation is the best transform to use when starting a registration method. Before
attempting to solve for rotations or scaling it is importantto overlap the anatomical objects in
both images as much as possible. This is done by resolving thetranslational misalignment be-
tween the images. Translations also have the advantage of being fast to compute and having
parameters that are easy to interpret. The main characteristics of the translation transform are
presented in Table 8.3.

8.6.5 Scale Transform

The itk::ScaleTransform represents a simple scaling of the vector space. Different scaling
factors can be applied along each dimension. Points are transformed by multiplying each one of
their coordinates by the corresponding scale factor for thedimension. Vectors are transformed in
the same way as points. Covariant vectors, on the other hand,are transformed differently since
anisotropic scaling does not preserve angles. Covariant vectors are transformed bydividing
their components by the scale factor of the corresponding dimension. In this way, if a covariant
vector was orthogonal to a vector, this orthogonality will be preserved after the transformation.
The following equations summarize the effect of the transform on the basic geometric objects.

Point P′ = T(P) : P′
i = Pi ·Si

Vector V′ = T(V) : V′
i = V i ·Si

CovariantVector C′ = T(C) : C′
i = Ci/Si

(8.2)

wherePi , V i andCi are the point, vector and covariant vectori-th components whileSi is the
scaling factor along dimensioni− th. The following equation illustrates the effect of the scaling
transform on a 3D point.





x′

y′

z′



=





S1 0 0
0 S2 0
0 0 S3



 ·





x
y
z



 (8.3)

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html

8.6. Transforms 211

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Points are trans-
formed by multi-
plying each one of
their coordinates by
the corresponding
scale factor for the
dimension. Vectors
are transformed as
points. Covariant
vectors are trans-
formed by dividing
their components by
the scale factor in
the corresponding
dimension.

Same as the
input space
dimension.

The i-th parame-
ter represents the
scaling in thei-th
dimension.

Only defined when the in-
put and output space has the
same number of dimensions.

Table 8.4:Characteristics of the ScaleTransform class.

Scaling appears to be a simple transformation but there are actually a number of issues to keep
in mind when using different scale factors along every dimension. There are subtle effects—for
example, when computing image derivatives. Since derivatives are represented by covariant
vectors, their values are not intuitively modified by scaling transforms.

One of the difficulties with managing scaling transforms in aregistration process is that typical
optimizers manage the parameter space as a vector space where addition is the basic operation.
Scaling is better treated in the frame of a logarithmic spacewhere additions result in regular
multiplicative increments of the scale. Gradient descent optimizers have trouble updating step
length, since the effect of an additive increment on a scale factor diminishes as the factor grows.
In other words, a scale factor variation of(1.0+ ε) is quite different from a scale variation of
(5.0+ ε).

Registrations involving scale transforms require carefulmonitoring of the optimizer parameters
in order to keep it progressing at a stable pace. Note that some of the transforms discussed in
following sections, for example, the AffineTransform, havehidden scaling parameters and are
therefore subject to the same vulnerabilities of the ScaleTransform.

In cases involving misalignments with simultaneous translation, rotation and scaling compo-
nents it may be desirable to solve for these components independently. The main characteristics
of the scale transform are presented in Table 8.4.

212 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Points are trans-
formed by multi-
plying each one of
their coordinates by
the corresponding
scale factor for the
dimension. Vectors
are transformed as
points. Covariant
vectors are trans-
formed by dividing
their components by
the scale factor in
the corresponding
dimension.

Same as the
input space
dimension.

The i-th parame-
ter represents the
scaling in thei-th
dimension.

Only defined when the in-
put and output space has
the same number of dimen-
sions. The difference be-
tween this transform and
the ScaleTransform is that
here the scaling factors are
passed as logarithms, in this
way their behavior is closer
to the one of a Vector space.

Table 8.5:Characteristics of the ScaleLogarithmicTransform class.

8.6.6 Scale Logarithmic Transform

The itk::ScaleLogarithmicTransform is a simple variation of the
itk::ScaleTransform . It is intended to improve the behavior of the scaling parame-
ters when they are modified by optimizers. The difference between this transform and the
ScaleTransform is that the parameter factors are passed here as logarithms. In this way,
multiplicative variations in the scale become additive variations in the logarithm of the scaling
factors.

8.6.7 Euler2DTransform

itk::Euler2DTransform implements a rigid transformation in 2D. It is composed of a plane
rotation and a two-dimensional translation. The rotation is applied first, followed by the trans-
lation. The following equation illustrates the effect of this transform on a 2D point,

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x
y

]

+

[

Tx

Ty

]

(8.4)

whereθ is the rotation angle and(Tx,Ty) are the components of the translation.

A challenging aspect of this transformation is the fact thattranslations and rotations do not form
a vector space and cannot be managed as linear independent parameters. Typical optimizers

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleLogarithmicTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

8.6. Transforms 213

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D rota-
tion and a 2D trans-
lation. Note that
the translation com-
ponent has no effect
on the transformation
of vectors and covari-
ant vectors.

3 The first param-
eter is the angle
in radians and the
last two parame-
ters are the trans-
lation in each di-
mension.

Only defined for two-
dimensional input and
output spaces.

Table 8.6:Characteristics of the Euler2DTransform class.

make the loose assumption that parameters exist in a vector space and rely on the step length to
be small enough for this assumption to hold approximately.

In addition to the non-linearity of the parameter space, themost common difficulty found when
using this transform is the difference in units used for rotations and translations. Rotations are
measured in radians; hence, their values are in the range[−π,π]. Translations are measured in
millimeters and their actual values vary depending on the image modality being considered. In
practice, translations have values on the order of 10 to 100.This scale difference between the
rotation and translation parameters is undesirable for gradient descent optimizers because they
deviate from the trajectories of descent and make optimization slower and more unstable. In
order to compensate for these differences, ITK optimizers accept an array of scale values that
are used to normalize the parameter space.

Registrations involving angles and translations should take advantage of the scale normalization
functionality in order to obtain the best performance out ofthe optimizers. The main character-
istics of the Euler2DTransform class are presented in Table8.6.

8.6.8 CenteredRigid2DTransform

itk::CenteredRigid2DTransform implements a rigid transformation in 2D. The main dif-
ference between this transform and theitk::Euler2DTransform is that here we can specify
an arbitrary center of rotation, while the Euler2DTransform always uses the origin of the coor-
dinate system as the center of rotation. This distinction isquite important in image registration
since ITK images usually have their origin in the corner of the image rather than the middle.
Rotational mis-registrations usually exist, however, as rotations around the center of the image,
or at least as rotations around a point in the middle of the anatomical structure captured by the
image. Using gradient descent optimizers, it is almost impossible to solve non-origin rotations
using a transform with origin rotations since the deep basinof the real solution is usually located
across a high ridge in the topography of the cost function.

In practice, the user must supply the center of rotation in the input space, the angle of rotation

http://www.melaneum.com/OTB/doxygen/classitk_1_1CenteredRigid2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html

214 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D ro-
tation around a user-
provided center fol-
lowed by a 2D trans-
lation.

5 The first parame-
ter is the angle in
radians. Second
and third are the
center of rota-
tion coordinates
and the last two
parameters are
the translation in
each dimension.

Only defined for two-
dimensional input and
output spaces.

Table 8.7:Characteristics of the CenteredRigid2DTransform class.

and a translation to be applied after the rotation. With these parameters, the transform initializes
a rotation matrix and a translation vector that together perform the equivalent of translating the
center of rotation to the origin of coordinates, rotating bythe specified angle, translating back
to the center of rotation and finally translating by the user-specified vector.

As with the Euler2DTransform, this transform suffers from the difference in units used for
rotations and translations. Rotations are measured in radians; hence, their values are in the
range[−π,π]. The center of rotation and the translations are measured inmillimeters, and their
actual values vary depending on the image modality being considered. Registrations involving
angles and translations should take advantage of the scale normalization functionality of the
optimizers in order to get the best performance out of them.

The following equation illustrates the effect of the transform on an input point(x,y) that maps
to the output point(x′,y′),

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(8.5)

whereθ is the rotation angle,(Cx,Cy) are the coordinates of the rotation center and(Tx,Ty)
are the components of the translation. Note that the center coordinates are subtracted before the
rotation and added back after the rotation. The main features of the CenteredRigid2DTransform
are presented in Table 8.7.

8.6.9 Similarity2DTransform

The itk::Similarity2DTransform can be seen as a rigid transform combined with an
isotropic scaling factor. This transform preserves anglesbetween lines. In its 2D im-
plementation, the four parameters of this transformation combine the characteristics of the

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity2DTransform.html

8.6. Transforms 215

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 2D ro-
tation, homogeneous
scaling and a 2D
translation. Note that
the translation com-
ponent has no effect
on the transformation
of vectors and covari-
ant vectors.

4 The first pa-
rameter is the
scaling factor for
all dimensions,
the second is the
angle in radians,
and the last
two parameters
are the transla-
tions in (x,y)
respectively.

Only defined for two-
dimensional input and
output spaces.

Table 8.8:Characteristics of the Similarity2DTransform class.

itk::ScaleTransform and itk::Euler2DTransform . In particular, those relating to the
non-linearity of the parameter space and the non-uniformity of the measurement units. Gradi-
ent descent optimizers should be used with caution on such parameter spaces since the notions
of gradient direction and step length are ill-defined.

The following equation illustrates the effect of the transform on an input point(x,y) that maps
to the output point(x′,y′),

[

x′

y′

]

=

[

λ 0
0 λ

]

·
[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(8.6)

whereλ is the scale factor,θ is the rotation angle,(Cx,Cy) are the coordinates of the rota-
tion center and(Tx,Ty) are the components of the translation. Note that the center coordinates
are subtracted before the rotation and scaling, and they areadded back afterwards. The main
features of the Similarity2DTransform are presented in Table 8.8.

A possible approach for controlling optimization in the parameter space of this transform is to
dynamically modify the array of scales passed to the optimizer. The effect produced by the
parameter scaling can be used to steer the walk in the parameter space (by giving preference to
some of the parameters over others). For example, perform some iterations updating only the
rotation angle, then balance the array of scale factors in the optimizer and perform another set
of iterations updating only the translations.

8.6.10 QuaternionRigidTransform

The itk::QuaternionRigidTransform class implements a rigid transformation in 3D space.
The rotational part of the transform is represented using a quaternion while the translation is

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScaleTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransform.html

216 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D rotation and
a 3D translation. The rota-
tion is specified as a quater-
nion, defined by a set of four
numbersq. The relationship
between quaternion and ro-
tation about vectorn by an-
gle θ is as follows:

q = (nsin(θ/2),cos(θ/2))

Note that if the quaternion
is not of unit length, scaling
will also result.

7 The first four pa-
rameters defines
the quaternion
and the last three
parameters the
translation in
each dimension.

Only defined for
three-dimensional
input and output
spaces.

Table 8.9:Characteristics of the QuaternionRigidTransform class.

represented with a vector. Quaternions components do not form a vector space and hence raise
the same concerns as theitk::Similarity2DTransform when used with gradient descent
optimizers.

The itk::QuaternionRigidTransformGradientDescentOptimiz er was introduced into
the toolkit to address these concerns. This specialized optimizer implements a variation of a
gradient descent algorithm adapted for a quaternion space.This class insures that after ad-
vancing in any direction on the parameter space, the resulting set of transform parameters is
mapped back into the permissible set of parameters. In practice, this comes down to normaliz-
ing the newly-computed quaternion to make sure that the transformation remains rigid and no
scaling is applied. The main characteristics of the QuaternionRigidTransform are presented in
Table 8.9.

The Quaternion rigid transform also accepts a user-defined center of rotation. In this way, the
transform can easily be used for registering images where the rotation is mostly relative to the
center of the image instead one of the corners. The coordinates of this rotation center are not
subject to optimization. They only participate in the computation of the mappings for Points
and in the computation of the Jacobian. The transformationsfor Vectors and CovariantVector
are not affected by the selection of the rotation center.

8.6.11 VersorTransform

By definition, aVersor is the rotational part of a Quaternion. It can also be defined as aunit-
quaternion[39, 49]. Versors only have three independent components, since they are restricted

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransformGradientDescentOptimizer.html

8.6. Transforms 217

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D ro-
tation. The rotation
is specified by a ver-
sor or unit quater-
nion. The rotation
is performed around
a user-specified cen-
ter of rotation.

3 The three param-
eters define the
versor.

Only defined for three-
dimensional input and
output spaces.

Table 8.10:Characteristics of the Versor Transform

to reside in the space of unit-quaternions. The implementation of versors in the toolkit uses a
set of three numbers. These three numbers correspond to the first three components of a quater-
nion. The fourth component of the quaternion is computed internally such that the quaternion
is of unit length. The main characteristics of theitk::VersorTransform are presented in
Table 8.10.

This transform exclusively represents rotations in 3D. It is intended to rapidly solve the rota-
tional component of a more general misalignment. The efficiency of this transform comes from
using a parameter space of reduced dimensionality. Versorsare the best possible representa-
tion for rotations in 3D space. Sequences of versors allow the creation of smooth rotational
trajectories; for this reason, they behave stably under optimization methods.

The space formed by versor parameters is not a vector space. Standard gradient descent algo-
rithms are not appropriate for exploring this parameter space. An optimizer specialized for the
versor space is available in the toolkit under the name ofitk::VersorTransformOptimizer .
This optimizer implements versor derivatives as originally defined by Hamilton [39].

The center of rotation can be specified by the user with theSetCenter() method. The center is
not part of the parameters to be optimized, therefore it remains the same during an optimization
process. Its value is used during the computations for transforming Points and when computing
the Jacobian.

8.6.12 VersorRigid3DTransform

The itk::VersorRigid3DTransform implements a rigid transformation in 3D space. It is a
variant of the itk::QuaternionRigidTransform and the itk::VersorTransform . It can
be seen as aitk::VersorTransform plus a translation defined by a vector. The advantage of
this class with respect to the QuaternionRigidTransform isthat it exposes only six parameters,
three for the versor components and three for the translational components. This reduces the
search space for the optimizer to six dimensions instead of the seven dimensional used by
the QuaternionRigidTransform. This transform also allowsthe users to set a specific center

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransform.html

218 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D rota-
tion and a 3D trans-
lation. The rotation
is specified by a ver-
sor or unit quater-
nion, while the trans-
lation is represented
by a vector. Users
can specify the coor-
dinates of the center
of rotation.

6 The first three
parameters define
the versor and
the last three
parameters the
translation in
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.11:Characteristics of the VersorRigid3DTransform class.

of rotation. The center coordinates are not modified during the optimization performed in a
registration process. The main features of this transform are summarized in Table 8.11. This
transform is probably the best option to use when dealing with rigid transformations in 3D.

Given that the space of Versors is not a Vector space, typicalgradient descent opti-
mizers are not well suited for exploring the parametric space of this transform. The
itk::VersorRigid3DTranformOptimizer has been introduced in the ITK toolkit with the
purpose of providing an optimizer that is aware of the Versorspace properties on the rotational
part of this transform, as well as the Vector space properties on the translational part of the
transform.

8.6.13 Euler3DTransform

The itk::Euler3DTransform implements a rigid transformation in 3D space. It can be seen
as a rotation followed by a translation. This class exposes six parameters, three for the Euler
angles that represent the rotation and three for the translational components. This transform
also allows the users to set a specific center of rotation. Thecenter coordinates are not modified
during the optimization performed in a registration process. The main features of this transform
are summarized in Table 8.12.

The fact that the three rotational parameters are non-linear and do not behave like Vector spaces
must be taken into account when selecting an optimizer to work with this transform and when
fine tuning the parameters of such optimizer. It is strongly recommended to use this transform
by introducing very small variations on the rotational components. A small rotation will be in
the range of 1 degree, which in radians is approximately 0.0.1745.

You should not expect this transform to be able to compensatefor large rotations just by be-

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTranformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler3DTransform.html

8.6. Transforms 219

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a rigid ro-
tation in 3D space.
That is, a rotation fol-
lowed by a 3D trans-
lation. The rotation is
specified by three an-
gles representing ro-
tations to be applied
around the X, Y and
Z axis one after an-
other. The translation
part is represented by
a Vector. Users can
also specify the coor-
dinates of the center
of rotation.

6 The first three
parameters are
the rotation an-
gles around X, Y
and Z axis, and
the last three pa-
rameters are the
translations along
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.12:Characteristics of the Euler3DTransform class.

ing driven with the optimizer. In practice you must provide areasonable initialization of the
transform angles and only need to correct for residual rotations in the order of 10 or 20 degrees.

8.6.14 Similarity3DTransform

The itk::Similarity3DTransform implements a similarity transformation in 3D space. It
can be seen as an homogeneous scaling followed by aitk::VersorRigid3DTransform . This
class exposes seven parameters, one for the scaling factor,three for the versor components and
three for the translational components. This transform also allows the users to set a specific
center of rotation. The center coordinates are not modified during the optimization performed
in a registration process. Both the rotation and scaling operations are performed with respect to
the center of rotation. The main features of this transform are summarized in Table 8.13.

The fact that the scaling and rotational spaces are non-linear and do not behave like Vector
spaces must be taken into account when selecting an optimizer to work with this transform and
when fine tuning the parameters of such optimizer.

8.6.15 Rigid3DPerspectiveTransform

The itk::Rigid3DPerspectiveTransform implements a rigid transformation in 3D space
followed by a perspective projection. This transform is intended to be used in 3D/2D registra-

http://www.melaneum.com/OTB/doxygen/classitk_1_1Similarity3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Rigid3DPerspectiveTransform.html

220 Chapter 8. Image Registration

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a 3D ro-
tation, a 3D trans-
lation and homoge-
neous scaling. The
scaling factor is spec-
ified by a scalar, the
rotation is specified
by a versor, and the
translation is repre-
sented by a vector.
Users can also spec-
ify the coordinates of
the center of rotation,
that is the same cen-
ter used for scaling.

7 The first parame-
ter is the scaling
factor, the next
three parameters
define the versor
and the last three
parameters the
translation in
each dimension.

Only defined for three-
dimensional input and
output spaces.

Table 8.13:Characteristics of the Similarity3DTransform class.

tion problems where a 3D object is projected onto a 2D plane. This is the case of Fluoroscopic
images used for image guided intervention, and it is also thecase for classical radiography.
Users must provide a value for the focal distance to be used during the computation of the per-
spective transform. This transform also allows users to seta specific center of rotation. The
center coordinates are not modified during the optimizationperformed in a registration process.
The main features of this transform are summarized in Table 8.14. This transform is also used
when creating Digitally Reconstructed Radiographs (DRRs).

The strategies for optimizing the parameters of this transform are the same ones used for op-
timizing the VersorRigid3DTransform. In particular, you can use the same VersorRigid3D-
TranformOptimizer in order to optimize the parameters of this class.

8.6.16 AffineTransform

The itk::AffineTransform is one of the most popular transformations used for image regis-
tration. Its main advantage comes from the fact that it is represented as a linear transformation.
The main features of this transform are presented in Table 8.15.

The set of AffineTransform coefficients can actually be represented in a vector space of dimen-
sion(N+1)×N. This makes it possible for optimizers to be used appropriately on this search
space. However, the high dimensionality of the search spacealso implies a high computational
complexity of cost-function derivatives. The best compromise in the reduction of this com-
putational time is to use the transform’s Jacobian in combination with the image gradient for

http://www.melaneum.com/OTB/doxygen/classitk_1_1AffineTransform.html

8.6. Transforms 221

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a rigid
3D transformation
followed by a per-
spective projection.
The rotation is spec-
ified by a Versor,
while the translation
is represented by a
Vector. Users can
specify the coordi-
nates of the center of
rotation. They must
specifically a focal
distance to be used
for the perspective
projection. The
rotation center and
the focal distance
parameters are not
modified during the
optimization process.

6 The first three
parameters define
the Versor and
the last three
parameters the
Translation in
each dimension.

Only defined for three-
dimensional input and
two-dimensional output
spaces. This is one of the
few transforms where the
input space has a different
dimension from the output
space.

Table 8.14:Characteristics of the Rigid3DPerspectiveTransform class.

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents an affine
transform composed
of rotation, scaling,
shearing and transla-
tion. The transform
is specified by aN×
N matrix and aN×1
vector whereN is the
space dimension.

(N+1)×N The first N × N
parameters define
the matrix in
column-major
order (where
the column in-
dex varies the
fastest). The last
N parameters
define the trans-
lations for each
dimension.

Only defined when the input
and output space have the
same dimension.

Table 8.15:Characteristics of the AffineTransform class.

222 Chapter 8. Image Registration

computing the cost-function derivatives.

The coefficients of theN×N matrix can represent rotations, anisotropic scaling and shearing.
These coefficients are usually of a very different dynamic range compared to the translation
coefficients. Coefficients in the matrix tend to be in the range [−1 : 1], but are not restricted to
this interval. Translation coefficients, on the other hand,can be on the order of 10 to 100, and
are basically related to the image size and pixel spacing.

This difference in scale makes it necessary to take advantage of the functionality offered by the
optimizers for rescaling the parameter space. This is particularly relevant for optimizers based
on gradient descent approaches. This transform lets the user set an arbitrary center of rotation.
The coordinates of the rotation center do not make part of theparameters array passed to the
optimizer. Equation 8.7 illustrates the effect of applyingthe AffineTransform in a point in 3D
space.





x′

y′

z′



=





M00 M01 M02

M10 M11 M12

M20 M21 M22



 ·





x−Cx

y−Cy

z−Cz



+





Tx +Cx

Ty +Cy

Tz+Cz



 (8.7)

A registration based on the affine transform may be more effective when applied after simpler
transformations have been used to remove the major components of misalignment. Otherwise
it will incur an overwhelming computational cost. For example, using an affine transform, the
first set of optimization iterations would typically focus on removing large translations. This
task could instead be accomplished by a translation transform in a parameter space of sizeN
instead of the(N+1)×N associated with the affine transform.

Tracking the evolution of a registration process that uses AffineTransforms can be challenging,
since it is difficult to represent the coefficients in a meaningful way. A simple printout of the
transform coefficients generally does not offer a clear picture of the current behavior and trend
of the optimization. A better implementation uses the affinetransform to deform wire-frame
cube which is shown in a 3D visualization display.

8.6.17 BSplineDeformableTransform

The itk::BSplineDeformableTransform is designed to be used for solving deformable reg-
istration problems. This transform is equivalent to generation a deformation field where a de-
formation vector is assigned to every point in space. The deformation vectors are computed
using BSpline interpolation from the deformation values ofpoints located in a coarse grid, that
is usually referred to as the BSpline grid.

The BSplineDeformableTransform is not flexible enough for accounting for large rotations or
shearing, or scaling differences. In order to compensate for this limitation, it provides the
functionality of being composed with an arbitrary transform. This transform is known as the
Bulk transform and it is applied to points before they are mapped with the displacement field.

This transform do not provide functionalities for mapping Vectors nor CovariantVectors, only

http://www.melaneum.com/OTB/doxygen/classitk_1_1BSplineDeformableTransform.html

8.6. Transforms 223

Behavior Number of
Parameters

Parameter
Ordering

Restrictions

Represents a free
from deformation
by providing a de-
formation field from
the interpolation of
deformations in a
coarse grid.

M×N Where M is the
number of nodes
in the BSpline
grid andN is the
dimension of the
space.

Only defined when the in-
put and output space have
the same dimension. This
transform has the advantage
of allowing to compute de-
formable registration. It also
has the disadvantage of hav-
ing a very high dimensional
parametric space, and there-
fore requiring long compu-
tation times.

Table 8.16:Characteristics of the BSplineDeformableTransform class.

Points can be mapped. The reason is that the variations of a vector under a deformable transform
actually depend on the location of the vector in space. In other words, Vector only make sense
as the relative position between two points.

The BSplineDeformableTransform has a very large number of parameters and therefore is well
suited for theitk::LBFGSOptimizer and itk::LBFGSBOptimizer . The use of this transform
for was proposed in the following papers [77, 63, 64].

8.6.18 KernelTransforms

Kernel Transforms are a set of Transforms that are also suitable for performing deformable
registration. These transforms compute on the fly the displacements corresponding to a de-
formation field. The displacement values corresponding to every point in space are computed
by interpolation from the vectors defined by a set ofSource Landmarksand a set ofTarget
Landmarks.

Several variations of these transforms are available in thetoolkit. They differ on the type of
interpolation kernel that is used when computing the deformation in a particular point of space.
Note that these transforms are computationally expensive and that their numerical complexity
is proportional to the number of landmarks and the space dimension.

The following is the list of Transforms based on the KernelTransform.

• itk::ElasticBodySplineKernelTransform

• itk::ElasticBodyReciprocalSplineKernelTransform

• itk::ThinPlateSplineKernelTransform

http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSBOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ElasticBodySplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ElasticBodyReciprocalSplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThinPlateSplineKernelTransform.html

224 Chapter 8. Image Registration

• itk::ThinPlateR2LogRSplineKernelTransform

• itk::VolumeSplineKernelTransform

Details about the mathematical background of these transform can be found in the paper by
Daviset. al [20] and the papers by Rohret. al [75, 76].

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThinPlateR2LogRSplineKernelTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VolumeSplineKernelTransform.html

8.7. Metrics 225

8.7 Metrics

In OTB, itk::ImageToImageMetric objects quantitatively measure how well the transformed
moving image fits the fixed image by comparing the gray-scale intensity of the images. These
metrics are very flexible and can work with any transform or interpolation method and do not
require reduction of the gray-scale images to sparse extracted information such as edges.

The metric component is perhaps the most critical element ofthe registration framework. The
selection of which metric to use is highly dependent on the registration problem to be solved.
For example, some metrics have a large capture range while others require initialization close to
the optimal position. In addition, some metrics are only suitable for comparing images obtained
from the same type of sensor, while others can handle multi-sensor comparisons. Unfortunately,
there are no clear-cut rules as to how to choose a metric.

The basic inputs to a metric are: the fixed and moving images, atransform and an interpolator.
The methodGetValue() can be used to evaluate the quantitative criterion at the transform
parameters specified in the argument. Typically, the metricsamples points within a defined
region of the fixed image. For each point, the corresponding moving image position is computed
using the transform with the specified parameters, then the interpolator is used to compute the
moving image intensity at the mapped position.

The metrics also support region based evaluation. TheSetFixedImageMask() and
SetMovingImageMask() methods may be used to restrict evaluation of the metric within a
specified region. The masks may be of any type derived fromitk::SpatialObject .

Besides the measure value, gradient-based optimization schemes also require derivatives of
the measure with respect to each transform parameter. The methodsGetDerivatives() and
GetValueAndDerivatives() can be used to obtain the gradient information.

The following is the list of metrics currently available in OTB:

• Mean squares
itk::MeanSquaresImageToImageMetric

• Normalized correlation
itk::NormalizedCorrelationImageToImageMetric

• Mean reciprocal squared difference
itk::MeanReciprocalSquareDifferenceImageToImageMetr ic

• Mutual information by Viola and Wells
itk::MutualInformationImageToImageMetric

• Mutual information by Mattes
itk::MattesMutualInformationImageToImageMetric

• Kullback Liebler distance metric by Kullback and Liebler
itk::KullbackLeiblerCompareHistogramImageToImageMet ric

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SpatialObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

226 Chapter 8. Image Registration

• Normalized mutual information
itk::NormalizedMutualInformationHistogramImageToIma geMetric

• Mean squares histogram
itk::MeanSquaresHistogramImageToImageMetric

• Correlation coefficient histogram
itk::CorrelationCoefficientHistogramImageToImageMet ric

• Cardinality Match metric
itk::MatchCardinalityImageToImageMetric

• Kappa Statistics metric
itk::KappaStatisticImageToImageMetric

• Gradient Difference metric
itk::GradientDifferenceImageToImageMetric

In the following sections, we describe each metric type in detail. For ease of notation, we will
refer to the fixed imagef (X) and transformed moving image(m◦T(X)) as imagesA andB.

8.7.1 Mean Squares Metric

The itk::MeanSquaresImageToImageMetric computes the mean squared pixel-wise differ-
ence in intensity between imageA andB over a user defined region:

MS(A,B) =
1
N

N

∑
i=1

(Ai −Bi)
2 (8.8)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered

The optimal value of the metric is zero. Poor matches betweenimagesA andB result in large
values of the metric. This metric is simple to compute and hasa relatively large capture radius.

This metric relies on the assumption that intensity representing the same homologous point
must be the same in both images. Hence, its use is restricted to images of the same modality.
Additionally, any linear changes in the intensity result ina poor match value.

Exploring a Metric

Getting familiar with the characteristics of the Metric as acost function is fundamental in order
to find the best way of setting up an optimization process thatwill use this metric for solving a
registration problem.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KappaStatisticImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresImageToImageMetric.html

8.7. Metrics 227

8.7.2 Normalized Correlation Metric

The itk::NormalizedCorrelationImageToImageMetric computes pixel-wise cross-
correlation and normalizes it by the square root of the autocorrelation of the images:

NC(A,B) = −1× ∑N
i=1 (Ai ·Bi)

√

∑N
i=1A2

i ·∑N
i=1B2

i

(8.9)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered

Note the−1 factor in the metric computation. This factor is used to make the metric be optimal
when its minimum is reached. The optimal value of the metric is then minus one. Misalignment
between the images results in small measure values. The use of this metric is limited to images
obtained using the same imaging modality. The metric is insensitive to multiplicative factors
– illumination changes – between the two images. This metricproduces a cost function with
sharp peaks and well defined minima. On the other hand, it has arelatively small capture radius.

8.7.3 Mean Reciprocal Square Differences

The itk::MeanReciprocalSquareDifferenceImageToImageMetr ic computes pixel-wise
differences and adds them after passing them through a bell-shaped function 1

1+x2 :

PI(A,B) =
N

∑
i=1

1

1+ (Ai−Bi)
2

λ2

(8.10)

Ai is the i-th pixel of Image A
Bi is the i-th pixel of Image B

N is the number of pixels considered
λ controls the capture radius

The optimal value isN and poor matches results in small measure values. The characteristics
of this metric have been studied by Penney and Holden [40][69].

This image metric has the advantage of producing poor valueswhen few pixels are considered.
This makes it consistent when its computation is subject to the size of the overlap region be-
tween the images. The capture radius of the metric can be regulated with the parameterλ. The
profile of this metric is very peaky. The sharp peaks of the metric help to measure spatial mis-
alignment with high precision. Note that the notion of capture radius is used here in terms of
the intensity domain, not the spatial domain. In that regard, λ should be given in intensity units
and be associated with the differences in intensity that will make drop the metric by 50%.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html

228 Chapter 8. Image Registration

The metric is limited to images of the same image modality. The fact that its derivative is large
at the central peak is a problem for some optimizers that relyon the derivative to decrease as
the extrema are reached. This metric is also sensitive to linear changes in intensity.

8.7.4 Mutual Information Metric

The itk::MutualInformationImageToImageMetric computes the mutual information be-
tween imageA and imageB. Mutual information (MI) measures how much information one
random variable (image intensity in one image) tells about another random variable (image in-
tensity in the other image). The major advantage of using MI is that the actual form of the
dependency does not have to be specified. Therefore, complexmapping between two images
can be modeled. This flexibility makes MI well suited as a criterion of multi-modality registra-
tion [71].

Mutual information is defined in terms of entropy. Let

H(A) = −
Z

pA(a) logpA(a)da (8.11)

be the entropy of random variableA, H(B) the entropy of random variableB and

H(A,B) =

Z

pAB(a,b) logpAB(a,b)dadb (8.12)

be the joint entropy ofA andB. If A andB are independent, then

pAB(a,b) = pA(a)pB(b) (8.13)

and
H(A,B) = H(A)+H(B). (8.14)

However, if there is any dependency, then

H(A,B) < H(A)+H(B). (8.15)

The difference is called Mutual Information :I(A,B)

I(A,B) = H(A)+H(B)−H(A,B) (8.16)

Parzen Windowing

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html

8.7. Metrics 229

Sigma

Gray levels

Figure 8.16: In Parzen windowing, a continuous

density function is constructed by superimposing ker-

nel functions (Gaussian function in this case) cen-

tered on the intensity samples obtained from the im-

age.

In a typical registration problem, direct ac-
cess to the marginal and joint probability
densities is not available and hence the den-
sities must be estimated from the image data.
Parzen windows (also known as kernel den-
sity estimators) can be used for this purpose.
In this scheme, the densities are constructed
by taking intensity samplesSfrom the image
and super-positioning kernel functionsK(·)
centered on the elements ofSas illustrated in
Figure 8.16:

A variety of functions can be used as the
smoothing kernel with the requirement that
they are smooth, symmetric, have zero mean
and integrate to one. For example, boxcar,
Gaussian and B-spline functions are suitable
candidates. A smoothing parameter is used
to scale the kernel function. The larger the
smoothing parameter, the wider the kernel
function used and hence the smoother the density estimate. If the parameter is too large, fea-
tures such as modes in the density will get smoothed out. On the other hand, if the smoothing
parameter is too small, the resulting density may be too noisy. The estimation is given by the
following equation.

p(a) ≈ P∗(a) =
1
N ∑

sj∈S

K (a−sj) (8.17)

Choosing the optimal smoothing parameter is a difficult research problem and beyond the scope
of this software guide. Typically, the optimal value of the smoothing parameter will depend on
the data and the number of samples used.

Viola and Wells Implementation

OTB, through ITK, has multiple implementations of the mutual information metric. One of the
most commonly used isitk::MutualInformationImageToImageMetric and follows the
method specified by Viola and Wells in [89].

In this implementation, two separate intensity samplesSandR are drawn from the image: the
first to compute the density, and the second to approximate the entropy as a sample mean:

H(A) =
1
N ∑

r j∈R
logP∗(r j). (8.18)

Gaussian density is used as a smoothing kernel, where the standard deviationσ acts as the

http://www.melaneum.com/OTB/doxygen/classitk_1_1MutualInformationImageToImageMetric.html

230 Chapter 8. Image Registration

smoothing parameter.

The number of spatial samples used for computation is definedusing the
SetNumberOfSpatialSamples() method. Typical values range from 50 to 100. Note
that computation involves anN×N loop and hence, the computation burden becomes very
expensive when a large number of samples is used.

The quality of the density estimates depends on the choice ofthe standard deviation of the
Gaussian kernel. The optimal choice will depend on the content of the images. In our experience
with the toolkit, we have found that a standard deviation of 0.4 works well for images that
have been normalized to have a mean of zero and standard deviation of 1.0. The standard
deviation of the fixed image and moving image kernel can be setseparately using methods
SetFixedImageStandardDeviation() andSetMovingImageStandardDeviation() .

Mattes et al. Implementation

Another form of mutual information metric available in ITK follows the
method specified by Mattes et al. in [63] and is implemented bythe
itk::MattesMutualInformationImageToImageMetric class.

In this implementation, only one set of intensity samples isdrawn from the image. Using this
set, the marginal and joint probability density function (PDF) is evaluated at discrete positions
or bins uniformly spread within the dynamic range of the images. Entropy values are then
computed by summing over the bins.

The number of spatial samples used is set using methodSetNumberOfSpatialSamples() . The
number of bins used to compute the entropy values is set viaSetNumberOfHistogramBins() .

Since the fixed image PDF does not contribute to the metric derivatives, it does not need to be
smooth. Hence, a zero order (boxcar) B-spline kernel is usedfor computing the PDF. On the
other hand, to ensure smoothness, a third order B-spline kernel is used to compute the moving
image intensity PDF. The advantage of using a B-spline kernel over a Gaussian kernel is that the
B-spline kernel has a finite support region. This is computationally attractive, as each intensity
sample only affects a small number of bins and hence does not require aN×N loop to compute
the metric value.

During the PDF calculations, the image intensity values arelinearly scaled to have a minimum
of zero and maximum of one. This rescaling means that a fixed B-spline kernel bandwidth of
one can be used to handle image data with arbitrary magnitudeand dynamic range.

8.7.5 Kullback-Leibler distance metric

The itk::KullbackLeiblerCompareHistogramImageToImageMet ric is yet another infor-
mation based metric. Kullback-Leibler distance measures the relative entropy between two
discrete probability distributions. The distributions are obtained from the histograms of the two
input images,A andB.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

8.7. Metrics 231

The Kullback-Liebler distance between two histograms is given by

KL(A,B) =
N

∑
i

pA(i)× log
pA(i)
pB(i)

(8.19)

The distance is always non-negative and is zero only if the two distributions are the same. Note
that the distance is not symmetric. In other words,KL(A,B) 6= KL(B,A). Nevertheless, if the
distributions are not too dissimilar, the difference betweenKL(A,B) andKL(B,A) is small.

The implementation in ITK is based on [16].

8.7.6 Normalized Mutual Information Metric

Given two images,A andB, the normalized mutual information may be computed as

NMI(A,B) = 1+
I(A,B)

H(A,B)
=

H(A)+H(B)

H(A,B)
(8.20)

where the entropy of the images,H(A), H(B), the mutual information,I(A,B) and the joint
entropyH(A,B) are computed as mentioned in 8.7.4. Details of the implementation may be
found in the [38].

8.7.7 Mean Squares Histogram

The itk::MeanSquaresHistogramImageToImageMetric is an alternative implementation
of the Mean Squares Metric. In this implementation the jointhistogram of the fixed and the
mapped moving image is built first. The user selects the number of bins to use in this joint
histogram. Once the joint histogram is computed, the bins are visited with an iterator. Given
that each bin is associated to a pair of intensities of the form: {fixed intensity, moving intensity},
along with the number of pixels pairs in the images that fell in this bin, it is then possible to
compute the sum of square distances between the intensitiesof both images at the quantization
levels defined by the joint histogram bins.

This metric can be represented with Equation 8.21

MSH= ∑
f

∑
m

H(f ,m)(f −m)2 (8.21)

whereH(f ,m) is the count on the joint histogram bin identified with fixed image intensityf
and moving image intensitym.

http://www.melaneum.com/OTB/doxygen/classitk_1_1MeanSquaresHistogramImageToImageMetric.html

232 Chapter 8. Image Registration

8.7.8 Correlation Coefficient Histogram

The itk::CorrelationCoefficientHistogramImageToImageMet ric computes the cross
correlation coefficient between the intensities in the fixedimage and the intensities on the
mapped moving image. This metric is intended to be used in images of the same modality
where the relationship between the intensities of the fixed image and the intensities on the mov-
ing images is given by a linear equation.

The correlation coefficient is computed from the Joint histogram as

CC=
∑ f ∑m H(f ,m)

(

f ·m− f ·m
)

∑ f H(f)
(

(f − f)2
)

· ∑mH(m)((m−m)2)
(8.22)

WhereH(f ,m) is the joint histogram count for the bin identified with the fixed image intensity
f and the moving image intensitym. The valuesf andm are the mean values of the fixed and
moving images respectively.H(f) andH(m) are the histogram counts of the fixed and moving
images respectively. The optimal value of the correlation coefficient is 1, which would indicate
a perfect straight line in the histogram.

8.7.9 Cardinality Match Metric

The itk::MatchCardinalityImageToImageMetric computes cardinality of the set of pixels
that match exactly between the moving and fixed images. In other words, it computes the
number of pixel matches and mismatches between the two images. The match is designed for
label maps. All pixel mismatches are considered equal whether they are between label 1 and
label 2 or between label 1 and label 500. In other words, the magnitude of an individual label
mismatch is not relevant, or the occurrence of a label mismatch is important.

The spatial correspondence between the fixed and moving images is established us-
ing a itk::Transform using the SetTransform() method and an interpolator using
SetInterpolator() . Given that we are matching pixels with labels, it is advisable to use
Nearest Neighbor interpolation.

8.7.10 Kappa Statistics Metric

The itk::KappaStatisticImageToImageMetric computes spatial intersection of two binary
images. The metric here is designed for matching pixels in two images with the same exact
value, which may be set usingSetForegroundValue() . Given two imagesA andB, the κ
coefficient is computed as

κ =
|A|∩ |B|
|A|+ |B| (8.23)

http://www.melaneum.com/OTB/doxygen/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MatchCardinalityImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1KappaStatisticImageToImageMetric.html

8.8. Optimizers 233

where|A| is the number of foreground pixels in imageA. This computes the fraction of area
in the two images that is common to both the images. In the computation of the metric, only
foreground pixels are considered.

8.7.11 Gradient Difference Metric

This itk::GradientDifferenceImageToImageMetric metric evaluates the difference in the
derivatives of the moving and fixed images. The derivatives are passed through a function11+x
and then they are added. The purpose of this metric is to focusthe registration on the edges
of structures in the images. In this way the borders exert larger influence on the result of the
registration than do the inside of the homogeneous regions on the image.

8.8 Optimizers

Optimization algorithms are encapsulated asitk::Optimizer objects within OTB. Optimizers
are generic and can be used for applications other than registration. Within the registration
framework, subclasses ofitk::SingleValuedNonLinearOptimizer are used to optimize
the metric criterion with respect to the transform parameters.

The basic input to an optimizer is a cost function object. In the context of registra-
tion, itk::ImageToImageMetric classes provides this functionality. The initial param-
eters are set usingSetInitialPosition() and the optimization algorithm is invoked by
StartOptimization() . Once the optimization has finished, the final parameters canbe ob-
tained usingGetCurrentPosition() .

Some optimizers also allow rescaling of their individual parameters. This is convenient for
normalizing parameters spaces where some parameters have different dynamic ranges. For
example, the first parameter ofitk::Euler2DTransform represents an angle while the last
two parameters represent translations. A unit change in angle has a much greater impact on an
image than a unit change in translation. This difference in scale appears as long narrow valleys
in the search space making the optimization problem more difficult. Rescaling the translation
parameters can help to fix this problem. Scales are represented as anitk::Array of doubles
and set defined usingSetScales() .

There are two main types of optimizers in OTB. In the first typewe find optimizers that are
suitable for dealing with cost functions that return a single value. These are indeed the most
common type of cost functions, and are known asSingle Valuedfunctions, therefore the corre-
sponding optimizers are known asSingle Valuedoptimizers. The second type of optimizers are
those suitable for managing cost functions that return multiple values at each evaluation. These
cost functions are common in model-fitting problems and are known asMulti Valuedor Multi-
variatefunctions. The corresponding optimizers are therefore calledMultipleValuedoptimizers
in OTB.

The itk::SingleValuedNonLinearOptimizer is the base class for the first type of optimiz-

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDifferenceImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Optimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SingleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Euler2DTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Array.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SingleValuedNonLinearOptimizer.html

23
4

C
ha

pt
er

8.
Im

ag
e

R
eg

is
tr

at
io

n

itk::ConjugateGradientOptimizer

itk::OnePlusOneEvolutionaryOptimizer itk::SingleValuedNonLinearVnlOptimizer

itk::MultipleValuedNonLinearOptimizer

itk::NonLinearOptimizer

itk::SingleValuedNonLinearOptimizer

itk::AmoebaOptimizer

itk::LevenbergMarquardtOptimizer

itk::MultipleValuedNonLinearVnlOptimizer

itk::MultipleValuedCostFunctionitk::SingleValuedCostFunction

itk::CostFunction itk::CostFunction

itk::Object

itk::Optimizer

itk::LBFGSOptimizer

itk::RegularStepGradientDescentBaseOptimizer

itk::RegularStepGradientDescentOptimizer

itk::VersorTransformOptimizer

itk::VersorRigid3DTransformOptimizer

itk::SPSAOptimizer

itk::PowellOptimizer

itk::FRPROptimizer

itk::GradientDescentOptimizer

itk::QuaternionRigidTransformGradientDescentOptimizer

VxL/vnl
vnl_levenberg_marquardt
vnl_amoeba
vnl_conjugate_gradient
vnl_lbgs

F
ig

ur
e

8.
17

:C
la

ss
di

ag
ra

m
of

th
e

op
tim

iz
er

s
hi

er
ar

ch
y.

8.8. Optimizers 235

ers while the itk::MultipleValuedNonLinearOptimizer is the base class for the second
type of optimizers.

The types of single valued optimizer currently available inOTB are:

• Amoeba: Nelder-Meade downhill simplex. This optimizer is actually implemented in the
vxl/vnl numerics toolkit. The ITK classitk::AmoebaOptimizer is merely an adaptor
class.

• Conjugate Gradient: Fletcher-Reeves form of the conjugate gradient with or without
preconditioning (itk::ConjugateGradientOptimizer). It is also an adaptor to an
optimizer invnl .

• Gradient Descent: Advances parameters in the direction of the gradient wherethe step
size is governed by a learning rate (itk::GradientDescentOptimizer).

• Quaternion Rigid Transform Gradient Descent: A specialized version of GradientDe-
scentOptimizer for QuaternionRigidTransform parameters, where the parameters repre-
senting the quaternion are normalized to a magnitude of one at each iteration to represent
a pure rotation (itk::QuaternionRigidTransformGradientDescent).

• LBFGS: Limited memory Broyden, Fletcher, Goldfarb and Shannon minimization. It is
an adaptor to an optimizer invnl (itk::LBFGSOptimizer).

• LBFGSB: A modified version of the LBFGS optimizer that allows to specify bounds for
the parameters in the search space. It is an adaptor to an optimizer innetlib . Details on
this optimizer can be found in [11, 12] (itk::LBFGSBOptimizer).

• One Plus One Evolutionary: Strategy that simulates the biological evolution of a set of
samples in the search space (itk::OnePlusOneEvolutionaryOptimizer.). Details on
this optimizer can be found in [83].

• Regular Step Gradient Descent: Advances parameters in the direction of
the gradient where a bipartition scheme is used to compute the step size (
itk::RegularStepGradientDescentOptimizer).

• Powell Optimizer: Powell optimization method. For an N-dimensional parameter space,
each iteration minimizes(maximizes) the function in N (initially orthogonal) directions.
This optimizer is described in [72]. (itk::PowellOptimizer).

• SPSA Optimizer: Simultaneous Perturbation Stochastic Approximation Method.
This optimizer is described inhttp://www.jhuapl.edu/SPSA and in [81]. (
itk::SPSAOptimizer).

• Versor Transform Optimizer : A specialized version of the RegularStepGradientDes-
centOptimizer for VersorTransform parameters, where the current rotation is composed
with the gradient rotation to produce the new rotation versor. It follows the definition of
versor gradients defined by Hamilton [39] (itk::VersorTransformOptimizer).

http://www.melaneum.com/OTB/doxygen/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1AmoebaOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConjugateGradientOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1QuaternionRigidTransformGradientDescent.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LBFGSBOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1OnePlusOneEvolutionaryOptimizer..html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RegularStepGradientDescentOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PowellOptimizer.html
http://www.jhuapl.edu/SPSA
http://www.melaneum.com/OTB/doxygen/classitk_1_1SPSAOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorTransformOptimizer.html

236 Chapter 8. Image Registration

• Versor Rigid3D Transform Optimizer : A specialized version of the RegularStepGra-
dientDescentOptimizer for VersorRigid3DTransform parameters, where the current ro-
tation is composed with the gradient rotation to produce thenew rotation versor. The
translational part of the transform parameters are updatedas usually done in a vector
space. (itk::VersorRigid3DTransformOptimizer).

A parallel hierarchy exists for optimizing multiple-valued cost functions. The base optimizer in
this branch of the hierarchy is theitk::MultipleValuedNonLinearOptimizer whose only
current derived class is:

• Levenberg Marquardt : Non-linear least squares minimization. Adapted to an optimizer
in vnl (itk::LevenbergMarquardtOptimizer). This optimizer is described in [72].

Figure 8.17 illustrates the full class hierarchy of optimizers in OTB. Optimizers in the lower
right corner are adaptor classes to optimizers existing in the vxl/vnl numerics toolkit. The
optimizers interact with theitk::CostFunction class. In the registration framework this cost
function is reimplemented in the form of ImageToImageMetric.

http://www.melaneum.com/OTB/doxygen/classitk_1_1VersorRigid3DTransformOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MultipleValuedNonLinearOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LevenbergMarquardtOptimizer.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CostFunction.html

CHAPTER

NINE

Disparity Map Estimation

This chapter introduces the tools available in OTB for the estimation of geometric disparities
between images.

9.1 Disparity Maps

The problem we want to deal with is the one of the automatic disparity map estimation of
images acquired with different sensors. By different sensors, we mean sensors which produce
images with different radiometric properties, that is, sensors which measure different physical
magnitudes: optical sensors operating in different spectral bands, radar and optical sensors, etc.

For this kind of image pairs, the classical approach of fine correlation [54, 30], can not
always be used to provide the required accuracy, since this similarity measure (the correla-
tion coefficient) can only measure similarities up to an affine transformation of the radiometries.

There are two main questions which can be asked about what we want to do:

1. Can we define what the similarity is between, for instance,a radar and an optical image?

2. What doesfine registrationmean in the case where the geometric distortions are so big
and the source of information can be located in different places (for instance, the same
edge can be produced by the edge of the roof of a building in an optical image and by the
wall-ground bounce in a radar image)?

We can answer by saying that the images of the same object obtained by different sensors are
two different representations of the same reality. For the same spatial location, we have two
different measures. Both informations come from the same source and thus they have a lot of
common information. This relationship may not be perfect, but it can be evaluated in a relative
way: different geometrical distortions are compared and the one leading to the strongest link

238 Chapter 9. Disparity Map Estimation

between the two measures is kept.

When working with images acquired with the same (type of) sensor one can use a very effective
approach. Since a correlation coefficient measure is robustand fast for similar images, one can
afford to apply it in every pixel of one image in order to search for the corresponding HP in the
other image. One can thus build a deformation grid (a sampling of the deformation map). If
the sampling step of this grid is short enough, the interpolation using an analytical model is not
needed and high frequency deformations can be estimated. The obtained grid can be used as a
re-sampling grid and thus obtain the registered images.

No doubt, this approach, combined with image interpolationtechniques (in order to estimate
sub-pixel deformations) and multi-resolution strategiesallows for obtaining the best perfor-
mances in terms of deformation estimation, and hence for theautomatic image registration.

Unfortunately, in the multi-sensor case, the correlation coefficient can not be used. We will
thus try to find similarity measures which can be applied in the multi-sensor case with the same
approach as the correlation coefficient.

We start by giving several definitions which allow for the formalization of the image registration
problem. First of all, we define the master image and the slaveimage:

Definition 1 Master image: image to which other images will be registered; its geometry is
considered as the reference.

Definition 2 Slave image: image to be geometrically transformed in orderto be registered to
the master image.

Two main concepts are the one ofsimilarity measureand the one ofgeometric transformation:

Definition 3 Let I and J be two images and let c a similarity criterion, we call similarity mea-
sure any scalar, strictly positive function

Sc(I ,J) = f (I ,J,c). (9.1)

Sc has an absolute maximum when the two images I and J are identical in the sense of the
criterion c.

Definition 4 A geometric transformation T is an operator which, applied to the coordinates
(x,y) of a point in the slave image, gives the coordinates(u,v) of its HP in the master image:

(

u
v

)

= T

(

x
y

)

(9.2)

9.1. Disparity Maps 239

Finally we introduce a definition for the image registrationproblem:

Definition 5 Registration problem:

1. determine a geometric transformation T which maximizes the similarity between a master
image I and the result of the transformation T◦J:

Argmax
T

(Sc(I ,T ◦J)); (9.3)

2. re-sampling of J by applying T .

9.1.1 Geometric deformation modeling

The geometric transformation of definition 4 is used for the correction of the existing deforma-
tion between the two images to be registered. This deformation contains informations which
are linked to the observed scene and the acquisition conditions. They can be classified into 3
classes depending on their physical source:

1. deformations linked to the mean attitude of the sensor (incidence angle, presence or ab-
sence of yaw steering, etc.);

2. deformations linked to a stereo vision (mainly due to the topography);

3. deformations linked to attitude evolution during the acquisition (vibrations which are
mainly present in push-broom sensors).

These deformations are characterized by their spatial frequencies and intensities which are
summarized in table 9.1.

Depending on the type of deformation to be corrected, its model will be different. For example,
if the only deformation to be corrected is the one introducedby the mean attitude, a physical
model for the acquisition geometry (independent of the image contents) will be enough. If
the sensor is not well known, this deformation can be approximated by a simple analytical
model. When the deformations to be modeled are high frequency, analytical (parametric)
models are not suitable for a fine registration. In this case,one has to use a fine sampling of the

Intensity Spatial Frequency
Mean Attitude Strong Low

Stereo Medium High and Medium
Attitude evolution Low Low to Medium

Table 9.1: Characterization of the geometric deformation sources

240 Chapter 9. Disparity Map Estimation

deformation, that means the use of deformation grids. Thesegrids give, for a set of pixels of
the master image, their location in the slave image.

The following points summarize the problem of the deformation modeling:

1. An analytical model is just an approximation of the deformation. It is often obtained as
follows:

(a) Directly from a physical model without using any image content information.

(b) By estimation of the parameters of an a priori model (polynomial, affine, etc.).
These parameters can be estimated:

i. Either by solving the equations obtained by taking HP. TheHP can be manually
or automatically extracted.

ii. Or by maximization of a global similarity measure.

2. A deformation grid is a sampling of the deformation map.

The last point implies that the sampling period of the grid must be short enough in order to
account for high frequency deformations (Shannon theorem). Of course, if the deformations are
non stationary (it is usually the case of topographic deformations), the sampling can be irregular.

As a conclusion, we can say that definition 5 poses the registration problem as an optimization
problem. This optimization can be either global or local with a similarity measure which can
also be either local or global. All this is synthesized in table 9.2.

The ideal approach would consist in a registration which is locally optimized, both in similarity
and deformation, in order to have the best registration quality. This is the case when deforma-
tion grids with dense sampling are used. Unfortunately, this case is the most computationally
heavy and one often uses either a low sampling rate of the grid, or the evaluation of the
similarity in a small set of pixels for the estimation of an analytical model. Both of these

Geometric model Similarity measure Optimization of the
deformation

Physical model None Global
Analytical model Local Global
with a priori HP
Analytical model Global Global

without a priori HP
Grid Local Local

Table 9.2: Approaches to image registration

9.1. Disparity Maps 241

Reference Image Secondary Image

Candidate points

Estimation window

Search window

Similarity estimation

Similarity optimization

Optimum

∆x,∆y

Figure 9.1: Estimation of the correlation surface.

choices lead to local registration errors which, dependingon the topography, can amount
several pixels.

Even if this registration accuracy can be enough in many applications, (ortho-registration, im-
port into a GIS, etc.), it is not acceptable in the case of datafusion, multi-channel segmentation
or change detection [86]. This is why we will focus on the problem of deformation estimation
using dense grids.

9.1.2 Similarity measures

The fine modeling of the geometric deformation we are lookingfor needs for the estimation of
the coordinates of nearly every pixel in the master image inside the slave image. In the classical
mono-sensor case where we use the correlation coefficient weproceed as follows.

The geometric deformation is modeled by local rigid displacements. One wants to estimate the
coordinates of each pixel of the master image inside the slave image. This can be represented
by a displacement vector associated to every pixel of the master image. Each of the two
components (lines and columns) of this vector field will be called deformation grid.

We use a small window taken in the master image and we test the similarity for every possible
shift within an exploration area inside the slave image (figure 9.1).

That means that for each position we compute the correlationcoefficient. The result is a corre-
lation surface whose maximum gives the most likely local shift between both images:

242 Chapter 9. Disparity Map Estimation

ρI ,J(∆x,∆y) =

1
N

∑x,y(I(x,y)−mI)(J(x+∆x,y+∆y)−mJ)

σI σJ
.

(9.4)

In this expression,N is the number of pixels of the analysis window,mI and mJ are the
estimated mean values inside the analysis window of respectively imageI and imageJ andσI

andσJ are their standard deviations.

Quality criteria can be applied to the estimated maximum in order to give a confidence factor to
the estimated shift: width of the peak, maximum value, etc. Sub-pixel shifts can be measured
by applying fractional shifts to the sliding window. This can be done by image interpolation.

The interesting parameters of the procedure are:

• The size of the exploration area: it determines the computational load of the algorithm
(we want to reduce it), but it has to be large enough in order tocope with large deforma-
tions.

• The size of the sliding window: the robustness of the correlation coefficient estimation
increases with the window size, but the hypothesis of local rigid shifts may not be valid
for large windows.

The correlation coefficient cannot be used with original grey-level images in the multi-sensor
case. It could be used on extracted features (edges, etc.), but the feature extraction can introduce
localization errors. Also, when the images come from sensors using very different modalities,
it can be difficult to find similar features in both images. In this case, one can try to find the
similarity at the pixel level, but with other similarity measures and apply the same approach as
we have just described.

The concept of similarity measure has been presented in definition 3. The difficulty of the
procedure lies in finding the functionf which properly represents the criterionc. We also need
that f be easily and robustly estimated with small windows. We extend here what we proposed
in [43].

9.1.3 The correlation coefficient

We remind here the computation of the correlation coefficient between two image windowsI
andJ. The coordinates of the pixels inside the windows are represented by(x,y):

9.2. Disparity Map Estimation Framework 243

ρ(I ,J) =
1
N

∑x,y(I(x,y)−mI)(J(x,y)−mJ)

σI σJ
. (9.5)

In order to qualitatively characterize the different similarity measures we propose the following
experiment. We take two images which are perfectly registered and we extract a small window
of sizeN×M from each of the images (this size is set to 101×101 for this experiment). For
the master image, the window will be centered on coordinates(x0,y0) (the center of the image)
and for the slave image, it will be centered on coordinates(x0 + ∆x,y0). With different values
of ∆x (from -10 pixels to 10 pixels in our experiments), we obtain an estimate ofρ(I ,J) as a
function of∆x, which we write asρ(∆x) for short. The obtained curve should have a maximum
for ∆x = 0, since the images are perfectly registered. We would also like to have an absolute
maximum with a high value and with a sharp peak, in order to have a good precision for the
shift estimate.

9.2 Disparity Map Estimation Framework

Taking figure 9.1 as a starting point, we can generalize the approach by letting the user choose:

• the similarity measure;

• the geometric transform to be estimated (see definition 4);

In order to do this, we will use the ITK registration framework locally on a set of nodes. Once
the disparity is estimated on a set of nodes, we will use it to generate a deformation field: the
dense, regular vector field which gives the translation to beapplied to a pixel of the secondary
image to be positioned on its homologous point of the master image.

9.3 Simple Disparity Map Estimation

The source code for this example can be found in the file
Examples/DisparityMap/SimpleDisparityMapEstimationE xample.cxx .

This example demonstrates the use of theotb::DisparityMapEstimationMethod , along
with the otb::NearestPointDeformationFieldGenerator . The first filter performs defor-
mation estimation according to a given transform, using embedded ITK registration framework.
It takes as input a possibly non regular point set and produces a point set with associated point
data representing the deformation.

The second filter generates a deformation field by using nearest neighbor interpolation on the
deformation values from the point set. More advanced methods for deformation field interpola-
tion are also available.

http://www.melaneum.com/OTB/doxygen/classotb_1_1DisparityMapEstimationMethod.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html

244 Chapter 9. Disparity Map Estimation

The first step toward the use of these filters is to include the proper header files.

#include "otbDisparityMapEstimationMethod.h"
#include "itkTranslationTransform.h"
#include "itkNormalizedCorrelationImageToImageMetric .h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkGradientDescentOptimizer.h"
#include "otbNearestPointDeformationFieldGenerator.h "
#include "itkWarpImageFilter.h"

Then we must decide what pixel type to use for the image. We choose to do all the computation
in floating point precision and rescale the results between 0and 255 in order to export PNG
images.

typedef double PixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.Please note that the
otb::NearestPointDeformationFieldGenerator generates aotb::VectorImage to rep-
resent the deformation field in both image directions.

typedef otb::Image<PixelType,Dimension> ImageType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

The next step is to define the transform we have chosen to modelthe deformation. In this
example the deformation is modeled as aitk::TranslationTransform .

typedef itk::TranslationTransform<double,Dimension> T ransformType;
typedef TransformType::ParametersType ParametersType;

Then we define the metric we will use to evaluate the local registration be-
tween the fixed and the moving image. In this example we choosed the
itk::NormalizedCorrelationImageToImageMetric .

typedef itk::NormalizedCorrelationImageToImageMetric <ImageType,
ImageType> MetricType;

Disparity map estimation implies evaluation of the moving image at non-grid po-
sition. Therefore, an interpolator is needed. In this example we choosed the
itk::WindowedSincInterpolateImageFunction .

http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1WindowedSincInterpolateImageFunction.html

9.3. Simple Disparity Map Estimation 245

typedef itk::Function::HammingWindowFunction<3> Windo wFunctionType;
typedef itk::ZeroFluxNeumannBoundaryCondition<ImageT ype> ConditionType;
typedef itk::WindowedSincInterpolateImageFunction<Im ageType,3,

WindowFunctionType,ConditionType ,double> Interpolato rType;

To perform local registration, an optimizer is needed. In this example we choosed the
itk::GradientDescentOptimizer .

typedef itk::GradientDescentOptimizer OptimizerType;

Now we will define the point set to represent the point where tocompute local disparity.

typedef itk::PointSet<ParametersType,Dimension> Point SetType;

Now we define the disparity map estimation filter.

typedef otb::DisparityMapEstimationMethod<ImageType,
ImageType,PointSetType> DMEstimationType;

typedef DMEstimationType::SizeType SizeType;

The input image reader also has to be defined.

typedef otb::ImageFileReader<ImageType> ReaderType;

Two readers are instantiated : one for the fixed image, and onefor the moving image.

ReaderType::Pointer fixedReader = ReaderType::New();
ReaderType::Pointer movingReader = ReaderType::New();

fixedReader->SetFileName(argv[1]);
movingReader->SetFileName(argv[2]);
fixedReader->Update();
movingReader->Update();

We will the create a regular point set where to compute the local disparity.

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientDescentOptimizer.html

246 Chapter 9. Disparity Map Estimation

SizeType fixedSize =
fixedReader->GetOutput()->GetLargestPossibleRegion().GetSize();

unsigned int NumberOfXNodes = (fixedSize[0]-2*atoi(argv [7])-1)
/atoi(argv[5]);

unsigned int NumberOfYNodes = (fixedSize[1]-2*atoi(argv [7])-1)
/atoi(argv[6]);

ImageType::IndexType firstNodeIndex;
firstNodeIndex[0] = atoi(argv[7]);
firstNodeIndex[1] = atoi(argv[7]);

PointSetType::Pointer nodes = PointSetType::New();
unsigned int nodeCounter = 0;

for(unsigned int x=0; x<NumberOfXNodes; x++)
{

for(unsigned int y=0; y<NumberOfYNodes; y++)
{

PointType p;
p[0] = firstNodeIndex[0]+x*atoi(argv[5]);
p[1] = firstNodeIndex[1]+y*atoi(argv[6]);
nodes->SetPoint(nodeCounter++,p);

}
}

We build the transform, interpolator, metric and optimizerfor the disparity map estimation filter.

TransformType::Pointer transform = TransformType::New();

OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->MinimizeOn();
optimizer->SetLearningRate(atof(argv[9]));
optimizer->SetNumberOfIterations(atoi(argv[10]));

InterpolatorType::Pointer interpolator = InterpolatorT ype::New();

MetricType::Pointer metric = MetricType::New();
metric->SetSubtractMean(true);

We then set up the disparity map estimation filter. This filterwill perform a local registration at
each point of the given point set using the ITK registration framework. It will produce a point
set whose point data reflects the disparity locally around the associated point.

Point data will contains the following data :

1. The final metric value found in the registration process,

9.3. Simple Disparity Map Estimation 247

2. the deformation value in the first image direction,

3. the deformation value in the second image direction,

4. the final parameters of the transform.

Please note that in the case of aitk::TranslationTransform , the deformation values and
the transform parameters are the same.

DMEstimationType::Pointer dmestimator = DMEstimationTy pe::New();

dmestimator->SetTransform(transform);
dmestimator->SetOptimizer(optimizer);
dmestimator->SetInterpolator(interpolator);
dmestimator->SetMetric(metric);

SizeType windowSize, explorationSize;
explorationSize.Fill(atoi(argv[7]));
windowSize.Fill(atoi(argv[8]));

dmestimator->SetWinSize(windowSize);
dmestimator->SetExploSize(explorationSize);

The initial transform parameters can be set via theSetIntialTransformParameters()
method. In our case, we simply fill the parameter array with null values.

DMEstimationType::ParametersType
initialParameters(transform->GetNumberOfParameters());

initialParameters[0] = 0.0;
initialParameters[1] = 0.0;
dmestimator->SetInitialTransformParameters(initialP arameters);

Now we can set the input for the deformation field estimation filter. Fixed image can be set
using theSetFixedImage() method, moving image can be set using theSetMovingImage() ,
and input point set can be set using theSetPointSet() method.

dmestimator->SetFixedImage(fixedReader->GetOutput());
dmestimator->SetMovingImage(movingReader->GetOutput ());
dmestimator->SetPointSet(nodes);

Once the estimation has been performed by theotb::DisparityMapEstimationMethod , one
can generate the associated deformation field (that means translation in first and second image
direction). It will be represented as aotb::VectorImage .

http://www.melaneum.com/OTB/doxygen/classitk_1_1TranslationTransform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DisparityMapEstimationMethod.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

248 Chapter 9. Disparity Map Estimation

typedef otb::VectorImage<PixelType,Dimension> Deforma tionFieldType;

For the deformation field estimation, we will use the
otb::NearestPointDeformationFieldGenerator . This filter will perform a nearest
neighbor interpolation on the deformation values in the point set data.

typedef otb::NearestPointDeformationFieldGenerator<P ointSetType,
DeformationFieldType> GeneratorType;

The disparity map estimation filter is instanciated.

GeneratorType::Pointer generator = GeneratorType::New();

We must then specify the input point set using theSetPointSet() method.

generator->SetPointSet(dmestimator->GetOutput());

One must also specify the origin, size and spacing of the output deformation field.

generator->SetOutputOrigin(fixedReader->GetOutput() ->GetOrigin());
generator->SetOutputSpacing(fixedReader->GetOutput()->GetSpacing());
generator->SetOutputSize(fixedReader->GetOutput()

->GetLargestPossibleRegion().GetSize());

The local registration process can lead to wrong deformation values and transform parameters.
To Select only points in point set for which the registrationprocess was succesful, one can set
a threshold on the final metric value : points for which the absolute final metric value is below
this threshold will be discarded. This threshold can be set with the SetMetricThreshold()
method.

generator->SetMetricThreshold(atof(argv[11]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestPointDeformationFieldGenerator.html

9.3. Simple Disparity Map Estimation 249

The following classes provide similar functionality:

• otb::NNearestPointsLinearInterpolateDeformationFiel dGenerator

• otb::BSplinesInterpolateDeformationFieldGenerator

• otb::NearestTransformDeformationFieldGenerator

• otb::NNearestTransformsLinearInterpolateDeformation FieldGenerator

• otb::BSplinesInterpolateTransformDeformationFieldGe nerator

Now we can warp our fixed image according to the estimated deformation field. This will be
performed by theitk::WarpImageFilter . First, we define this filter.

typedef itk::WarpImageFilter<ImageType,ImageType,
DeformationFieldType> ImageWarperType;

Then we instantiate it.

ImageWarperType::Pointer warper = ImageWarperType::New ();

We set the input image to warp using theSetInput() method, and the deformation field using
theSetDeformationField() method.

warper->SetInput(movingReader->GetOutput());
warper->SetDeformationField(generator->GetOutput()) ;
warper->SetOutputOrigin(fixedReader->GetOutput()->G etOrigin());
warper->SetOutputSpacing(fixedReader->GetOutput()-> GetSpacing());

In order to write the result to a PNG file, we will rescale it on aproper range.

typedef itk::RescaleIntensityImageFilter<ImageType,
OutputImageType> RescalerType;

RescalerType::Pointer outputRescaler = RescalerType::N ew();
outputRescaler->SetInput(warper->GetOutput());
outputRescaler->SetOutputMaximum(255);
outputRescaler->SetOutputMinimum(0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1NNearestPointsLinearInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BSplinesInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NearestTransformDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NNearestTransformsLinearInterpolateDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BSplinesInterpolateTransformDeformationFieldGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1WarpImageFilter.html

250 Chapter 9. Disparity Map Estimation

We can now write the image to a file. The filters are executed by invoking theUpdate() method.

typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

WriterType::Pointer outputWriter = WriterType::New();
outputWriter->SetInput(outputRescaler->GetOutput()) ;
outputWriter->SetFileName(argv[4]);
outputWriter->Update();

We also want to write the deformation field along the first direction to a file. To achieve this we
will use the otb::MultiToMonoChannelExtractROI filter.

typedef otb::MultiToMonoChannelExtractROI<PixelType,
PixelType> ChannelExtractionFilterType;

ChannelExtractionFilterType::Pointer channelExtracto r
= ChannelExtractionFilterType::New();

channelExtractor->SetInput(generator->GetOutput());
channelExtractor->SetChannel(1);

RescalerType::Pointer fieldRescaler = RescalerType::Ne w();
fieldRescaler->SetInput(channelExtractor->GetOutput ());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);

WriterType::Pointer fieldWriter = WriterType::New();
fieldWriter->SetInput(fieldRescaler->GetOutput());
fieldWriter->SetFileName(argv[3]);
fieldWriter->Update();

Figure 9.2 shows the result of applying disparity map estimation on a regular point set, followed
by deformation field estimation and fixed image resampling onan Ikonos image. The moving
image is the fixed image warped with a sinusoidal deformationwith a 3-pixels amplitude and a
170-pixels period. Please note that there are more efficientways to interpolate the deformation
field than nearest neighbor, including BSplines fitting.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiToMonoChannelExtractROI.html

9.3. Simple Disparity Map Estimation 251

Figure 9.2:From left to right and top to bottom: fixed input image, moving image with a sinusoid deforma-

tion, estimated deformation field in the horizontal direction, resampled moving image.

CHAPTER

TEN

Ortho-registration

Input Series

Sensor
Model

DEM

Geographic Geometry

Homologous
Points

Bundle-block
Adjustment

Map Pro-
jections

Cartographic Geometry

Figure 10.1:Image Ortho-registration Procedure.

This chapter introduces the functionnalities available inOTB for image ortho-registration. We
define ortho-registration as the procedure allowing to transform an image in sensor geometry
to a geographic or cartographic projection.

Figure 10.1 shows a synoptic view of the different steps involved in a classical ortho-registration
processing chain able to deal with image series. These stepsare the following:

• Sensor modelling: the geometric sensor model allows to convert image coordinates (line,
column) into geographic coordinates (latitude, longitude); a rigorous modelling needs a
digital elevation model (DEM) in order to take into account the terrain topography.

254 Chapter 10. Ortho-registration

• Bundle-block adjustment: in the case of image series, the geometric models and their
parameters can be refined by using homologous points betweenthe images. This is an
optional step and not currently implemented in OTB.

• Map projection: this step allows to go from geographic coordinates to some specific
cartographic projection as Lambert, Mercator or UTM.

10.1 Sensor Models

A sensor model is a set of equations giving the relationship between image pixel(l ,c) co-
ordinates and ground(X,Y) coordinates for every pixel in the image. Typically, the ground
coordinates are given in a geographic projection (latitude, longitude). The sensor model can be
expressed either from image to ground – forward model – or from ground to image – inverse
model. This can be written as follows:

Forward
X = fx(l ,c,h,~θ) Y = fy(l ,c,h,~θ)

Inverse
l = gl (X,Y,h,~θ) c = gc(X,Y,h,~θ)

Where~θ is the set of parameters which describe the sensor and the acquisition geometry
(platform altitude, viewing angle, focal length for optical sensors, doppler centroid for SAR
images, etc.).

In OTB, sensor models are implemented asitk::Transform s (see section 8.6 for details),
which are the appropiate way to express coordinate changes.The base class for sensor
models is otb::SensorModelBase from which the classesotb::InverseSensorModel and
otb::ForwardSensorModel inherit.

As one may note from the model equations, the height of the ground, h, must be known.
Usually, that means that a Digital Elevation Model, DEM, will be used.

10.1.1 Types of Sensor Models

There exist two main types of sensor models. On one hand, we have the so-calledphysical
models, which are rigorous, complex, eventually highly non-linear equations of the sensor
geometry. As such, they are difficult to inverse (obtain the inverse model from the forward
one and vice-versa). They have the significant advantage of having parameters with physical
meaning (angles, distances, etc.). They are specific of eachsensor, which means that a library

http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SensorModelBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1InverseSensorModel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ForwardSensorModel.html

10.1. Sensor Models 255

of models is required in the software. A library which has to be updated every time a new
sensor is available.

On the other hand, we have general analytical models, which approximate the physical
models. These models can take the form of polynomials or ratios of polynomials, the so-called
rational polynomial functions or Rational Polynomial Coefficients, RPC, also known asRapid
Positioning Capability. Since they are approximations, they are less accurate thanthe physical
models. However, the achieved accuracy is usually high: in the case of Pléiades, RPC models
have errors lower than 0.02 pixels with respect to the physical model. Since these models have
a standard form they are easier to use and implement. However, they have the drawback of
having parameters (coefficients, actually) without physical meaning.

OTB, through the use of the OSSIM library –http://www.ossim.org – offers models for
most of current sensors either through a physical or an analytical approach. This is transparent
for the user, since the geometrical model for a given image isinstantiated using the information
stored in its meta-data.

10.1.2 Using Sensor Models

The transformation of an image in sensor geometry to geographic geometry can be done using
the following steps.

1. Read image meta-data and instantiate the model with the given parameters.

2. Define the ROI in ground coordinates (this is your output pixel array)

3. Iterate through the pixels of coordinates(X,Y):

(a) Geth from the DEM

(b) Compute(c, l) = G(X,Y,h,~θ)

(c) Interpolate pixel values if(c, l) are not grid coordinates.

Actually, in OTB, you don’t have to manually instantiate thesensor model which is appropriate
to your image. That is, you don’t have to manually choose a SPOT5 or a Quickbird sensor
model. This task is automatically performed by theotb::ImageFileReader class in a sim-
ilar way as the image format recognition is done. The appropriate sensor model will then be
included in the image meta-data, so you can access it when needed.

The source code for this example can be found in the file
Examples/Projections/SensorModelExample.cxx .

This example illustrates how to use the sensor model read from image meta-data in order to
perform ortho-rectification. This is a very basic, step-by-step example, so you understand the

http://www.ossim.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

256 Chapter 10. Ortho-registration

different components involved in the process. When performing real ortho-rectifications, you
can use the example presented in section 10.3.

We will start by including the header file for the inverse sensor model.

#include "otbInverseSensorModel.h"

As explained before, the first thing to do is to create the sensor model in order to transform the
ground coordinates in sensor geometry coordinates. The geoetric model will automatically be
created by the image file reader. So we begin by declaring the types for the input image and the
image reader.

typedef otb::Image<unsigned int, 2> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader=ReaderType::New();
reader->SetFileName(argv[1]);

ImageType::Pointer inputImage= reader->GetOutput();

We have just instantiated the reader and set the file name, butthe image data and meta-data has
not yet been accessed by it. Since we need the creation of the sensor model and all the image
information (size, spacing, etc.), but we do not want to readthe pixel data – it could be huge –
we just ask the reader to generate the output information needed.

reader->GenerateOutputInformation();

std::cout << "Original input imagine spacing: "<<
reader->GetOutput()->GetSpacing() << std::endl;;

We can now instantiate the sensor model – an inverse one, since we want to convert ground
coordinates to sensor geometry. Note that the choice of the specific model (SPOT5, Ikonos,
etc.) is done by the reader and we only need to instantiate a generic model.

typedef otb::InverseSensorModel<double> ModelType;
ModelType::Pointer model= ModelType::New();

The model is parameterized by passing to it thekeyword listcontaining the needed information.

model->SetImageGeometry(reader->GetOutput()->GetIma geKeywordlist());

10.1. Sensor Models 257

Since we can not be sure that the image we read actually has sensor model information, we
must check for the model validity.

if(!model)
{
std::cerr << "Unable to create a model" << std::endl;
return 1;
}

The types for the input and output coordinate points can be now declared. The same is done for
the index types.

ModelType::OutputPointType inputPoint;
typedef itk::Point <double, 2> PointType;
PointType outputPoint;

ImageType::IndexType currentIndex;
ImageType::IndexType currentIndexBis;
ImageType::IndexType pixelIndexBis;

We will now create the output image over which we will iteratein order to transform ground
coordinates to sensor coordinates and get the corresponding pixel values.

ImageType::Pointer outputImage = ImageType::New();

ImageType::PixelType pixelValue;

ImageType::IndexType start;
start[0]=0;
start[1]=0;

ImageType::SizeType size;
size[0]=atoi(argv[5]);
size[1]=atoi(argv[6]);

The spacing in y direction is negative since origin is the upper left corner.

ImageType::SpacingType spacing;

258 Chapter 10. Ortho-registration

spacing[0]=0.00001;
spacing[1]=-0.00001;

ImageType::PointType origin;
origin[0]=strtod(argv[3], NULL); //longitude
origin[1]=strtod(argv[4], NULL); //lattitude

ImageType::RegionType region;

region.SetSize(size);
region.SetIndex(start);

outputImage->SetOrigin(origin);
outputImage->SetRegions(region);
outputImage->SetSpacing(spacing);
outputImage->Allocate();

We will now instantiate an extractor filter in order to get input regions by manual tiling.

typedef itk::ExtractImageFilter<ImageType,ImageType> ExtractType;
ExtractType::Pointer extract=ExtractType::New();

Since the transformed coordinates in sensor geometry may not be integer ones, we will need an
interpolator to retrieve the pixel values (note that this assumes that the input image was correctly
sampled by the acquisition system).

typedef itk::LinearInterpolateImageFunction<ImageTyp e, double>
InterpolatorType;

InterpolatorType::Pointer interpolator=InterpolatorT ype::New();

We proceed now to create the image writer. We will also use a writer plugged to the output of
the extractor filter which will write the temporary extracted regions. This is just for monitoring
the process.

typedef otb::Image<unsigned char, 2> CharImageType;
typedef otb::ImageFileWriter<CharImageType> CharWrite rType;
typedef otb::ImageFileWriter<ImageType> WriterType;
WriterType::Pointer extractorWriter=WriterType::New();
CharWriterType::Pointer writer=CharWriterType::New() ;
extractorWriter->SetFileName("image_temp.jpeg");
extractorWriter->SetInput(extract->GetOutput());

10.1. Sensor Models 259

Since the output pixel type and the input pixel type are different, we will need to rescale the
intensity values before writing them to a file.

typedef itk::RescaleIntensityImageFilter<ImageType,C harImageType>
RescalerType;

RescalerType::Pointer rescaler=RescalerType::New();
rescaler->SetOutputMinimum(10);
rescaler->SetOutputMaximum(255);

The tricky part starts here. Note that this example is only intended for pedagogic purposes
and that you do not need to proceed as this. See the example in section 10.3 in order to code
ortho-rectification chains in a very simple way.

You want to go on? OK. You have been warned.

We will start by declaring an image region iterator and some convenience variables.

typedef itk::ImageRegionIteratorWithIndex<ImageType> IteratorType;

unsigned int NumberOfStreamDivisions;
if (atoi(argv[7])==0)

{
NumberOfStreamDivisions=10;
}

else
{
NumberOfStreamDivisions=atoi(argv[7]);
}

unsigned int count=0;
unsigned int It, j, k;
int max_x, max_y, min_x, min_y;
ImageType::IndexType iterationRegionStart;
ImageType::SizeType iteratorRegionSize;
ImageType::RegionType iteratorRegion;

The loop starts here.

for(count=0;count<NumberOfStreamDivisions;count++)
{
iteratorRegionSize[0]=atoi(argv[5]);

260 Chapter 10. Ortho-registration

if (count==NumberOfStreamDivisions-1)
{
iteratorRegionSize[1]=(atoi(argv[6]))-((int)(((atoi (argv[6]))/
NumberOfStreamDivisions)+0.5))*(count);
iterationRegionStart[1]=(atoi(argv[5]))-(iteratorRe gionSize[1]);
}

else
{
iteratorRegionSize[1]=(int)(((atoi(argv[6]))/

NumberOfStreamDivisions)+0.5);
iterationRegionStart[1]=count*iteratorRegionSize[1] ;
}

iterationRegionStart[0]=0;
iteratorRegion.SetSize(iteratorRegionSize);
iteratorRegion.SetIndex(iterationRegionStart);

We create an array for storing the pixel indexes.

unsigned int pixelIndexArrayDimension= iteratorRegionS ize[0]*iteratorRegionSize[1]*2;
int *pixelIndexArray=new int[pixelIndexArrayDimension];
int *currentIndexArray=new int[pixelIndexArrayDimensi on];

We create an iterator for each piece of the image, and we iterate over them.

IteratorType outputIt(outputImage, iteratorRegion);

It=0;
for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outp utIt)

{

We get the current index.

currentIndex=outputIt.GetIndex();

We transform the index to physical coordinates.

outputImage->TransformIndexToPhysicalPoint(currentI ndex, outputPoint);

We use the sensor model to get the pixel coordinates in the input image and we transform this
coodinates to an index. Then we store the index in the array. Note that theTransformPoint()
method of the model has been overloaded so that it can be used with a 3D point when the height
of the ground point is known (DEM availability).

10.1. Sensor Models 261

inputPoint = model->TransformPoint(outputPoint);

pixelIndexArray[It]=static_cast<int>(inputPoint[0]) ;
pixelIndexArray[It+1]=static_cast<int>(inputPoint[1]);

currentIndexArray[It]=static_cast<int>(currentIndex [0]);
currentIndexArray[It+1]=static_cast<int>(currentInd ex[1]);

It=It+2;
}

By this point, we have stored all the indexes we need for the piece of image we are processing.
Now we can compute the bounds of the area in the input image we need to extract.

max_x=pixelIndexArray[0];
min_x=pixelIndexArray[0];
max_y=pixelIndexArray[1];
min_y=pixelIndexArray[1];

for (j=0;j<It;j++)
{
if(j%2==0 && pixelIndexArray[j]>max_x){max_x=pixelInd exArray[j];}
if(j%2==0 && pixelIndexArray[j]<min_x){min_x=pixelInd exArray[j];}
if(j%2!=0 && pixelIndexArray[j]>max_y){max_y=pixelInd exArray[j];}
if(j%2!=0 && pixelIndexArray[j]<min_y){min_y=pixelInd exArray[j];}
}

We can now set the parameters for the extractor using a littlebit of margin in order to cope with
irregular geometric distortions which could be due to topography, for instance.

ImageType::RegionType extractRegion;

ImageType::IndexType extractStart;

if (min_x<10 && min_y<10)
{
extractStart[0]=0;
extractStart[1]=0;
}

262 Chapter 10. Ortho-registration

else
{
extractStart[0]=min_x-10;
extractStart[1]=min_y-10;
}

ImageType::SizeType extractSize;

extractSize[0]=(max_x-min_x)+20;
extractSize[1]=(max_y-min_y)+20;
extractRegion.SetSize(extractSize);
extractRegion.SetIndex(extractStart);

extract->SetExtractionRegion(extractRegion);
extract->SetInput(reader->GetOutput());
extractorWriter->Update();

We give the input image to the interpolator and we loop through the index array in order to
get the corresponding pixel values. Note that for every point we check whether it is inside the
extracted region.

interpolator->SetInputImage(extract->GetOutput());

for (k=0; k<It/2; k++)
{
pixelIndexBis[0]= pixelIndexArray[2*k];
pixelIndexBis[1]= pixelIndexArray[2*k+1];
currentIndexBis[0]= currentIndexArray[2*k];
currentIndexBis[1]= currentIndexArray[2*k+1];

if (interpolator->IsInsideBuffer(pixelIndexBis))
{
pixelValue=int (interpolator->EvaluateAtIndex(pixelI ndexBis));
}

else
{
pixelValue=0;
}

outputImage->SetPixel(currentIndexBis,pixelValue);
}

delete pixelIndexArray;
delete currentIndexArray;

}

10.2. Map Projections 263

So we are done. We can now write the output image to a file after performing the intensity
rescaling.

writer->SetFileName(argv[2]);

rescaler->SetInput(outputImage);

writer->SetInput(rescaler->GetOutput());
writer->Update();

10.1.3 Limits of the Approach

As you may understand by now, accurate geo-referencing needs accurate DEM and also
accurate sensor models and parameters. In the case where we have several images acquired
over the same area by different sensors or different geometric configurations, geo-referencing
(geographical coordinates) or ortho-rectification (cartographic coordinates) is not usually
enough. Indeed, when working with image series we usually want to compare them (fusion,
change detection, etc.) at the pixel level.

Since common DEM and sensor parameters do not allow for such an accuracy, we have to use
clever strategies to improve the co-registration of the images. The classical one consists in
refining the sensor parameters by taking homologous points between the images to co-register.
This is called bundle block adjustment and will be implemented in comming versions of OTB.

Even if the model parameters are refined, errors due to DEM accuracy can not be eliminated. In
this case, image to image registration can be applied. This approaches are presented in chapters
8 and 9.

10.2 Map Projections

Map projections describe the link between geographic coordinates and cartographic ones. So
map projections allow to represent a 2-dimensional manifold of a 3-dimensional space (the
Earth surface) in a 2-dimensional space (a map which used to be a sheet of paper!). This
geometrical transformation doesn’t have a unique solution, so over the cartography history,
every country or region in the world has been able to express the belief of being the center of
the universe. In other words, every cartographic projection tries to minimize the distortions of

264 Chapter 10. Ortho-registration

the 3D to 2D transformation for a given point of the Earth surface1.

In OTB the otb::MapProjection class is derived from theitk::Transform class, so
the coordinate transformation points are overloaded with map projection equations. The
otb::MapProjection class is templated over the type of cartographic projection, which is
provided by the OSSIM library. In order to hide the complexity of the approach, some type
definitions for the more common projections are given in the file otbMapProjections.h file.

You will seldom use a map projection by itself, but rather in an ortho-rectification framework.
An example is given in the next section.

10.3 Ortho-rectification with OTB

The source code for this example can be found in the file
Examples/Projections/OrthoRectificationExample.cxx .

This example demonstrates the use of theotb::OrthoRectificationFilter . This filter is
intended to orthorectify images which are in a distributor format with the appropriate meta-data
describing the sensor model. In this example, we will chooseto use an UTM projection for the
output image.

The first step toward the use of these filters is to include the proper header files: the one for the
ortho-rectification filter and the one defining the differentprojections available in OTB.

#include "otbOrthoRectificationFilter.h"
#include "otbMapProjections.h"

We will start by defining the types for the images, the image file reader and the image file writer.
The writer will be aotb::StreamingImageFileWriter which will allow us to set the number
of stream divisions we want to apply when writing the output image, which can be very large.

typedef otb::Image<unsigned char, 2> CharImageType;
typedef otb::Image<unsigned int, 2> ImageType;
typedef otb::VectorImage<unsigned int, 2> VectorImageTy pe;
typedef otb::ImageFileReader<VectorImageType> ReaderT ype;
typedef otb::StreamingImageFileWriter<VectorImageTyp e> WriterType;

ReaderType::Pointer reader=ReaderType::New();
WriterType::Pointer writer=WriterType::New();

1We proposed to optimize an OTB map projection for Toulouse, butwe didn’t get any help from OTB users.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MapProjection.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Transform.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MapProjection.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html

10.3. Ortho-rectification with OTB 265

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

We can now proceed to declare the type for the ortho-rectification filter. The class
otb::OrthoRectificationFilter is templated over the input and the output image types
as well as over the cartographic projection. We define therefore the type of the projection we
want, which is an UTM projection for this case.

typedef otb::UtmInverseProjection utmMapProjectionTyp e ;
typedef otb::OrthoRectificationFilter<ImageType, Imag eType,

utmMapProjectionType> OrthoRectifFilterType ;

OrthoRectifFilterType::Pointer orthoRectifFilter =
OrthoRectifFilterType::New();

Now we need to instanciate the map projection, set thezoneandhemisphereparameters and
pass this projection to the orthorectification filter.

utmMapProjectionType::Pointer utmMapProjection =
utmMapProjectionType::New();

utmMapProjection->SetZone(atoi(argv[3]));
utmMapProjection->SetHemisphere(*(argv[4]));
orthoRectifFilter->SetMapProjection(utmMapProjectio n);

Wiring the orthorectification filter into a PerBandImageFilter allows to orthrectify images with
multiple bands seamlesly.

typedef otb::PerBandVectorImageFilter<VectorImageTyp e,
VectorImageType, OrthoRectifFilterType> PerBandFilter Type;

PerBandFilterType::Pointer perBandFilter=PerBandFilt erType::New();
perBandFilter->SetFilter(orthoRectifFilter);
perBandFilter->SetInput(reader->GetOutput());

Using the user-provided information, we define the output region for the image generated by
the orthorectification filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1OrthoRectificationFilter.html

266 Chapter 10. Ortho-registration

ImageType::IndexType start;
start[0]=0;
start[1]=0;
orthoRectifFilter->SetOutputStartIndex(start);

ImageType::SizeType size;
size[0]=atoi(argv[7]);
size[1]=atoi(argv[8]);
orthoRectifFilter->SetSize(size);

ImageType::SpacingType spacing;
spacing[0]=atof(argv[9]);
spacing[1]=atof(argv[10]);
orthoRectifFilter->SetOutputSpacing(spacing);

ImageType::PointType origin;
origin[0]=strtod(argv[5], NULL);
origin[1]=strtod(argv[6], NULL);
orthoRectifFilter->SetOutputOrigin(origin);

We can now set plug the ortho-rectification filter to the writer and set the number of tiles we
want to split the output image in for the writing step.

writer->SetInput(perBandFilter->GetOutput());

writer->SetTilingStreamDivisions();

Finally, we trigger the pipeline execution by calling theUpdate() method on
the writer. Please note that the ortho-rectification filter is derived from the
otb::StreamingResampleImageFilter in order to be able to compute the input image re-
gions which are needed to build the output image. Since the resampler applies a geometric
transformation (scale, rotation, etc.), this region computation is not trivial.

writer->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingResampleImageFilter.html

CHAPTER

ELEVEN

Radiometry

Remote sensing is not just a matter of taking pictures, but also – mostly – a matter of measur-
ing physical values. In order to properly deal with physicalmagnitudes, the numerical values
provided by the sensors have to be calibrated. After that, several indices with physical meaning
can be computed.

Calibration functionnalities (absolute and relative) andeven atmospheric correction routines
will be available in future versions of OTB. Please note thatthe 6S Radiative Transfer Code1

is already included in the OTB source code and compiles out ofthe box. Calibration and
atmospheric corrections in OTB will be based on it.

In the current version of OTB, several vegetation indices are already available. They are pre-
sented in this chapter.

11.1 Vegetation Index

11.1.1 Introduction

A vegetation index is a quantitative measure used to measurebiomass or vegetative vigor, usu-
ally formed from combinations of several spectral bands, whose values are added, divided, or
multiplied in order to yield a single value that indicates the amount or vigor of vegetation.

11.1.2 NDVI

NDVI was one of the most successful of many attempts to simplyand quickly identify vegetated
areas and theircondition, and it remains the most well-known and used index to detect live green
plant canopies in multispectral remote sensing data. Once the feasibility to detect vegetation had
been demonstrated, users tended to also use the NDVI to quantify the photosynthetic capacity of

1http://6s.ltdri.org/

http://6s.ltdri.org/

268 Chapter 11. Radiometry

plant canopies. This, however, can be a rather more complex undertaking if not done properly.

The source code for this example can be found in the file
Examples/Radiometry/NDVIRAndNIRVegetationIndexImage Filter.cxx .

The following example illustrates the use of theotb::RAndNIRVegetationIndexImageFilter
with the use of the Normalized Difference Vegatation Index (NDVI). NDVI computes the
difference between the NIR channel, notedLNIR, and the red channel, notedLr radiances
reflected from the surface and transmitted through the atmosphere:

NDVI =
LNIR−Lr

LNIR+Lr
(11.1)

With the otb::RAndNIRVegetationIndexImageFilter class the filter inputs are one channel
images: one inmage represents the NIR channel, the the otherthe NIR channel.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the otb::RAndNIRVegetationIndexImageFilter class must be included.

#include "otbRAndNIRVegetationIndexImageFilter.h"

The image types are now defined using pixel types the dimension. Input and output images are
defined asotb::Image .

const unsigned int Dimension = 2;
typedef double InputPixelType;
typedef float OutputPixelType;
typedef otb::Image<InputPixelType,Dimension> InputRIm ageType;
typedef otb::Image<InputPixelType,Dimension> InputNIR ImageType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

The NDVI (Normalized Difference Vegetation Index) is instantiated using the images pixel type
as template parameters. It is implemented as a functor classwhich will be passed as a parameter
to an otb::RAndNIRVegetationIndexImageFilter .

typedef otb::Functor::NDVI< InputPixelType,
InputPixelType,
OutputPixelType> FunctorType;

The otb::RAndNIRVegetationIndexImageFilter type is instantiated using the images
types and the NDVI functor as template parameters.

typedef otb::RAndNIRVegetationIndexImageFilter<Input RImageType,
InputNIRImageType,
OutputImageType,
FunctorType>

RAndNIRVegetationIndexImageFilterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RAndNIRVegetationIndexImageFilter.html

11.1. Vegetation Index 269

Figure 11.1:NDVI input images on the left (Red channel and NIR channel), on the right the result of the

algorithm.

Now the input images are set and a name is given to the output image.

readerR->SetFileName(argv[1]);
readerNIR->SetFileName(argv[2]);
writer->SetFileName(argv[3]);

We set the processing pipeline: filter inputs are linked to the reader output and the filter output
is linked to the writer input.

filter->SetInputR(readerR->GetOutput());
filter->SetInputNIR(readerNIR->GetOutput());

writer->SetInput(filter->GetOutput());

Invocation of theUpdate() method on the writer triggers the execution of the pipeline.It is
recommended to placeupdate() calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{

writer->Update();
}

catch(itk::ExceptionObject & excep)
{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let’s now run this example using as input the imagesNDVI 3.hdr andNDVI 4.hdr (images
kindly and free of charge given by SISA and CNES) provided in the directoryExamples/Data .

270 Chapter 11. Radiometry

11.1.3 ARVI

The source code for this example can be found in the file
Examples/Radiometry/ARVIMultiChannelRAndBAndNIRVege tationIndexImageFilter.cxx .

The following example illustrates the use of the otb::MultiChannelRAndBAndNIR Vegeta-
tionIndexImageFilter with the use of the Atmospherically Resistant Vegetation Index (ARVI).
ARVI is an improved version of the NDVI that is more resistentto the atmospheric effect. In
addition to the red and NIR channels (used in the NDVI), the ARVI takes advantage of the
presence of the blue channel to accomplish a self-correction process for the atmospheric effect
on the red channel. For this, it uses the difference in the radiance between the blue and the
red channels to correct the radiance in the red channel. Let’s defineρ∗

NIR, ρ∗
r , ρ∗

b the normal-
ized radiances (that is to say the radiance normalized to reflectance units) of red, blue and NIR
channels respectively.ρ∗

rb is defined as

ρ∗
rb = ρ∗

r − γ∗ (ρ∗
b−ρ∗

r) (11.2)

The ARVI expression is

ARVI =
ρ∗

NIR−ρ∗
rb

ρ∗
NIR+ρ∗

rb
(11.3)

This formula can be simplified with :

ARVI =
LNIR−Lrb

LNIR+Lrb
(11.4)

For more details, refer to Faufman and Tanré work [51].

With the otb::MultiChannelRAndBAndNIRVegetationIndexImageFil ter class the input
has to be a multi channel image and the user has to specify index channel of the red, blue and
NIR channel.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the otb::MultiChannelRAndBAndNIRVegetationIndexImageFil ter class must be in-
cluded.

#include "otbMultiChannelRAndBAndNIRVegetationIndexI mageFilter.h"

The image types are now defined using pixel types and dimension. The input image is defined
as anotb::VectorImage , the output is aotb::Image .

const unsigned int Dimension = 2;
typedef double InputPixelType;
typedef float OutputPixelType;
typedef otb::VectorImage<InputPixelType ,Dimension> In putImageType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

11.1. Vegetation Index 271

The ARVI (Atmospherically Resistant Vegetation Index) is instantiated using the image pixel
types as template parameters.

typedef otb::Functor::ARVI< InputPixelType,
InputPixelType,

InputPixelType,
OutputPixelType > FunctorType;

The otb::MultiChannelRAndBAndNIRVegetationIndexImageFil ter type is defined using
the image types and the ARVI functor as template parameters.We then instantiate the filter
itself.

typedef otb::MultiChannelRAndBAndNIRVegetationIndexI mageFilter
<InputImageType,

OutputImageType,
FunctorType >

MultiChannelRAndBAndNIRVegetationIndexImageFilterTy pe;

MultiChannelRAndBAndNIRVegetationIndexImageFilterTy pe::Pointer
filter = MultiChannelRAndBAndNIRVegetationIndexImageF ilterType::New();

Now the input image is set and a name is given to the output image.

reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);

The three used index bands (red, blue and NIR) are declared.

filter->SetRedIndex(::atoi(argv[5]));
filter->SetBlueIndex(::atoi(argv[6]));
filter->SetNIRIndex(::atoi(argv[7]));

Theγ parameter is set. Theotb::MultiChannelRAndBAndNIRVegetationIndexImageFil ter
class sets the default value ofγ to 0.5. This parameter is used to reduce the atmospheric effect
on a global scale.

filter->GetFunctor().SetGamma(::atof(argv[8]));

The filter input is linked to the reader output and the filter output is linked to the writer input.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MultiChannelRAndBAndNIRVegetationIndexImageFilter.html

272 Chapter 11. Radiometry

Figure 11.2:ARVI result on the right with the left image in input.

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place update calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{

writer->Update();
}

catch(itk::ExceptionObject & excep)
{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

Let’s now run this example using as input the imageIndexVegetation.hd (image kindly and
free of charge given by SISA and CNES) andγ=0.6 provided in the directoryExamples/Data .

11.2 Atmospheric Corrections

The source code for this example can be found in the file
Examples/Radiometry/AtmosphericCorrectionSequenceme nt.cxx .

The following example illustrates the application of atmospheric corrections to an optical mul-
tispectral image similar to Pleiades. These corrections are made in four steps :

• digital number to luminance correction;

• luminance to refletance image conversion;

• atmospheric correction for TOA (top of atmosphere) to TOC (top of canopy) reflectance
estimation;

• correction of the adjency effects taking into account the neighborhood contribution.

11.2. Atmospheric Corrections 273

The manipulation of each class used for the different steps and the link with the 6S radiometry
library will be explained.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the otb::AtmosphericCorrectionSequencement class must be included. For the nu-
merical to luminance image, luminance to refletance image, and reflectance to atmospheric
correction image corrections and the neighborhood correction, four header files are required.

#include "otbImageToLuminanceImageFilter.h"
#include "otbLuminanceToReflectanceImageFilter.h"
#include "otbReflectanceToSurfaceReflectanceImageFil ter.h"
#include "otbSurfaceAdjencyEffect6SCorrectionSchemeF ilter.h"

This chain uses the 6S radiative transfer code to compute radiometric parameters. To manipulate
6S data, three classes are needed (the first one to store the metadata, the second one that calls
6S class and generates the information which will be stored in the last one).

#include "otbAtmosphericCorrectionParameters.h"
#include "otbAtmosphericCorrectionParametersTo6SAtmo sphericRadiativeTerms.h"
#include "otbAtmosphericRadiativeTerms.h"

Image types are now defined using pixel types and dimension. The input image is defined as an
otb::VectorImage , the output image is aotb::VectorImage . To simplify, input and output
image types are the same one.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef otb::VectorImage<PixelType,Dimension> ImageTy pe;

TheGenerateOutputInformation() reader method is called to know the number of compo-
nent per pixel of the image. It is recommended to placeGenerateOutputInformation calls
in a try/catch block in case errors occur and exceptions are thrown.

reader->SetFileName(argv[1]);
try

{
reader->GenerateOutputInformation();

}
catch(itk::ExceptionObject & excep)

{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

The otb::ImageToLuminanceImageFilter type is defined and instancied. This class uses a
functor applied to each component of each pixel (Xk) whose formula is:

http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionSequencement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToLuminanceImageFilter.html

274 Chapter 11. Radiometry

Lk
TOA =

Xk

αk
+βk. (11.5)

Where :

• Lk
TOA is the incident luminance (inW.m−2.sr−1.µm−1);

• Xk is the measured digital number (ie. the input image pixel component);

• αk is the absolute calibration gain for the channel k;

• βk is the absolute calibration bias for the channel k.

typedef otb::ImageToLuminanceImageFilter<ImageType,I mageType>
ImageToLuminanceImageFilterType;

ImageToLuminanceImageFilterType::Pointer filterImage ToLuminance
= ImageToLuminanceImageFilterType::New();

Here,α andβ are read from an ASCII file given in input, stored in a vector and passed to the
class.

filterImageToLuminance->SetAlpha(alpha);
filterImageToLuminance->SetBeta(beta);

The otb::LuminanceToReflectanceImageFilter type is defined and instancied. This class
used a functor applied to each component of each pixel of the luminance filter output (Lk

TOA):

ρk
TOA =

π.Lk
TOA

Ek
S.cos(θS).d/d0

. (11.6)

Where :

• rhok
TOA is the reflectance measured by the sensor;

• θS is the zenithal solar angle in degrees;

• Ek
S is the solar illumination out of the atmosphere measured at adistanced0 from the

Earth;

• d/d0 is the ratio between the Earth-Sun distance at the acquisition date and the mean
Earth-Sun distance. The ratio can be directly given to the class or computed using a 6S
routine. In the last case (that is the one of this example), the user has to precise the month
and the day of the acquisition.

http://www.melaneum.com/OTB/doxygen/classotb_1_1LuminanceToReflectanceImageFilter.html

11.2. Atmospheric Corrections 275

typedef otb::LuminanceToReflectanceImageFilter<Image Type,ImageType>
LuminanceToReflectanceImageFilterType;

LuminanceToReflectanceImageFilterType::Pointer filte rLuminanceToReflectance
= LuminanceToReflectanceImageFilterType::New();

The solar illumination is read from a ASCII file given in input, stored in a vector and given to
the class. Day, month and zenital solar angle are inputs and can be directly given to the class.

filterLuminanceToReflectance->SetZenithalSolarAngle (
static_cast<double>(atof(argv[6])));

filterLuminanceToReflectance->SetDay(atoi(argv[7])) ;
filterLuminanceToReflectance->SetMonth(atoi(argv[8]));
filterLuminanceToReflectance->SetSolarIllumination(solarIllumination);

At this step of the chain, radiometric informations are nedeed. Those
informations will be computed from different parameters stored in a
otb::AtmosphericCorrectionParameters class intance. Thiscontainer will be given
to an otb::AtmosphericCorrectionParametersTo6SAtmospheric RadiativeTerms
class instance which will call a 6S routine that will computethe needed radiometric in-
formations and store them in aotb::AtmosphericRadiativeTerms class instance. For
this, otb::AtmosphericCorrectionParametersTo6SAtmospheric RadiativeTerms
otb::AtmosphericCorrectionParameters and otb::AtmosphericRadiativeTerms
types are defined and instancied.

typedef otb::AtmosphericCorrectionParametersTo6SAtmo sphericRadiativeTerms
AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe;

typedef otb::AtmosphericCorrectionParameters
AtmosphericCorrectionParametersType;

typedef otb::AtmosphericRadiativeTerms
AtmosphericRadiativeTermsType;

The otb::AtmosphericCorrectionParameters class needs several parameters :

• The zenithal and azimutal solar angles that describe the solar incidence configuration (in
degrees);

• The zenithal and azimuthal viewing angles that describe theviewing direction (in de-
grees);

• The month and the day of the acquisition;

• The atmospheric pressure;

• The water vapor amount, that is, the total water vapor content over vertical atmospheric
column;

http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParametersTo6SAtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParametersTo6SAtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericRadiativeTerms.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1AtmosphericCorrectionParameters.html

276 Chapter 11. Radiometry

• The ozone amount that is the Stratospheric ozone layer content;

• The aerosol model that is the kind of particles (no aerosol, continental, maritime, urban,
desertic);

• The aerosol optical thickness at 550 nm that is the is the Radiative impact of aerosol for
the reference wavelength 550 nm;

• The filter function that is the values of the filter function for one spectral band, fromλin f

to λsup by step of 2.5 nm. One filter function by channel is required. This last parameter
are read in text files, the other one are directly given to the class.

dataAtmosphericCorrectionParameters->SetSolarZenith alAngle(
static_cast<double>(atof(argv[6])));

dataAtmosphericCorrectionParameters->SetSolarAzimut alAngle(
static_cast<double>(atof(argv[9])));

dataAtmosphericCorrectionParameters->SetViewingZeni thalAngle(
static_cast<double>(atof(argv[10])));

dataAtmosphericCorrectionParameters->SetViewingAzim utalAngle(
static_cast<double>(atof(argv[11])));

dataAtmosphericCorrectionParameters->SetMonth(atoi(argv[8]));

dataAtmosphericCorrectionParameters->SetDay(atoi(ar gv[7]));

dataAtmosphericCorrectionParameters->SetAtmospheric Pressure(
static_cast<double>(atof(argv[12])));

dataAtmosphericCorrectionParameters->SetWaterVaporA mount(
static_cast<double>(atof(argv[13])));

dataAtmosphericCorrectionParameters->SetOzoneAmount (
static_cast<double>(atof(argv[14])));

AerosolModelType aerosolModel =
static_cast<AerosolModelType>(::atoi(argv[15]));

dataAtmosphericCorrectionParameters->SetAerosolMode l(aerosolModel);

dataAtmosphericCorrectionParameters->SetAerosolOpti cal(
static_cast<double>(atof(argv[16])));

Once those parameters are loaded and stored in the AtmosphericCorrectionParameters
instance class, it is given in input of an instance of AtmosphericCorrectionParameter-
sTo6SAtmosphericRadiativeTerms that will compute the needed radiometric informations.

11.2. Atmospheric Corrections 277

AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe::Pointer
filterAtmosphericCorrectionParametersTo6SRadiativeT erms =
AtmosphericCorrectionParametersTo6SRadiativeTermsTy pe::New();

filterAtmosphericCorrectionParametersTo6SRadiativeT erms->SetInput(
dataAtmosphericCorrectionParameters);

The output of this class will be an instance of the AtmosphericRadiativeTerms class. This class
contains (for each channel of the image)

• The Intrinsic atmospheric reflectance that takes into account for the molecular scattering
and the aerosol scattering attenuated by water vapor absorption;

• The spherical albedo of the atmosphere;

• The total gaseous transmission (for all species);

• The total transmittance of the atmosphere from sun to ground(downward transmittance)
and from ground to space sensor (upward transmittance).

Atmospheric corrections can now start. First, an instance of
otb::ReflectanceToSurfaceReflectanceImageFilter is created.

typedef otb::ReflectanceToSurfaceReflectanceImageFil ter<ImageType,
ImageType> ReflectanceToSurfaceReflectanceImageFilte rType;

ReflectanceToSurfaceReflectanceImageFilterType::Poi nter
filterReflectanceToSurfaceReflectanceImageFilter

= ReflectanceToSurfaceReflectanceImageFilterType::Ne w();

The aim of the atmospheric correction is to invert the surface reflectance (for each pixel of
the input image) from the TOA reflectance and from simulations of the atmospheric radiative
functions corresponding to the geometrical conditions of the observation and to the atmospheric
components. The process required to be applied on each pixelof the image, band by band with
the following formula:

ρuni f
S =

A
1+SxA

(11.7)

Where,

A =
ρTOA−ρatm

T(µS).T(µV).tallgas
g

(11.8)

With :

• ρTOA is the reflectance at the top of the atmosphere;

http://www.melaneum.com/OTB/doxygen/classotb_1_1ReflectanceToSurfaceReflectanceImageFilter.html

278 Chapter 11. Radiometry

• ρuni f
S is the ground reflectance under asumption of a lambertian surface and an uniform

environment;

• ρatm is the intrinsic atmospheric reflectance;

• tallgas
g is the soherical albedo of the atmosphere;

• T(µS) is the downward transmittance;

• T(µV) is the upward transmittance.

All those parameters are contained in the AtmosphericCorrectionParameter-
sTo6SRadiativeTerms output.

filterReflectanceToSurfaceReflectanceImageFilter->
SetAtmosphericRadiativeTerms(

filterAtmosphericCorrectionParametersTo6SRadiativeT erms->GetOutput());

Next (and last step) is the neighborhood correction. For this, the SurfaceAdjencyEf-
fect6SCorrectionSchemeFilter class is used. The previoussurface reflectance inversion is per-
formed under the assumption of a homogeneous ground environment. The following step allows
to correct the adjacency effect on the radiometry of pixels.The method is based on the decom-
position of the observed signal as the summation of the own contribution of the target pixel
and of the contribution of neighbored pixels moderated by their distance to the target pixel. A
simplified relation may be :

ρS=
ρuni f

S .T(µV)− < ρS> .td(µV)

exp(−δ/µV)
(11.9)

With :

• ρuni f
S is the ground reflectance under asumption of an homogeneous environment;

• T(µV) is the upward transmittance;

• td(µS) is the upward diffus transmittance;

• exp(−δ/µV) is the upward direct transmittance;

• ρS is the environment contribution to the pixel target reflectance in the total observed
signal.

ρS= ∑ j ∑ i f (r(i, j))×ρuni f
S (i, j) (11.10)

where,

– r(i,j) is the distance between the pixel(i,j) and the central pixel of the window inkm;

11.2. Atmospheric Corrections 279

– f(r) is the global environment function.

f (r) =
tR
d (µV). fR(r)+ tA

d (µV). fA(r)

td(µV)
(11.11)

The neighborhood consideration window size is given by the window radius. An instance of
otb::SurfaceAdjencyEffect6SCorrectionSchemeFilter is created.

typedef otb::SurfaceAdjencyEffect6SCorrectionSchemeF ilter<ImageType,
ImageType> SurfaceAdjencyEffect6SCorrectionSchemeFil terType;

SurfaceAdjencyEffect6SCorrectionSchemeFilterType::P ointer
filterSurfaceAdjencyEffect6SCorrectionSchemeFilter
= SurfaceAdjencyEffect6SCorrectionSchemeFilterType:: New();

The needs four input informations:

• Radiometric informations (the output of the AtmosphericCorrectionParameter-
sTo6SRadiativeTerms filter);

• The zenithal viewing angle;

• The neighborhood window radius;

• The pixel spacing in kilometers.

At this step, each filter of the chain is instancied and every one has its input paramters set. A
name can be given to the output image and each filter can linkedto other to create the final
processing chain.

writer->SetFileName(argv[2]);

filterImageToLuminance->SetInput(reader->GetOutput());
filterLuminanceToReflectance->SetInput(filterImageT oLuminance->GetOutput());
filterReflectanceToSurfaceReflectanceImageFilter->S etInput(

filterLuminanceToReflectance->GetOutput());
filterSurfaceAdjencyEffect6SCorrectionSchemeFilter- >SetInput(

filterReflectanceToSurfaceReflectanceImageFilter->G etOutput());

writer->SetInput(
filterSurfaceAdjencyEffect6SCorrectionSchemeFilter- >GetOutput());

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place this call in atry/catch block in case errors occur and exceptions are
thrown.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SurfaceAdjencyEffect6SCorrectionSchemeFilter.html

280 Chapter 11. Radiometry

try
{

writer->Update();
}

catch(itk::ExceptionObject & excep)
{

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;

}

CHAPTER

TWELVE

Image Fusion

Satellite sensors present an important diversity in terms of characteristics. Some provide a high
spatial resolution while other focus on providing several spectral bands. The fusion process
brings the information from different sensors with different characteristics together to get the
best of both worlds.

Most of the fusion methods in the remote sensing community deal with the pansharpening
technique. This fusion combines the image from the PANchromatic sensor of one satellite (high
spatial resolution data) with the multispectral (XS) data (lower resolution in several spectral
bands) to generate images with a high resolution and severalspectral bands. Several advantages
make this situation easier:

• PAN and XS images are taken simultaneously from the same satellite (or with a very
short delay);

• the imaged area is common to both scenes;

• many satellites provide these data (SPOT 1-5, Quickbird, Pleiades)

This case is well-studied in the literature and many methodsexist. Only very few are available
in OTB now but this should evolve soon.

12.1 Simple Pan Sharpening

A simple way to view the pan-sharpening of data is to considerthat, at the same resolution, the
panchromatic channel is the sum of the XS channel. After putting the two images in the same
geometry, after orthorectification (see chapter 10) with anoversampling of the XS image, we
can proceed to the data fusion.

The idea is to apply a low pass filter to the panchromatic band to give it a spectral content (in the
Fourier domain) equivalent to the XS data. Then we normalizethe XS data with this low-pass
panchromatic and multiply the result with the original panchromatic band.

282 Chapter 12. Image Fusion

The process is described on figure 12.1.

XS

PAN

Low Pass

/ ×

PAN + XS

Figure 12.1:Simple pan-sharpening procedure.

The source code for this example can be found in the file
Examples/Fusion/PanSharpeningExample.cxx .

Here we are illustrating the use of theotb::SimpleRcsPanSharpeningFusionImageFilter
for PAN-sharpening. This example takes a PAN and the corresponding XS images as input.
These images are supposed to be registered.

The fusion operation is defined as

XS
Filtered(PAN)

PAN (12.1)

Figure 12.2 shows the result of applying this PAN sharpeningfilter to a Quickbird image.

We start by including the required header and declaring the main function:

#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbStreamingImageFileWriter.h"
#include "otbSimpleRcsPanSharpeningFusionImageFilter .h"

int main(int argc, char* argv[])
{

http://www.melaneum.com/OTB/doxygen/classotb_1_1SimpleRcsPanSharpeningFusionImageFilter.html

12.1. Simple Pan Sharpening 283

Figure 12.2:Result of applying the otb::SimpleRcsPanSharpeningFusionImageFilter to orthorec-

tified Quickbird image. From left to right : original PAN image, original XS image and the result of the PAN

sharpening

http://www.melaneum.com/OTB/doxygen/classotb_1_1SimpleRcsPanSharpeningFusionImageFilter.html

284 Chapter 12. Image Fusion

We declare the different image type used here as well as the image reader. Note that, the
reader for the PAN image is templated by anotb::Image while the XS reader uses an
otb::VectorImage .

typedef otb::Image<double, 2> ImageType;
typedef otb::VectorImage<double, 2> VectorImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileReader<VectorImageType> ReaderV ectorType;
typedef otb::VectorImage<unsigned int, 2> VectorIntImag eType;

ReaderVectorType::Pointer readerXS=ReaderVectorType: :New();
ReaderType::Pointer readerPAN=ReaderType::New();

We pass the filenames to the readers

readerPAN->SetFileName(argv[1]);
readerXS->SetFileName(argv[2]);

We declare the fusion filter an set its inputs using the readers:

typedef otb::SimpleRcsPanSharpeningFusionImageFilter
<ImageType,VectorImageType,VectorIntImageType> Fusio nFilterType;

FusionFilterType::Pointer fusion = FusionFilterType::N ew();
fusion->SetPanInput(readerPAN->GetOutput());
fusion->SetXsInput(readerXS->GetOutput());

And finally, we declare the writer and call itsUpdate() method to trigger the full pipeline
execution.

typedef otb::StreamingImageFileWriter<VectorIntImage Type> WriterType;
WriterType::Pointer writer=WriterType::New();
writer->SetFileName(argv[3]);
writer->SetInput(fusion->GetOutput());
writer->Update();

12.2 Bayesian Data Fusion

The source code for this example can be found in the file
Examples/Fusion/BayesianFusionImageFilter.cxx .

The following example illustrates the use of theotb::BayesianFusionFilter . The Bayesian
data fusion relies on the idea that variables of interest, denoted as vectorZ, cannot be directly
observed. They are linked to the observable variablesY through the following error-like model.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BayesianFusionFilter.html

12.2. Bayesian Data Fusion 285

Y = g(Z)+E (12.2)

where g(Z) is a set of functionals andE is a vector of random errors that are stochastically
independent fromZ. This algorithm uses elementary probability calculus, andseveral assump-
tions to compute the data fusion. For more explication see Fasbender, Radoux and Bogaert’s
publication [27]. Three images are used :

• a panchromatic image,

• a multispectral image resampled at the panchromatic image spatial resolution,

• a multispectral image resampled at the panchromatic image spatial resolution, using, e.g.
a cubic interpolator.

• a float :λ, the meaning of the weight to be given to the panchromatic image compared to
the multispectral one.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the otb::BayesianFusionFilter class must be included.

#include "otbBayesianFusionFilter.h"

The image types are now defined using pixel types and particular dimension. The panchromatic
image is defined as anotb::Image and the multispectral one asotb::VectorImage .

typedef double InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Panch roImageType;
typedef otb::VectorImage< InternalPixelType, Dimension > MultiSpecImageType;

The Bayesian data fusion filter type is instantiated using the images types as a template param-
eters.

typedef otb::BayesianFusionFilter< MultiSpecImageType ,
MultiSpecImageType,

PanchroImageType,
OutputImageType > BayesianFusionFilterType;

Next the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

BayesianFusionFilterType::Pointer bayesianFilter = Bay esianFusionFilterType::New();

Now the multi spectral image, the interpolated multi spectral image and the panchromatic image
are given as inputs to the filter.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

286 Chapter 12. Image Fusion

Figure 12.3:Input images used for this example (c©European Space Imaging).

bayesianFilter->SetMultiSpect(multiSpectReader->Get Output());
bayesianFilter->SetMultiSpectInterp(multiSpectInter pReader->GetOutput());
bayesianFilter->SetPanchro(panchroReader->GetOutput ());

writer->SetInput(bayesianFilter->GetOutput());

The BayesianFusionFilter requires defining one parameter :λ. Theλ parameter can be used to
tune the fusion toward either a high color consistency or sharp details. Typicalλ value range in
[0.5,1[, where higher values yield sharper details. by defaultλ is set at 0.9999.

bayesianFilter->SetLambda(atof(argv[9]));

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place update calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s now run this example using as input the imagesmultiSpect.tif ,
multiSpectInterp.tif and panchro.tif provided in the directoryExamples/Data .
The results obtained for 2 different values forλ are shown in figure 12.3.

12.2. Bayesian Data Fusion 287

Figure 12.4:Fusion results for the Bayesian Data Fusion filter for λ = 0.5 on the left and λ = 0.9999on

the right.

CHAPTER

THIRTEEN

Feature Extraction

13.1 Introduction

Under the termFeature Extractionwe include several techniques aiming to detect or extract
informations of low level of abstraction from images. Thesefeaturescan be objects : points,
lines, etc. They can also be measures : moments, textures, etc.

13.2 Interest Points

13.2.1 Harris detector

The source code for this example can be found in the file
Examples/FeatureExtraction/HarrisExample.cxx .

This example illustrates the use of theotb::HarrisImageFilter .

The first step required to use this filter is to include its header file.

#include "otbHarrisImageFilter.h"

The otb::HarrisImageFilter is templated over the input and output image types, so we start
by defining:

typedef otb::HarrisImageFilter<InputImageType,
InputImageType> HarrisFilterType;

The otb::HarrisImageFilter needs some parameters to operate. The derivative compu-
tation is performed by a convolution with the derivative of aGaussian kernel of varianceσD

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html

290 Chapter 13. Feature Extraction

Figure 13.1:Result of applying the otb::HarrisImageFilter to a Spot 5 image.

(derivation scale) and the smoothing of the image is performed by convolving with a Gaussian
kernel of varianceσI (integration scale). This allows the computation of the following matrix:

µ(x,σI ,σD) = σ2
Dg(σI)⋆

[

L2
x(x,σD) LxLy(x,σD)

LxLy(x,σD) L2
y(x,σD)

]

(13.1)

The output of the detector is
det(µ)−αtrace2(µ).

harris->SetSigmaD(SigmaD);
harris->SetSigmaI(SigmaI);
harris->SetAlpha(Alpha);

Figure 13.1 shows the result of applying the interest point detector to a small patch extracted
from a Spot 5 image.

The output of the otb::HarrisImageFilter is an image where,for each pixel, we obtain
the intensity of the detection. Often, the user may want to get access to the set of points for
which the output of the detector is higher than a given threshold. This can be obtained by using
the otb::HarrisImageToPointSetFilter . This filter is only templated over the input image
type, the output being aitk::PointSet with pixel type equal to the image pixel type.

typedef otb::HarrisImageToPointSetFilter<InputImageT ype> FunctionType;

We declare now the filter and a pointer to the output point set.

typedef FunctionType::OutputPointSetType OutputPointS etType;

FunctionType::Pointer harrisPoints = FunctionType::New ();
OutputPointSetType::Pointer pointSet = OutputPointSetT ype::New();

The otb::HarrisImageToPointSetFilter takes the same parameters as the
otb::HarrisImageFilter and an additional parameter : the threshold for the point
selection.

http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HarrisImageFilter.html

13.2. Interest Points 291

harrisPoints->SetInput(0,reader->GetOutput());
harrisPoints->SetSigmaD(SigmaD);
harrisPoints->SetSigmaI(SigmaI);
harrisPoints->SetAlpha(Alpha);
harrisPoints->SetLowerThreshold(10);
pointSet = harrisPoints->GetOutput();

We can now iterate through the obtained pointset and access the coordinates of the points. We
start by accessing the container of the points which is encapsulated into the point set (see section
5.2 for more information on usingitk::PointSet s) and declaring an iterator to it.

typedef OutputPointSetType::PointsContainer Container Type;
ContainerType* pointsContainer = pointSet->GetPoints() ;
typedef ContainerType::Iterator IteratorType;
IteratorType itList = pointsContainer->Begin();

And we get the points coordinates

while(itList != pointsContainer->End())
{
typedef OutputPointSetType::PointType OutputPointType ;
OutputPointType pCoordinate = (itList.Value());
std::cout << pCoordinate << std::endl;
++itList;
}

13.2.2 SIFT detector

The source code for this example can be found in the file
Examples/FeatureExtraction/SIFTExample.cxx .

This example illustrates the use of theotb::ImageToSIFTKeyPointSetFilter . The Scale-
Invariant Feature Transform (or SIFT) is an algorithm in computer vision to detect and describe
local features in images. The algorithm was published by David Lowe [59]. The detection and
description of local image features can help in object recognition and image registration. The
SIFT features are local and based on the appearance of the object at particular interest points,
and are invariant to image scale and rotation. They are also robust to changes in illumination,
noise, occlusion and minor changes in viewpoint.

The first step required to use this filter is to include its header file.

#include "otbImageToSIFTKeyPointSetFilter.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html

292 Chapter 13. Feature Extraction

The otb::ImageToSIFTKeyPointSetFilter is templated over its input image type and the
output point set type. Therefore, we start by defining the needed types.

typedef otb::Image<RealType,Dimension> ImageType;
typedef itk::VariableLengthVector<RealType> RealVecto rType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef itk::PointSet<RealVectorType,Dimension> Point SetType;
typedef otb::ImageToSIFTKeyPointSetFilter<ImageType, PointSetType> ImageToSIFTKeyPointSetFilterType;

Since the SIFT detector produces a point set, we will need iterators for the coordinates of the
points and the data associated with them.

typedef PointSetType::PointsContainer PointsContainer Type;
typedef PointsContainerType::Iterator PointsIteratorT ype;
typedef PointSetType::PointDataContainer PointDataCon tainerType;
typedef PointDataContainerType::Iterator PointDataIte ratorType;

We can now instantiate the reader and the SIFT filter and plug the pipeline.

ReaderType::Pointer reader = ReaderType::New();
ImageToSIFTKeyPointSetFilterType::Pointer filter = Ima geToSIFTKeyPointSetFilterType::New();

reader->SetFileName(infname);

filter->SetInput(0,reader->GetOutput());

The SIFT filter needs the following parameters:

• the number of octaves, that is, the number of levels of undersampling,

• the number of scales (blurring) per octave,

• the low contrast threshold to be applied to each point for thedetection on the difference
of Gaussians image,

• the threshold on the responses to consider a point as an edge.

filter->SetOctavesNumber(octaves);
filter->SetScalesNumber(scales);

filter->SetDoGThreshold(threshold);
filter->SetEdgeThreshold(ratio);

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html

13.3. Alignments 293

Figure 13.2:Result of applying the otb::ImageToSIFTKeyPointSetFilter to a Spot 5 image. Left to

right: original image and SIFT with thresholds 0, 1 and 2 respectively.

Figure 13.3:Result of applying the otb::ImageToSIFTKeyPointSetFilter to a high resolution image

image. Left to right: original image and SIFT on the original and a rotated image respectively.

Figure 13.2 shows the result of applying the SIFT point detector to a small patch extracted from
a Spot 5 image using different threshold values. Figure 13.3shows the result of applying the
SIFT point detector to a small patch extracted from a Spot 5 image using different threshold
values.

13.3 Alignments

The source code for this example can be found in the file
Examples/FeatureExtraction/AlignmentsExample.cxx .

This example illustrates the use of theotb::ImageToPathListAlignFilter . This filter al-
lows to extract meaninful alignments. Alignments (that is edges and lines) are detected using
the Gestaltapproach proposed by Desolneux et al. [25]. In this context,an event is consid-
ered meaningful if the expectation of its occurrence would be very small in a random image.
One can thus consider that in a random image the direction of the gradient of a given point is
uniformly distributed, and that neighbouring pixels have avery low probability of having the
same gradient direction. This algorithm gives a set of straight line segments defined by the two
extremity coordinates under the form of astd::list of itk::PolyLineParametricPath .

The first step required to use this filter is to include its header.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToSIFTKeyPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html

294 Chapter 13. Feature Extraction

#include "otbImageToPathListAlignFilter.h"

In order to visualize the detected alignments, we will use the facility class
otb::DrawPathFilter which draws a itk::PolyLineParametricPath on top of a
given image.

#include "itkPolyLineParametricPath.h"
#include "otbDrawPathFilter.h"

The otb::ImageToPathListAlignFilter is templated over the input image type and the
output path type, so we start by defining:

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;
typedef otb::ImageToPathListAlignFilter<InputImageTy pe,PathType>

ListAlignFilterType;

Next, we build the pipeline.

ListAlignFilterType::Pointer alignFilter = ListAlignFi lterType::New();

alignFilter->SetInput(reader->GetOutput());

We can choose the number of accepted false alarms in the detection with the methodSetEps()
for which the parameter is of the form−log10(max. number of false alarms).

alignFilter->SetEps(atoi(argv[3]));

As stated, above, theotb::DrawPathFilter , is useful for drawint the detected alignments.
This class is templated over the input image and path types and also on the output image type.

typedef otb::DrawPathFilter< InputImageType, PathType,
OutputImageType > DrawPathFilterType;

We will now go through the list of detected paths and feed themto the otb::DrawPathFilter
inside a loop. We will use a list iterator inside awhile statement.

typedef ListAlignFilterType::OutputPathListType ListT ype;

ListType* pathList = alignFilter->GetOutput();

ListType::Iterator listIt = pathList->Begin();

http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html

13.3. Alignments 295

Figure 13.4:Result of applying the otb::ImageToPathListAlignFilter to a VHR image of a suburb.

We define a dummy image will be iteratively fed to theotb::DrawPathFilter after the draw-
ing of each alignment.

InputImageType::Pointer backgroundImage = reader->GetO utput();

We iterate through the list and write the result to a file.

while(listIt != pathList->End())
{

DrawPathFilterType::Pointer drawPathFilter = DrawPathF ilterType::New();
drawPathFilter->SetImageInput(backgroundImage);
drawPathFilter->SetPathInput(listIt.Get());

drawPathFilter->SetValue(itk::NumericTraits<OutputP ixelType>::max());
drawPathFilter->Update();

backgroundImage = drawPathFilter->GetOutput();

++listIt;

}

writer->SetInput(backgroundImage);

Figure 13.4 shows the result of applying the alignment detection to a small patch extracted from
a VHR image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPathListAlignFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathFilter.html

296 Chapter 13. Feature Extraction

13.4 Lines

13.4.1 Line Detection

The source code for this example can be found in the file
Examples/FeatureExtraction/RatioLineDetectorExample .cxx .

This example illustrates the use of theotb::RatioLineDetectorImageFilter . This filter is
used for line detection in SAR images. Its principle is described in [87]: a line is detected if
two parallel edges are present in the images. These edges aredetected with the ratio of means
detector.

The first step required to use this filter is to include its header file.

#include "otbLineRatioDetectorImageFilter.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with floating point precision and rescale the results between 0 and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > InternalImage Type;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter can be instantiated using the image types defined above.

typedef otb::LineRatioDetectorImageFilter< InternalIm ageType, InternalImageType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InternalImageType > Reade rType;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The intensity rescaling of the results will be carried out bythe
itk::RescaleIntensityImageFilter which is templated by the input and output im-
age types.

http://www.melaneum.com/OTB/doxygen/classotb_1_1RatioLineDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

13.4. Lines 297

typedef itk::RescaleIntensityImageFilter< InternalIma geType,
OutputImageType > RescalerType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescaleIntensityImageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be chosenin a generic way by using the
NumericTraits functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

The image obtained with the reader is passed as input to the
otb::LineRatioDetectorImageFilter . The pipeline is built as follows.

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

The methodsSetLengthLine() andSetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv[4]));
filter->SetWidthLine(atoi(argv[5]));

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineRatioDetectorImageFilter.html

298 Chapter 13. Feature Extraction

Figure 13.5:Result of applying the otb::LineRatioDetectorImageFilter to a SAR image. From left

to right : original image, line intensity and edge orientation.

We can also obtain the direction of the lines by invoking theGetOutputDirection() method.

rescaler->SetInput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();

shows the result of applying the LineRatio edge detector filter to a SAR image.

The following classes provide similar functionality:

• otb::LineCorrelationDetectorImageFilter

The source code for this example can be found in the file
Examples/FeatureExtraction/CorrelationLineDetectorE xample.cxx .

This example illustrates the use of theotb::CorrelationLineDetectorImageFilter . This
filter is used for line detection in SAR images. Its principleis described in [87]: a line is detected
if two parallel edges are present in the images. These edges are detected with the correlation of
means detector.

The first step required to use this filter is to include its header file.

#include "otbLineCorrelationDetectorImageFilter.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with floating point precision and rescale the results between 0 and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineRatioDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationLineDetectorImageFilter.html

13.4. Lines 299

typedef otb::Image< InternalPixelType, 2 > InternalImage Type;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter can be instantiated using the image types defined above.

typedef otb::LineCorrelationDetectorImageFilter< Inte rnalImageType,
InternalImageType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InternalImageType > Reade rType;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The intensity rescaling of the results will be carried out bythe
itk::RescaleIntensityImageFilter which is templated by the input and output im-
age types.

typedef itk::RescaleIntensityImageFilter< InternalIma geType,
OutputImageType > RescalerType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescaleIntensityImageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be chosenin a generic way by using the
NumericTraits functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

300 Chapter 13. Feature Extraction

Figure 13.6:Result of applying the otb::LineCorrelationDetectorImageFilter to a SAR image.

From left to right : original image, line intensity and edge orientation.

The image obtained with the reader is passed as input to the
otb::LineCorrelationDetectorImageFilter . The pipeline is built as follows.

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

The methodsSetLengthLine() andSetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv[4]));
filter->SetWidthLine(atoi(argv[5]));

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

We can also obtain the direction of the lines by invoking theGetOutputDirections() method.

rescaler->SetInput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();

shows the result of applying the LineCorrelation edge detector filter to a SAR image.

The following classes provide similar functionality:

• otb::LineCorrelationDetectorImageFilter

http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LineCorrelationDetectorImageFilter.html

13.4. Lines 301

The source code for this example can be found in the file
Examples/FeatureExtraction/AssymmetricFusionOfLineD etectorExample.cxx .

This example illustrates the use of theotb::AssymmetricFusionOfLineDetectorImageFilter .

The first step required to use this filter is to include its header file.

#include "otbAssymmetricFusionOfLineDetectorImageFil ter.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with floating point precision and rescale the results between 0 and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > InternalImage Type;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter can be instantiated using the image types defined above.

typedef otb::AssymmetricFusionOfLineDetectorImageFil ter< InternalImageType,
InternalImageType > FilterType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InternalImageType > Reade rType;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The intensity rescaling of the results will be carried out bythe
itk::RescaleIntensityImageFilter which is templated by the input and output im-
age types.

typedef itk::RescaleIntensityImageFilter< InternalIma geType,
OutputImageType > RescalerType;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymmetricFusionOfLineDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

302 Chapter 13. Feature Extraction

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The same is done for the rescaler and the writer.

RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();

The itk::RescaleIntensityImageFilter needs to know which is the minimu and maxi-
mum values of the output generated image. Those can be chosenin a generic way by using the
NumericTraits functions, since they are templated over the pixel type.

rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

The image obtained with the reader is passed as input to the
otb::AssymetricFusionOfDetectorImageFilter . The pipeline is built as follows.

filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

The methodsSetLengthLine() andSetWidthLine() allow to set the minimum length and
the typical witdh of the lines which are to be detected.

filter->SetLengthLine(atoi(argv[3]));
filter->SetWidthLine(atoi(argv[4]));

The filter is executed by invoking theUpdate() method. If the filter is part of a larger image
processing pipeline, callingUpdate() on a downstream filter will also trigger update of this
filter.

filter->Update();

Figure 13.7 shows the result of applying the AssymetricFusionOf edge detector filter to a SAR
image.

13.4.2 Segment Extraction

The source code for this example can be found in the file
Examples/FeatureExtraction/LocalHoughExample.cxx .

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymetricFusionOfDetectorImageFilter.html

13.4. Lines 303

Figure 13.7:Result of applying the otb::AssymetricFusionOfDetectorImageFilter to a SAR im-

age. From left to right : original image, line intensity.

This example illustrates the use of theotb::ExtractSegmentsImageFilter .

The first step required to use this filter is to include its header file.

#include "otbLocalHoughFilter.h"
#include "otbDrawLineSpatialObjectListFilter.h"
#include "otbLineSpatialObjectList.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with floating point precision and rescale the results between 0 and 255 in order to export PNG
images.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.

typedef otb::Image< InternalPixelType, 2 > InternalImage Type;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter can be instantiated using the image types defined above.

typedef otb::LocalHoughFilter< InternalImageType > Loca lHoughType;
typedef otb::DrawLineSpatialObjectListFilter< Interna lImageType,

OutputImageType > DrawLineListType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.

typedef otb::ImageFileReader< InternalImageType > Reade rType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1AssymetricFusionOfDetectorImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractSegmentsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

304 Chapter 13. Feature Extraction

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to SmartPointers.

ReaderType::Pointer reader = ReaderType::New();

LocalHoughType::Pointer localHough= LocalHoughType::N ew();

DrawLineListType::Pointer drawLineList= DrawLineListT ype::New();

The same is done for the writer.

WriterType::Pointer writer = WriterType::New();

The image obtained with the reader is passed as input to the
otb::ExtractSegmentsImageFilter . The pipeline is built as follows.

localHough->SetInput(reader->GetOutput());

drawLineList->SetInput(reader->GetOutput());
drawLineList->SetInputLineSpatialObjectList(localHo ugh->GetOutput());
writer->SetFileName(argv[2]);
writer->SetInput(drawLineList->GetOutput());
writer->Update();

Figure 13.8 shows the result of applying theotb::LocalHoughImageFilter .

13.5 Geometric Moments

13.5.1 Complex Moments

The complex geometric moments are defined as:

cpq =

+∞
Z

−∞

+∞
Z

−∞

(x+ iy)p(x− iy)q f (x,y)dxdy, (13.2)

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ExtractSegmentsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LocalHoughImageFilter.html

13.5. Geometric Moments 305

Figure 13.8:Result of applying the otb::LocalHoughImageFilter . From left to right : original image,

extracted segments.

wherex andy are the coordinates of the imagef (x,y), i is the imaginary unit andp+q is the
order ofcpq. The geometric moments are particularly useful in the case of scale changes.

Complex Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/ComplexMomentImageExampl e.cxx .

This example illustrates the use of theotb::ComplexMomentImageFunction .

The first step required to use this filter is to include its header file.

#include "otbComplexMomentImageFunction.h"

The otb::ComplexMomentImageFunction is templated over the input image type and the
output complex type value, so we start by defining:

typedef std::complex<float> ComplexType;
typedef otb::ComplexMomentImageFunction<InputImageTy pe,ComplexType> CMType;

CMType::Pointer cmFunction =CMType::New();

Next, we plug the input image into the complex moment fucntion and we set its parameters.

reader->Update();
cmFunction->SetInputImage(reader->GetOutput());
cmFunction->SetQ(Q);
cmFunction->SetP(P);

We can chose the pixel of the image which will used as center for the moment computation

http://www.melaneum.com/OTB/doxygen/classotb_1_1LocalHoughImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html

306 Chapter 13. Feature Extraction

InputImageType::IndexType center;
center[0]=50;
center[1]=50;

We can also choose the size of the neighborhood around the center pixel for the moment com-
putation.

In order to get the value of the moment, we call theEvaluateAtIndex method.

ComplexType Result = cmFunction->EvaluateAtIndex(cente r);

std::cout << "The moment of order (" << P << "," << Q <<
") is equal to " << Result << std:: endl;

Complex Moments for Paths

The source code for this example can be found in the file
Examples/FeatureExtraction/ComplexMomentPathExample .cxx .

The complex moments can be computed on images, but sometimeswe are interested in
computing them on shapes extracted from images by segmentation algorithms. These
shapes can be represented byitk::Path s. This example illustrates the use of the
otb::ComplexMomentPathFunction for the computation of complex geometric moments on
ITK paths.

The first step required to use this filter is to include its header file.

#include "otbComplexMomentPathFunction.h"

The otb::ComplexMomentPathFunction is templated over the input path type and the output
complex type value, so we start by defining:

const unsigned int Dimension = 2;

typedef itk::PolyLineParametricPath< Dimension > PathTy pe;

typedef std::complex<double> ComplexType;
typedef otb::ComplexMomentPathFunction<PathType,Comp lexType> CMType;

CMType::Pointer cmFunction =CMType::New();

Next, we set the parameters of the plug the input path into thecomplex moment function and
we set its parameters.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Path.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentPathFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentPathFunction.html

13.5. Geometric Moments 307

cmFunction->SetInputPath(path);
cmFunction->SetQ(Q);
cmFunction->SetP(P);

Since the paths are defined in physical coordinates, we do notneed to set the center for the
moment computation as we did with theotb::ComplexMomentImageFunction . The same
applies for the size of the neighborhood around the center pixel for the moment computation.
The moment computation is triggered by calling theEvaluate method.

ComplexType Result = cmFunction->Evaluate();

std::cout << "The moment of order (" << P << "," << Q <<
") is equal to " << Result << std:: endl;

13.5.2 Hu Moments

Using the algebraic moment theory, H. Ming-Kuel obtained a family of 7 invariants with respect
to planar transformations called Hu invariants, [42]. Those invariants can be seen as nonlinear
combinations of the complex moments. Hu invariants have been very much used in object
recognition during the last 30 years, since they are invariant to rotation, scaling and translation.
[32] gives their expressions :

φ1 = c11; φ2 = c20c02; φ3 = c30c03; φ4 = c21c12;
φ5 = Re(c30c3

12); φ6 = Re(c21c2
12); φ7 = Im(c30c3

12).
(13.3)

[29] have used these invariants for the recognition of aircraft silhouettes. Flusser and Suk have
used them for image registration, [47].

Hu Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/HuMomentImageExample.cxx .

This example illustrates the use of theotb::HuMomentImageFunction .

The first step required to use this filter is to include its header file.

#include "otbHuImageFunction.h"

The otb::HuImageFunction is templated over the input image type and the output (real) type
value, so we start by defining:

http://www.melaneum.com/OTB/doxygen/classotb_1_1ComplexMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HuMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1HuImageFunction.html

308 Chapter 13. Feature Extraction

typedef float MomentType;
typedef otb::HuImageFunction<InputImageType,

MomentType> HuType;

HuType::Pointer hmFunction =HuType::New();

We can choose the region and the pixel of the image which will used as coordinate origin for
the moment computation

InputImageType::RegionType region;
InputImageType::SizeType size;
InputImageType::IndexType start;

start[0] = 0;
start[1] = 0;
size[0] = 50;
size[1] = 50;

reader->Update();
InputImageType::Pointer image = reader->GetOutput();

region.SetIndex(start);
region.SetSize(size);

image->SetRegions(region);
image->Update();

InputImageType::IndexType center;
center[0]=start[0]+size[0]/2;
center[1]=start[1]+size[1]/2;

Next, we plug the input image into the complex moment function and we set its parameters.

hmFunction->SetInputImage(image);
hmFunction->SetMomentNumber(mMomentNumber);

In order to get the value of the moment, we call theEvaluateAtIndex method.

MomentType Result = hmFunction->EvaluateAtIndex(center);

13.5. Geometric Moments 309

std::cout << "The moment of order " << mMomentNumber <<
" is equal to " << Result << std:: endl;

The following classes provide similar functionality:

• otb::HuPathFunction

13.5.3 Flusser Moments

The Hu invariants have been modified and improved by several authors. Flusser used these
moments in order to produce a new family of descriptors of order higher than 3, [32]. These
descriptors are invariant to scale and rotation. They have the following expressions:

ψ1 = c11 = φ1; ψ2 = c21c12 = φ4; ψ3 = Re(c20c2
12) = φ6;

ψ4 = Im(c20c2
12); ψ5 = Re(c30c3

12) = φ5; ψ6 = Im(c30c3
12) = φ7.

ψ7 = c22; ψ8 = Re(c31c2
12); ψ9 = Im(c31c12 2);

ψ10 = Re(c40c4
12); ψ11 = Im(c40c2

12).

(13.4)

Examples

Flusser Moments for Images

The source code for this example can be found in the file
Examples/FeatureExtraction/FlusserMomentImageExampl e.cxx .

This example illustrates the use of theotb::FlusserMomentImageFunction .

The first step required to use this filter is to include its header file.

#include "otbFlusserImageFunction.h"

The otb::FlusserImageFunction is templated over the input image type and the output
(real) type value, so we start by defining:

typedef float MomentType;
typedef otb::FlusserImageFunction<InputImageType,

MomentType> FlusserType;

FlusserType::Pointer fmFunction =FlusserType::New();

We can choose the region and the pixel of the image which will used as coordinate origin for
the moment computation

http://www.melaneum.com/OTB/doxygen/classotb_1_1HuPathFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserMomentImageFunction.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserImageFunction.html

310 Chapter 13. Feature Extraction

InputImageType::RegionType region;
InputImageType::SizeType size;
InputImageType::IndexType start;

start[0] = 0;
start[1] = 0;
size[0] = 50;
size[1] = 50;

reader->Update();
InputImageType::Pointer image = reader->GetOutput();

region.SetIndex(start);
region.SetSize(size);

image->SetRegions(region);
image->Update();

InputImageType::IndexType center;
center[0]=start[0]+size[0]/2;
center[1]=start[1]+size[1]/2;

Next, we plug the input image into the complex moment function and we set its parameters.

fmFunction->SetInputImage(image);
fmFunction->SetMomentNumber(mMomentNumber);

In order to get the value of the moment, we call theEvaluateAtIndex method.

MomentType Result = fmFunction->EvaluateAtIndex(center);

std::cout << "The moment of order " << mMomentNumber <<
" is equal to " << Result << std:: endl;

The following classes provide similar functionality:

• otb::FlusserPathFunction

http://www.melaneum.com/OTB/doxygen/classotb_1_1FlusserPathFunction.html

13.6. Road extraction 311

13.6 Road extraction

Road extraction is a critical feature for an efficient use of high resolution satellite images. There
are many applications of road extraction: update of GIS database, reference for image registra-
tion, help for identification algorithms and rapid mapping for example. Road network can be
used to register an optical image with a map or an optical image with a radar image for example.
Road network extraction can help for other algorithms: isolated building detection, bridge de-
tection. In these cases, a rough extraction can be sufficient. In the context of response to crisis,
a fast mapping is necessary: within 6 hours, infrastructures for the designated area are required.
Within this timeframe, a manual extraction is inconceivable and an automatic help is necessary.

13.6.1 Road extraction filter

The source code for this example can be found in the file
Examples/FeatureExtraction/ExtractRoadExample.cxx .

The easiest way to use the road extraction filter provided by OTB is to use the composite filter.
If a modification in the pipeline is required to adapt to a particular situation, the step by step
example, described in the next section can be adapted.

This example demonstrates the use of theotb::RoadExtractionFilter . This filter is a
composite filter achieving road extraction according to thealgorithm adapted by E. Christophe
and J. Inglada [15] from an original method proposed in [55].

The first step toward the use of this filter is the inclusion of the proper header files.

#include "otbPolyLineParametricPathWithValue.h"
#include "otbRoadExtractionFilter.h"
#include "otbDrawPathListFilter.h"

Then we must decide what pixel type to use for the image. We choose to do all the computation
in floating point precision and rescale the results between 0and 255 in order to export PNG
images.

typedef double InputPixelType;
typedef unsigned char OutputPixelType;

The images are defined using the pixel type and the dimension.Please note that the
otb::RoadExtractionFilter needs anotb::VectorImage as input to handle multispectral
images.

typedef otb::VectorImage<InputPixelType,Dimension> In putVectorImageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

312 Chapter 13. Feature Extraction

typedef otb::Image<InputPixelType,Dimension> InputIma geType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

We define the type of the polyline that the filter produces. We use the
otb::PolyLineParametricPathWithValue , which allows the filter to produce a likehood
value along with each polyline. The filter is able to produceitk::PolyLineParametricPath
as well.

typedef otb::PolyLineParametricPathWithValue<InputPi xelType,Dimension> PathType;

Now we can define theotb::RoadExtractionFilter that takes a multi-spectral image as
input and produces a list of polylines.

typedef otb::RoadExtractionFilter<InputVectorImageTy pe,
PathType> RoadExtractionFilterType;

We also define anotb::DrawPathListFilter to draw the output polylines on an image,
taking their likehood values into account.

typedef otb::DrawPathListFilter<InputImageType, PathT ype,
InputImageType> DrawPathFilterType;

The intensity rescaling of the results will be carried out bythe
itk::RescaleIntensityImageFilter which is templated by the input and output im-
age types.

typedef itk::RescaleIntensityImageFilter<InputImageT ype,
OutputImageType> RescalerType;

An otb::ImageFileReader class is also instantiated in order to read image data from a file.
Then, anotb::ImageFileWriter is instantiated in order // to write the output image to a file.

typedef otb::ImageFileReader<InputVectorImageType> Re aderType;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

The different filters composing our pipeline are created by invoking theirNew() methods, as-
signing the results to smart pointers.

http://www.melaneum.com/OTB/doxygen/classotb_1_1PolyLineParametricPathWithValue.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PolyLineParametricPath.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

13.6. Road extraction 313

ReaderType::Pointer reader = ReaderType::New();
RoadExtractionFilterType::Pointer roadExtractionFilt er

= RoadExtractionFilterType::New();
DrawPathFilterType::Pointer drawingFilter = DrawPathFi lterType::New();
RescalerType::Pointer rescaleFilter = RescalerType::Ne w();
WriterType::Pointer writer = WriterType::New();

The otb::RoadExtractionFilter needs to have a reference pixel corresponding to the spec-
tral content likely to represent a road. This is done by passing a pixel to the filter. Here we
suppose that the input image has four spectral bands.

InputVectorImageType::PixelType ReferencePixel;
ReferencePixel.SetSize(4);
ReferencePixel.SetElement(0,::atof(argv[3]));
ReferencePixel.SetElement(1,::atof(argv[4]));
ReferencePixel.SetElement(2,::atof(argv[5]));
ReferencePixel.SetElement(3,::atof(argv[6]));
roadExtractionFilter->SetReferencePixel(ReferencePi xel);

We must also set the alpha parameter of the filter which allowsus to tune the width of the roads
we want to extract. Typical value is 1.0 and should be working in most situations.

roadExtractionFilter->SetAlpha(atof(argv[7]));

All other parameter should not influence the results too muchin most situation and can be kept
at the default value.

The amplitude threshold parameter tunes the sensitivity ofthe vectorization step. A typical
value is 5·10−5.

roadExtractionFilter->SetAmplitudeThreshold(atof(ar gv[8]));

The tolerance threshold tunes the sensitivity of the path simplification step. Typical value is 1.0.

roadExtractionFilter->SetTolerance(atof(argv[9]));

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html

314 Chapter 13. Feature Extraction

Roads are not likely to have sharp turns. Therefore we set themax angle parameter, as well as
the link angular threshold. The value is typicalyπ

8 .

roadExtractionFilter->SetMaxAngle(atof(argv[10]));
roadExtractionFilter->SetAngularThreshold(atof(argv [10]));

The otb::RoadExtractionFilter performs two odd path removing operations at different
stage of its execution. The first mean distance threshold andthe second mean distance threshold
set their criterion for removal. Path are removed if their mean distance between nodes is to
small, since such path coming from previous filters are likely to be tortuous. The first removal
operation as a typical mean distance threshold parameter of1.0, and the second of 10.0.

roadExtractionFilter->SetFirstMeanDistanceThreshold (atof(argv[11]));
roadExtractionFilter->SetSecondMeanDistanceThreshol d(atof(argv[12]));

The otb::RoadExtractionFilter is able to link path whose ends are near according to
an euclidean distance criterion. The threshold for this distance to link a path is the distance
threshold parameter. A typical value is 25.

roadExtractionFilter->SetDistanceThreshold(atof(arg v[13]));

We will now create a black background image to draw the resulting polyline on. To
achieve this we need to know the size of our input image. Therefore we trigger the
GenerateOutputInformation() of the reader.

reader->GenerateOutputInformation();
InputImageType::Pointer blackBackground = InputImageTy pe::New();
blackBackground->SetRegions(reader->GetOutput()->Ge tLargestPossibleRegion());
blackBackground->Allocate();
blackBackground->FillBuffer(0);

We tell the otb::DrawPathListFilter to try to use the likehood value embedded within the
polyline as a value for drawing this polyline if possible.

drawingFilter->UseInternalPathValueOn();

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html

13.6. Road extraction 315

The itk::RescaleIntensityImageFilter needs to know which is the minimum and maxi-
mum values of the output generated image. Those can be chosenin a generic way by using the
NumericTraits functions, since they are templated over the pixel type.

rescaleFilter->SetOutputMinimum(itk::NumericTraits< OutputPixelType >::min());
rescaleFilter->SetOutputMaximum(itk::NumericTraits< OutputPixelType >::max());

Now it is time for some pipeline wiring.

roadExtractionFilter->SetInput(reader->GetOutput()) ;
drawingFilter->SetInput(blackBackground);
drawingFilter->SetInputPath(roadExtractionFilter->G etOutput());
rescaleFilter->SetInput(drawingFilter->GetOutput()) ;

The update of the pipeline is triggered by theUpdate() method of the rescale intensity filter.

rescaleFilter->Update();

Figure 13.9 shows the result of applying the road extractionfilter to a fusionned Quickbird
image.

13.6.2 Step by step road extraction

The source code for this example can be found in the file
Examples/FeatureExtraction/ExtractRoadByStepsExampl e.cxx .

This example illustrates the details of theotb::RoadExtractionFilter . This filter, described
in the previous section, is a composite filter that includes all the steps below. Individual filters
can be replaced to design a road detector targeted at SAR images for example.

The spectral angle is used to compute a grayscale image from the multispectral original im-
age usingotb::SpectralAngleDistanceImageFilter . The spectral angle is illustrated on
Figure 13.10. Pixels corresponding to roads are in darker color.

typedef otb::SpectralAngleDistanceImageFilter<MultiS pectralImageType,
InternalImageType> SAFilterType;

SAFilterType::Pointer saFilter = SAFilterType::New();
saFilter->SetReferencePixel(pixelRef);
saFilter->SetInput(multispectralReader->GetOutput());

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SpectralAngleDistanceImageFilter.html

316 Chapter 13. Feature Extraction

Figure 13.9: Result of applying the otb::RoadExtractionFilter to a fusionned Quickbird image.

From left to right : original image, extracted road with their likehood values (color are inverted for display).

Figure 13.10:Illustration of the spectral angle for one pixel of a three-band image. One of the vector is

the reference pixel and the other is the current pixel.

http://www.melaneum.com/OTB/doxygen/classotb_1_1RoadExtractionFilter.html

13.6. Road extraction 317

A square root is applied to the spectral angle image in order to enhance contrast between darker
pixels (which are pixels of interest) withitk::SqrtImageFilter .

typedef itk::SqrtImageFilter<InternalImageType,Inter nalImageType> SqrtFilterType;
SqrtFilterType::Pointer sqrtFilter = SqrtFilterType::N ew();
sqrtFilter->SetInput(saFilter->GetOutput());

Use the Gaussian gradient filter compute the gradient direction and intensity (
itk::GradientRecursiveGaussianImageFilter).

double sigma = alpha*(1.2/resolution+1);
typedef itk::GradientRecursiveGaussianImageFilter<In ternalImageType,

VectorImageType> GradientFilterType;
GradientFilterType::Pointer gradientFilter = GradientF ilterType::New();
gradientFilter->SetSigma(sigma);
gradientFilter->SetInput(sqrtFilter->GetOutput());

Compute the scalar product of the neighboring pixels and keep the minimum value and the di-
rection with otb::NeighborhoodScalarProductFilter . This is the line detector described
in [55].

typedef otb::NeighborhoodScalarProductFilter<VectorI mageType,
InternalImageType,InternalImageType> NeighborhoodSca larProductType;

NeighborhoodScalarProductType::Pointer scalarFilter
= NeighborhoodScalarProductType::New();

scalarFilter->SetInput(gradientFilter->GetOutput()) ;

The resulting image is passed to theotb::RemoveIsolatedByDirectionFilter filter to re-
move pixels with no neighbor having the same direction.

typedef otb::RemoveIsolatedByDirectionFilter<Interna lImageType,
InternalImageType,InternalImageType> RemoveIsolatedB yDirectionType;

RemoveIsolatedByDirectionType::Pointer removeIsolate dByDirectionFilter
= RemoveIsolatedByDirectionType::New();

removeIsolatedByDirectionFilter->SetInput(scalarFil ter->GetOutput());
removeIsolatedByDirectionFilter

->SetInputDirection(scalarFilter->GetOutputDirectio n());

We remove pixels having a direction corresponding to brightlines as we know that after the
spectral angle, roads are in darker color with theotb::RemoveWrongDirectionFilter filter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SqrtImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NeighborhoodScalarProductFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveIsolatedByDirectionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveWrongDirectionFilter.html

318 Chapter 13. Feature Extraction

typedef otb::RemoveWrongDirectionFilter<InternalImag eType,
InternalImageType,InternalImageType> RemoveWrongDire ctionType;

RemoveWrongDirectionType::Pointer removeWrongDirecti onFilter
= RemoveWrongDirectionType::New();

removeWrongDirectionFilter->SetInput(removeIsolated ByDirectionFilter->GetOutput());
removeWrongDirectionFilter->SetInputDirection(scala rFilter->GetOutputDirection());

We remove pixels which are not maximum on the direction perpendicular to the road direction
with the otb::NonMaxRemovalByDirectionFilter .

typedef otb::NonMaxRemovalByDirectionFilter<Internal ImageType,
InternalImageType,InternalImageType> NonMaxRemovalBy DirectionType;

NonMaxRemovalByDirectionType::Pointer nonMaxRemovalB yDirectionFilter
= NonMaxRemovalByDirectionType::New();

nonMaxRemovalByDirectionFilter->SetInput(removeWron gDirectionFilter->GetOutput());
nonMaxRemovalByDirectionFilter

->SetInputDirection(scalarFilter->GetOutputDirectio n());

Extracted road are vectorized into polylines withotb::VectorizationPathListFilter .

typedef otb::VectorizationPathListFilter<InternalIma geType,
InternalImageType,PathType> VectorizationFilterType;

VectorizationFilterType::Pointer vectorizationFilter
= VectorizationFilterType::New();

vectorizationFilter->SetInput(nonMaxRemovalByDirect ionFilter->GetOutput());
vectorizationFilter->SetInputDirection(scalarFilter ->GetOutputDirection());
vectorizationFilter->SetAmplitudeThreshold(atof(arg v[8]));

However, this vectorization is too simple and need to be refined to be usable. First, we
remove all aligned points to make one segment withotb::SimplifyPathListFilter .
Then we break the polylines which have sharp angles as they are probably not road with
otb::BreakAngularPathListFilter . Finally we remove path which are too short with
otb::RemoveTortuousPathListFilter .

typedef otb::SimplifyPathListFilter<PathType> Simplif yPathType;
SimplifyPathType::Pointer simplifyPathListFilter = Sim plifyPathType::New();
simplifyPathListFilter->SetTolerance(1.0);
simplifyPathListFilter->SetInput(vectorizationFilte r->GetOutput());

typedef otb::BreakAngularPathListFilter<PathType> Bre akAngularPathType;
BreakAngularPathType::Pointer breakAngularPathListFi lter

= BreakAngularPathType::New();
breakAngularPathListFilter->SetMaxAngle(M_PI/8.);

http://www.melaneum.com/OTB/doxygen/classotb_1_1NonMaxRemovalByDirectionFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorizationPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SimplifyPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BreakAngularPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveTortuousPathListFilter.html

13.6. Road extraction 319

breakAngularPathListFilter->SetInput(simplifyPathLi stFilter->GetOutput());

typedef otb::RemoveTortuousPathListFilter<PathType> R emoveTortuousPathType;
RemoveTortuousPathType::Pointer removeTortuousPathLi stFilter

= RemoveTortuousPathType::New();
removeTortuousPathListFilter->SetMeanDistanceThresh old(1.0);
removeTortuousPathListFilter->SetInput(breakAngular PathListFilter->GetOutput());

Polylines within a certain range are linked (otb::LinkPathListFilter) to try
to fill gaps due to occultations by vehicules, trees, etc. before simplifying
polylines (otb::SimplifyPathListFilter) and removing the shortest ones with
otb::RemoveTortuousPathListFilter .

typedef otb::LinkPathListFilter<PathType> LinkPathTyp e;
LinkPathType::Pointer linkPathListFilter = LinkPathTyp e::New();
linkPathListFilter->SetDistanceThreshold(25.0/resol ution);
linkPathListFilter->SetAngularThreshold(M_PI/8);
linkPathListFilter->SetInput(removeTortuousPathList Filter->GetOutput());

SimplifyPathType::Pointer simplifyPathListFilter2 = Si mplifyPathType::New();
simplifyPathListFilter2->SetTolerance(1.0);
simplifyPathListFilter2->SetInput(linkPathListFilte r->GetOutput());

RemoveTortuousPathType::Pointer removeTortuousPathLi stFilter2
= RemoveTortuousPathType::New();

removeTortuousPathListFilter2->SetMeanDistanceThres hold(10.0);
removeTortuousPathListFilter2->SetInput(simplifyPat hListFilter2->GetOutput());

A value can be associated with each polyline according to pixel values under the polyline with
otb::LikehoodPathListFilter . A higher value will mean a higher likelihood to be a road.

typedef otb::LikehoodPathListFilter<PathType,
InternalImageType> PathListToPathListWithValueType;

PathListToPathListWithValueType::Pointer pathListCon verter
= PathListToPathListWithValueType::New();

pathListConverter->SetInput(removeTortuousPathListF ilter2->GetOutput());
pathListConverter->SetInputImage(nonMaxRemovalByDir ectionFilter->GetOutput());

A black background image is built to draw the path on.

InternalImageType::Pointer output = InternalImageType: :New();
output->SetRegions(multispectralReader->GetOutput()

->GetLargestPossibleRegion());
output->Allocate();
output->FillBuffer(0.0);

http://www.melaneum.com/OTB/doxygen/classotb_1_1LinkPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SimplifyPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1RemoveTortuousPathListFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1LikehoodPathListFilter.html

320 Chapter 13. Feature Extraction

Polylines are drawn on a black background image withotb::DrawPathListFilter . The
SetUseIternalValues() tell the drawing filter to draw the path with its likehood value.

typedef otb::DrawPathListFilter<InternalImageType, Pa thType,
InternalImageType> DrawPathType;

DrawPathType::Pointer drawPathListFilter = DrawPathTyp e::New();
drawPathListFilter->SetInput(output);
drawPathListFilter->SetInputPath(pathListConverter- >GetOutput());
drawPathListFilter->SetUseInternalPathValue(true);

The output from the drawing filter contains very small values(likehood values). Therefore
the image has to be rescaled to be viewed. The whole pipeline is executed by invoking the
Update() method on this last filter.

typedef itk::RescaleIntensityImageFilter<InternalIma geType,
InternalImageType> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMaximum(255);
rescaler->SetOutputMinimum(0);
rescaler->SetInput(drawPathListFilter->GetOutput()) ;
rescaler->Update();

Figures 13.11 and 13.12 show the result of applying the road extraction by steps to a fusionned
Quickbird image. The result image is a RGB composition showing the extracted path in red.
Full processing took about 3 seconds for each image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1DrawPathListFilter.html

13.6. Road extraction 321

Figure 13.11:Result of applying the road extraction by steps pipeline to a fusionned Quickbird image.

From left to right : original image, extracted road with their likehood values.

Figure 13.12:Result of applying the road extraction by steps pipeline to a fusionned Quickbird image.

From left to right : original image, extracted road with their likehood values.

CHAPTER

FOURTEEN

Image Segmentation

Segmentation of remote sensing images is a challenging task. A myriad of different methods
have been proposed and implemented in recent years. In spiteof the huge effort invested in this
problem, there is no single approach that can generally solve the problem of segmentation for
the large variety of image modalities existing today.

The most effective segmentation algorithms are obtained bycarefully customizing combinations
of components. The parameters of these components are tunedfor the characteristics of the
image modality used as input and the features of the objects to be segmented.

The Insight Toolkit provides a basic set of algorithms that can be used to develop and customize
a full segmentation application. They are therefore available in the Orfeo Toolbox. Some of the
most commonly used segmentation components are described in the following sections.

14.1 Region Growing

Region growing algorithms have proven to be an effective approach for image segmentation.
The basic approach of a region growing algorithm is to start from a seed region (typically one or
more pixels) that are considered to be inside the object to besegmented. The pixels neighboring
this region are evaluated to determine if they should also beconsidered part of the object. If
so, they are added to the region and the process continues as long as new pixels are added to
the region. Region growing algorithms vary depending on thecriteria used to decide whether a
pixel should be included in the region or not, the type connectivity used to determine neighbors,
and the strategy used to visit neighboring pixels.

Several implementations of region growing are available inITK. This section describes some
of the most commonly used.

324 Chapter 14. Image Segmentation

14.1.1 Connected Threshold

A simple criterion for including pixels in a growing region is to evaluate intensity value inside
a specific interval.

The source code for this example can be found in the file
Examples/Segmentation/ConnectedThresholdImageFilter .cxx .

The following example illustrates the use of theitk::ConnectedThresholdImageFilter .
This filter uses the flood fill iterator. Most of the algorithmic complexity of a region growing
method comes from visiting neighboring pixels. The flood filliterator assumes this respon-
sibility and greatly simplifies the implementation of the region growing algorithm. Thus the
algorithm is left to establish a criterion to decide whethera particular pixel should be included
in the current region or not.

The criterion used by the ConnectedThresholdImageFilter is based on an interval of intensity
values provided by the user. Values of lower and upper threshold should be provided. The
region growing algorithm includes those pixels whose intensities are inside the interval.

I(X) ∈ [lower,upper] (14.1)

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the ConnectedThresholdImageFilter class must be included.

#include "itkConnectedThresholdImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large re-
gions. When faced with noisy images, it is usually convenientto pre-process the im-
age by using an edge-preserving smoothing filter. In this particular example we use the
itk::CurvatureFlowImageFilter , hence we need to include its header file.

#include "itkCurvatureFlowImageFilter.h"

We declare the image type based on a particular pixel type anddimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Inter nalImageType;

The smoothing filter is instantiated using the image type as atemplate parameter.

typedef itk::CurvatureFlowImageFilter< InternalImageT ype, InternalImageType >
CurvatureFlowImageFilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

14.1. Region Growing 325

Then the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the ConnectedThresh-
oldImageFilter.

typedef itk::ConnectedThresholdImageFilter< InternalI mageType,
InternalImageType > ConnectedFilterType;

Then we construct one filter of this class using theNew() method.

ConnectedFilterType::Pointer connectedThreshold = Conn ectedFilterType::New();

Now it is time to connect a simple, linear pipeline. A file reader is added at the beginning of the
pipeline and a cast filter and writer are added at the end. The cast filter is required to convert
float pixel types to integer types since only a few image file formats supportfloat types.

smoothing->SetInput(reader->GetOutput());
connectedThreshold->SetInput(smoothing->GetOutput());
caster->SetInput(connectedThreshold->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires a couple of parameters to be defined. The following are
typical values, however they may have to be adjusted depending on the amount of noise present
in the input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The ConnectedThresholdImageFilter has two main parameters to be defined. They are the lower
and upper thresholds of the interval in which intensity values should fall in order to be included
in the region. Setting these two values too close will not allow enough flexibility for the region
to grow. Setting them too far apart will result in a region that engulfs the image.

connectedThreshold->SetLower(lowerThreshold);
connectedThreshold->SetUpper(upperThreshold);

The output of this filter is a binary image with zero-value pixels everywhere except on
the extracted region. The intensity value set inside the region is selected with the method
SetReplaceValue()

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

326 Chapter 14. Image Segmentation

Structure Seed Index Lower Upper Output Image
Road (110,38) 50 100 Second from left in Figure 14.1
Shadow (118,100) 0 10 Third from left in Figure 14.1
Building (169,146) 220 255 Fourth from left in Figure 14.1

Table 14.1: Parameters used for segmenting some structures shown in Figure 14.1 with the filter

itk::ConnectedThresholdImageFilter .

connectedThreshold->SetReplaceValue(
itk::NumericTraits<OutputPixelType>::max());

The initialization of the algorithm requires the user to provide a seed point. It is convenient to
select this point to be placed in atypical region of the structure to be segmented. The seed is
passed in the form of aitk::Index to theSetSeed() method.

connectedThreshold->SetSeed(index);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is usually wise to put update calls in atry/catch block in case errors occur and exceptions are
thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s run this example using as input the imageQB Suburb.png provided in the directory
Examples/Data . We can easily segment the major structures by providing seeds in the appro-
priate locations and defining values for the lower and upper thresholds. Figure 14.1 illustrates
several examples of segmentation. The parameters used are presented in Table 14.1.

Notice that some objects are not being completely segmented. This illustrates the vulnerability
of the region growing methods when the structures to be segmented do not have a homogeneous
statistical distribution over the image space. You may wantto experiment with different values
of the lower and upper thresholds to verify how the accepted region will extend.

Another option for segmenting regions is to take advantage of the functionality provided by the
ConnectedThresholdImageFilter for managing multiple seeds. The seeds can be passed one by
one to the filter using theAddSeed() method. You could imagine a user interface in which

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

14.1. Region Growing 327

Figure 14.1:Segmentation results for the ConnectedThreshold filter for various seed points.

an operator clicks on multiple points of the object to be segmented and each selected point is
passed as a seed to this filter.

14.1.2 Otsu Segmentation

Another criterion for classifying pixels is to minimize theerror of misclassification. The goal
is to find a threshold that classifies the image into two clusters such that we minimize the area
under the histogram for one cluster that lies on the other cluster’s side of the threshold. This
is equivalent to minimizing the within class variance or equivalently maximizing the between
class variance.

The source code for this example can be found in the file
Examples/Segmentation/OtsuThresholdImageFilter.cxx .

This example illustrates how to use theitk::OtsuThresholdImageFilter .

#include "itkOtsuThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images.

typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

The input and output image types are now defined using their respective pixel types and dimen-
sions.

typedef otb::Image< InputPixelType, 2 > InputImageType;
typedef otb::Image< OutputPixelType, 2 > OutputImageType ;

The filter type can be instantiated using the input and outputimage types defined above.

typedef itk::OtsuThresholdImageFilter<
InputImageType, OutputImageType > FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1OtsuThresholdImageFilter.html

328 Chapter 14. Image Segmentation

An otb::ImageFileReader class is also instantiated in order to read image data from a file.
(See Section 6 on page 95 for more information about reading and writing data.)

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;

An otb::ImageFileWriter is instantiated in order to write the output image to a file.

typedef otb::ImageFileWriter< InputImageType > WriterTy pe;

Both the filter and the reader are created by invoking theirNew() methods and assigning the
result to itk::SmartPointer s.

ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();

The image obtained with the reader is passed as input to the OtsuThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The methodSetOutsideValue() defines the intensity value to be assigned to those pixels
whose intensities are outside the range defined by the lower and upper thresholds. The method
SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling
inside the threshold range.

filter->SetOutsideValue(outsideValue);
filter->SetInsideValue(insideValue);

The methodSetNumberOfHistogramBins() defines the number of bins to be used for com-
puting the histogram. This histogram will be used internally in order to compute the Otsu
threshold.

filter->SetNumberOfHistogramBins(128);

The execution of the filter is triggered by invoking theUpdate() method. If the filter’s output
has been passed as input to subsequent filters, theUpdate() call on any posterior filters in the
pipeline will indirectly trigger the update of this filter.

filter->Update();

We print out here the Threshold value that was computed internally by the filter. For this we
invoke theGetThreshold method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 329

Figure 14.2:Effect of the OtsuThresholdImageFilter.

int threshold = filter->GetThreshold();
std::cout << "Threshold = " << threshold << std::endl;

Figure 14.2 illustrates the effect of this filter. This figureshows the limitations of this filter for
performing segmentation by itself. These limitations are particularly noticeable in noisy images
and in images lacking spatial uniformity.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

The source code for this example can be found in the file
Examples/Segmentation/OtsuMultipleThresholdImageFil ter.cxx .

This example illustrates how to use theitk::OtsuMultipleThresholdsCalculator .

#include "itkOtsuMultipleThresholdsCalculator.h"

OtsuMultipleThresholdsCalculator calculates thresholds for a give histogram so as to maximize
the between-class variance. We use ScalarImageToHistogramGenerator to generate histograms

typedef itk::Statistics::ScalarImageToHistogramGener ator< InputImageType >
ScalarImageToHistogramGeneratorType;

typedef itk::OtsuMultipleThresholdsCalculator<
ScalarImageToHistogramGeneratorType::HistogramType > CalculatorType;

Once thresholds are computed we will use BinaryThresholdImageFilter to segment the input
image into segments.

typedef itk::BinaryThresholdImageFilter< InputImageTy pe, OutputImageType >
FilterType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1OtsuMultipleThresholdsCalculator.html

330 Chapter 14. Image Segmentation

ScalarImageToHistogramGeneratorType::Pointer scalarI mageToHistogramGenerator =
ScalarImageToHistogramGeneratorType::New();

CalculatorType::Pointer calculator = CalculatorType::N ew();
FilterType::Pointer filter = FilterType::New();

scalarImageToHistogramGenerator->SetNumberOfBins(12 8);
int nbThresholds = argc-2;
calculator->SetNumberOfThresholds(nbThresholds);

The pipeline will look as follows:

scalarImageToHistogramGenerator->SetInput(reader->G etOutput());
calculator->SetInputHistogram(scalarImageToHistogra mGenerator->GetOutput());
filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());

Thresholds are obtained using theGetOutput method

const CalculatorType::OutputType &thresholdVector = cal culator->GetOutput();
CalculatorType::OutputType::const_iterator itNum = thr esholdVector.begin();

for(; itNum < thresholdVector.end(); itNum++)
{
std::cout << "OtsuThreshold["

<< (int)(itNum - thresholdVector.begin())
<< "] = " <<
static_cast<itk::NumericTraits<CalculatorType::Meas urementType>::PrintType>
(*itNum) << std::endl;

}

Figure 14.3 illustrates the effect of this filter.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

14.1.3 Neighborhood Connected

The source code for this example can be found in the file
Examples/Segmentation/NeighborhoodConnectedImageFil ter.cxx .

The following example illustrates the use of theitk::NeighborhoodConnectedImageFilter .
This filter is a close variant of theitk::ConnectedThresholdImageFilter . On one hand,
the ConnectedThresholdImageFilter accepts a pixel in the region if its intensity is in the interval

http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

14.1. Region Growing 331

Figure 14.3:Effect of the OtsuMultipleThresholdImageFilter.

332 Chapter 14. Image Segmentation

defined by two user-provided threshold values. The NeighborhoodConnectedImageFilter, on
the other hand, will only accept a pixel ifall its neighbors have intensities that fit in the interval.
The size of the neighborhood to be considered around each pixel is defined by a user-provided
integer radius.

The reason for considering the neighborhood intensities instead of only the current pixel inten-
sity is that small structures are less likely to be accepted in the region. The operation of this filter
is equivalent to applying the ConnectedThresholdImageFilter followed by mathematical mor-
phology erosion using a structuring element of the same shape as the neighborhood provided to
the NeighborhoodConnectedImageFilter.

#include "itkNeighborhoodConnectedImageFilter.h"

The itk::CurvatureFlowImageFilter is used here to smooth the image while preserving
edges.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a particular pixel type and image dimension. In this case
the float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Inter nalImageType;

The smoothing filter type is instantiated using the image type as a template parameter.

typedef itk::CurvatureFlowImageFilter<InternalImageT ype, InternalImageType>
CurvatureFlowImageFilterType;

Then, the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the NeighborhoodCon-
nectedImageFilter.

typedef itk::NeighborhoodConnectedImageFilter<Intern alImageType,
InternalImageType > ConnectedFilterType;

One filter of this class is constructed using theNew() method.

http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 333

ConnectedFilterType::Pointer neighborhoodConnected = C onnectedFilterType::New();

Now it is time to create a simple, linear data processing pipeline. A file reader is added at
the beginning of the pipeline and a cast filter and writer are added at the end. The cast filter
is required to convertfloat pixel types to integer types since only a few image file formats
supportfloat types.

smoothing->SetInput(reader->GetOutput());
neighborhoodConnected->SetInput(smoothing->GetOutpu t());
caster->SetInput(neighborhoodConnected->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires a couple of parameters to be defined. The following are
typical values for 2D images. However they may have to be adjusted depending on theamount
of noise present in the input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The NeighborhoodConnectedImageFilter requires that two main parameters are specified. They
are the lower and upper thresholds of the interval in which intensity values must fall to be
included in the region. Setting these two values too close will not allow enough flexibility for
the region to grow. Setting them too far apart will result in aregion that engulfs the image.

neighborhoodConnected->SetLower(lowerThreshold);
neighborhoodConnected->SetUpper(upperThreshold);

Here, we add the crucial parameter that defines the neighborhood size used to determine whether
a pixel lies in the region. The larger the neighborhood, the more stable this filter will be against
noise in the input image, but also the longer the computing time will be. Here we select a filter
of radius 2 along each dimension. This results in a neighborhood of 5×5 pixels.

InternalImageType::SizeType radius;

radius[0] = 2; // two pixels along X
radius[1] = 2; // two pixels along Y

neighborhoodConnected->SetRadius(radius);

As in the ConnectedThresholdImageFilter we must now provide the intensity value to be used
for the output pixels accepted in the region and at least one seed point to define the initial region.

neighborhoodConnected->SetSeed(index);
neighborhoodConnected->SetReplaceValue(255);

334 Chapter 14. Image Segmentation

Structure Seed Index Lower Upper Output Image
Road (110,38) 50 100 Second from left in Figure 14.4
Shadow (118,100) 0 10 Third from left in Figure 14.4
Building (169,146) 220 255 Fourth from left in Figure 14.4

Table 14.2: Parameters used for segmenting some structures shown in Figure 14.4 with the filter

itk::NeighborhoodConnectedThresholdImageFilter .

Figure 14.4:Segmentation results for the NeighborhoodConnectedThreshold filter for various seed points.

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is usually wise to put update calls in atry/catch block in case errors occur and exceptions are
thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s run this example using as input the imageQB Suburb.png provided in the directory
Examples/Data . We can easily segment the major structures by providing seeds in the appro-
priate locations and defining values for the lower and upper thresholds. Figure 14.4 illustrates
several examples of segmentation. The parameters used are presented in Table 14.2.

As with the ConnectedThresholdImageFilter, several seedscould be provided to the filter by
using theAddSeed() method. Compare the output of Figure 14.4 with those of Figure 14.1
produced by the ConnectedThresholdImageFilter. You may want to play with the value of the
neighborhood radius and see how it affect the smoothness of the segmented object borders, the
size of the segmented region and how much that costs in computing time.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodConnectedThresholdImageFilter.html

14.1. Region Growing 335

14.1.4 Confidence Connected

The source code for this example can be found in the file
Examples/Segmentation/ConfidenceConnected.cxx .

The following example illustrates the use of theitk::ConfidenceConnectedImageFilter .
The criterion used by the ConfidenceConnectedImageFilter is based on simple statistics of the
current region. First, the algorithm computes the mean and standard deviation of intensity val-
ues for all the pixels currently included in the region. A user-provided factor is used to multiply
the standard deviation and define a range around the mean. Neighbor pixels whose intensity
values fall inside the range are accepted and included in theregion. When no more neighbor
pixels are found that satisfy the criterion, the algorithm is considered to have finished its first
iteration. At that point, the mean and standard deviation ofthe intensity levels are recomputed
using all the pixels currently included in the region. This mean and standard deviation defines a
new intensity range that is used to visit current region neighbors and evaluate whether their in-
tensity falls inside the range. This iterative process is repeated until no more pixels are added or
the maximum number of iterations is reached. The following equation illustrates the inclusion
criterion used by this filter,

I(X) ∈ [m− f σ,m+ f σ] (14.2)

wherem and σ are the mean and standard deviation of the region intensities, f is a factor
defined by the user,I() is the image andX is the position of the particular neighbor pixel being
considered for inclusion in the region.

Let’s look at the minimal code required to use this algorithm. First, the following header defin-
ing the itk::ConfidenceConnectedImageFilter class must be included.

#include "itkConfidenceConnectedImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large re-
gions. When faced with noisy images, it is usually convenientto pre-process the im-
age by using an edge-preserving smoothing filter. In this particular example we use the
itk::CurvatureFlowImageFilter , hence we need to include its header file.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a pixel type and a particulardimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Inter nalImageType;

The smoothing filter type is instantiated using the image type as a template parameter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConfidenceConnectedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureFlowImageFilter.html

336 Chapter 14. Image Segmentation

typedef itk::CurvatureFlowImageFilter< InternalImageT ype, InternalImageType >
CurvatureFlowImageFilterType;

Next the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the ConfidenceConnecte-
dImageFilter.

typedef itk::ConfidenceConnectedImageFilter<Internal ImageType, InternalImageType>
ConnectedFilterType;

Then, we construct one filter of this class using theNew() method.

ConnectedFilterType::Pointer confidenceConnected = Con nectedFilterType::New();

Now it is time to create a simple, linear pipeline. A file reader is added at the beginning of
the pipeline and a cast filter and writer are added at the end. The cast filter is required here to
convertfloat pixel types to integer types since only a few image file formats supportfloat
types.

smoothing->SetInput(reader->GetOutput());
confidenceConnected->SetInput(smoothing->GetOutput());
caster->SetInput(confidenceConnected->GetOutput());
writer->SetInput(caster->GetOutput());

The CurvatureFlowImageFilter requires defining two parameters. The following are typical
values. However they may have to be adjusted depending on theamount of noise present in the
input image.

smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);

The ConfidenceConnectedImageFilter requires defining two parameters. First, the factorf that
the defines how large the range of intensities will be. Small values of the multiplier will restrict
the inclusion of pixels to those having very similar intensities to those in the current region.
Larger values of the multiplier will relax the accepting condition and will result in more gener-
ous growth of the region. Values that are too large will causethe region to grow into neighboring
regions that may actually belong to separate structures.

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.1. Region Growing 337

confidenceConnected->SetMultiplier(2.5);

The number of iterations is specified based on the homogeneity of the intensities of the object to
be segmented. Highly homogeneous regions may only require acouple of iterations. Regions
with ramp effect, may require more iterations. In practice,it seems to be more important to
carefully select the multiplier factor than the number of iterations. However, keep in mind that
there is no reason to assume that this algorithm should converge to a stable region. It is possible
that by letting the algorithm run for more iterations the region will end up engulfing the entire
image.

confidenceConnected->SetNumberOfIterations(5);

The output of this filter is a binary image with zero-value pixels everywhere except on the
extracted region. The intensity value to be set inside the region is selected with the method
SetReplaceValue()

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. It is convenient
to select this point to be placed in atypical region of the structure to be segmented. A small
neighborhood around the seed point will be used to compute the initial mean and standard
deviation for the inclusion criterion. The seed is passed inthe form of a itk::Index to the
SetSeed() method.

confidenceConnected->SetSeed(index);

The size of the initial neighborhood around the seed is defined with the method
SetInitialNeighborhoodRadius() . The neighborhood will be defined as anN-dimensional
rectangular region with 2r +1 pixels on the side, wherer is the value passed as initial neighbor-
hood radius.

confidenceConnected->SetInitialNeighborhoodRadius(2);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.It
is recommended to place update calls in atry/catch block in case errors occur and exceptions
are thrown.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excep)
{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

338 Chapter 14. Image Segmentation

Structure Seed Index Lower Upper Output Image
Road (110,38) 50 100 Second from left in Figure 14.1
Shadow (118,100) 0 10 Third from left in Figure 14.1
Building (169,146) 220 255 Fourth from left in Figure 14.1

Table 14.3: Parameters used for segmenting some structures shown in Figure 14.1 with the filter

itk::ConnectedThresholdImageFilter .

Figure 14.5:Segmentation results for the ConfidenceConnected filter for various seed points.

std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Let’s now run this example using as input the imageQB Suburb.png provided in the direc-
tory Examples/Data . We can easily segment structures by providing seeds in the appropriate
locations. For example

14.2 Segmentation Based on Watersheds

14.2.1 Overview

Watershed segmentation classifies pixels into regions using gradient descent on image features
and analysis of weak points along region boundaries. Imagine water raining onto a landscape
topology and flowing with gravity to collect in low basins. The size of those basins will grow
with increasing amounts of precipitation until they spill into one another, causing small basins
to merge together into larger basins. Regions (catchment basins) are formed by using local
geometric structure to associate points in the image domainwith local extrema in some fea-
ture measurement such as curvature or gradient magnitude. This technique is less sensitive
to user-defined thresholds than classic region-growing methods, and may be better suited for
fusing different types of features from different data sets. The watersheds technique is also
more flexible in that it does not produce a single image segmentation, but rather a hierarchy of
segmentations from which a single region or set of regions can be extracted a-priori, using a
threshold, or interactively, with the help of a graphical user interface [100, 101].

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

14.2. Segmentation Based on Watersheds 339

W
at

er
sh

ed
 D

ep
th

Intensity profile of input image Intensity profile of filtered image Watershed Segmentation

Figure 14.6:A fuzzy-valued boundary map, from an image or set of images, is segmented using local

minima and catchment basins.

The strategy of watershed segmentation is to treat an imagef as a height function, i.e., the
surface formed by graphingf as a function of its independent parameters,~x∈U . The imagef
is often not the original input data, but is derived from thatdata through some filtering, graded
(or fuzzy) feature extraction, or fusion of feature maps from different sources. The assumption
is that higher values off (or − f) indicate the presence of boundaries in the original data.
Watersheds may therefore be considered as a final or intermediate step in a hybrid segmentation
method, where the initial segmentation is the generation ofthe edge feature map.

Gradient descent associates regions with local minima off (clearly interior points) using the
watersheds of the graph off , as in Figure 14.6. That is, a segment consists of all points in U
whose paths of steepest descent on the graph off terminate at the same minimum inf . Thus,
there are as many segments in an image as there are minima inf . The segment boundaries
are “ridges” [52, 53, 31] in the graph off . In the 1D case (U ⊂ ℜ), the watershed boundaries
are the local maxima off , and the results of the watershed segmentation is trivial. For higher-
dimensional image domains, the watershed boundaries are not simply local phenomena; they
depend on the shape of the entire watershed.

The drawback of watershed segmentation is that it produces aregion for each local minimum—
in practice too many regions—and an over segmentation results. To alleviate this, we can estab-
lish a minimum watershed depth. The watershed depth is the difference in height between the
watershed minimum and the lowest boundary point. In other words, it is the maximum depth of
water a region could hold without flowing into any of its neighbors. Thus, a watershed segmen-
tation algorithm can sequentially combine watersheds whose depths fall below the minimum
until all of the watersheds are of sufficient depth. This depth measurement can be combined
with other saliency measurements, such as size. The result is a segmentation containing regions
whose boundaries and size are significant. Because the merging process is sequential, it pro-
duces a hierarchy of regions, as shown in Figure 14.7. Previous work has shown the benefit of
a user-assisted approach that provides a graphical interface to this hierarchy, so that a techni-
cian can quickly move from the small regions that lie within an area of interest to the union of
regions that correspond to the anatomical structure [101].

There are two different algorithms commonly used to implement watersheds: top-down and
bottom-up. The top-down, gradient descent strategy was chosen for ITK because we want to
consider the output of multi-scale differential operators, and thef in question will therefore
have floating point values. The bottom-up strategy starts with seeds at the local minima in
the image and grows regions outward and upward at discrete intensity levels (equivalent to a

340 Chapter 14. Image Segmentation

Node

Threshold of
Watershed depth

Image

Leaf

Boolean Operations
on Sub−Trees
(e.g. User Interaction)

Node Node Node

Node
Node

Node

Node

Node

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf LeafLeaf

Figure 14.7:A watershed segmentation combined with a saliency measure (watershed depth) produces

a hierarchy of regions. Structures can be derived from images by either thresholding the saliency measure

or combining subtrees within the hierarchy.

sequence of morphological operations and sometimes calledmorphological watersheds[79].)
This limits the accuracy by enforcing a set of discrete gray levels on the image.

Figure 14.8 shows how the ITK image-to-image watersheds filter is constructed. The filter is
actually a collection of smaller filters that modularize theseveral steps of the algorithm in a
mini-pipeline. The segmenter object creates the initial segmentation via steepest descent from
each pixel to local minima. Shallow background regions are removed (flattened) before seg-
mentation using a simple minimum value threshold (this helps to minimize oversegmentation
of the image). The initial segmentation is passed to a secondsub-filter that generates a hier-
archy of basins to a user-specified maximum watershed depth.The relabeler object at the end
of the mini-pipeline uses the hierarchy and the initial segmentation to produce an output image

Height
Image

Labeled
Image

Image
Relabeler

Merge
Tree

Tree
Generator

Basic
Segmentation

Segmenter

Threshold

Maximum Flood Level

Output Flood Level

Data Object

Process Object

Parameter

Watershed Image Filter

Figure 14.8:The construction of the Insight watersheds filter.

14.2. Segmentation Based on Watersheds 341

at any scalebelow the user-specified maximum. Data objects are cached in the mini-pipeline
so that changing watershed depths only requires a (fast) relabeling of the basic segmentation.
The three parameters that control the filter are shown in Figure 14.8 connected to their relevant
processing stages.

14.2.2 Using the ITK Watershed Filter

The source code for this example can be found in the file
Examples/Segmentation/WatershedSegmentation.cxx .

The following example illustrates how to preprocess and segment images using the
itk::WatershedImageFilter . Note that the care with which the data is preprocessed will
greatly affect the quality of your result. Typically, the best results are obtained by preprocessing
the original image with an edge-preserving diffusion filter, such as one of the anisotropic dif-
fusion filters, or with the bilateral image filter. As noted inSection 14.2.1, the height function
used as input should be created such that higher positive values correspond to object boundaries.
A suitable height function for many applications can be generated as the gradient magnitude of
the image to be segmented.

The itk::VectorGradientMagnitudeAnisotropicDiffusionIma geFilter class is used
to smooth the image and theitk::VectorGradientMagnitudeImageFilter is used to gen-
erate the height function. We begin by including all preprocessing filter header files and the
header file for the WatershedImageFilter. We use the vector versions of these filters because the
input data is a color image.

#include "itkVectorGradientAnisotropicDiffusionImage Filter.h"
#include "itkVectorGradientMagnitudeImageFilter.h"
#include "itkWatershedImageFilter.h"

We now declare the image and pixel types to use for instantiation of the filters. All of
these filters expect real-valued pixel types in order to workproperly. The preprocessing
stages are done directly on the vector-valued data and the segmentation is done using float-
ing point scalar data. Images are converted from RGB pixel type to numerical vector type
using itk::VectorCastImageFilter . Please pay attention to the fact that we are using
itk::Image s since the itk::VectorGradientMagnitudeImageFilter has some internal
typedefs which make polymorfism impossible.

typedef itk::RGBPixel<unsigned char> RGBPixelType;
typedef otb::Image<RGBPixelType, 2> RGBImageType;
typedef itk::Vector<float, 3> VectorPixelType;
typedef itk::Image<VectorPixelType, 2> VectorImageType ;
typedef itk::Image<unsigned long, 2> LabeledImageType;
typedef itk::Image<float, 2> ScalarImageType;

The various image processing filters are declared using the types created above and eventually
used in the pipeline.

http://www.melaneum.com/OTB/doxygen/classitk_1_1WatershedImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorCastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1VectorGradientMagnitudeImageFilter.html

342 Chapter 14. Image Segmentation

typedef otb::ImageFileReader<RGBImageType> FileReader Type;
typedef itk::VectorCastImageFilter<RGBImageType, Vect orImageType>

CastFilterType;
typedef itk::VectorGradientAnisotropicDiffusionImage Filter<VectorImageType,

VectorImageType> DiffusionFilterType;
typedef itk::VectorGradientMagnitudeImageFilter<Vect orImageType,float,ScalarImageType>

GradientMagnitudeFilterType;
typedef itk::WatershedImageFilter<ScalarImageType> Wa tershedFilterType;

Next we instantiate the filters and set their parameters. Thefirst step in the image processing
pipeline is diffusion of the color input image using an anisotropic diffusion filter. For this class
of filters, the CFL condition requires that the time step be nomore than 0.25 for two-dimensional
images, and no more than 0.125 for three-dimensional images. The number of iterations and the
conductance term will be taken from the command line. See Section 7.6.2 for more information
on the ITK anisotropic diffusion filters.

DiffusionFilterType::Pointer diffusion = DiffusionFilt erType::New();
diffusion->SetNumberOfIterations(atoi(argv[4]));
diffusion->SetConductanceParameter(atof(argv[3]));
diffusion->SetTimeStep(0.125);

The ITK gradient magnitude filter for vector-valued images can optionally take several param-
eters. Here we allow only enabling or disabling of principalcomponent analysis.

GradientMagnitudeFilterType::Pointer
gradient = GradientMagnitudeFilterType::New();

gradient->SetUsePrincipleComponents(atoi(argv[7]));

Finally we set up the watershed filter. There are two parameters. Level controls watershed
depth, andThreshold controls the lower thresholding of the input. Both parameters are set as
a percentage (0.0 - 1.0) of the maximum depth in the input image.

WatershedFilterType::Pointer watershed = WatershedFilt erType::New();
watershed->SetLevel(atof(argv[6]));
watershed->SetThreshold(atof(argv[5]));

The output of WatershedImageFilter is an image of unsigned long integer labels, where a label
denotes membership of a pixel in a particular segmented region. This format is not practical
for visualization, so for the purposes of this example, we will convert it to RGB pixels. RGB
images have the advantage that they can be saved as a simple png file and viewed using any
standard image viewer software. Theitk::Functor::ScalarToRGBPixelFunctor class is a
special function object designed to hash a scalar value intoan itk::RGBPixel . Plugging this
functor into the itk::UnaryFunctorImageFilter creates an image filter for that converts
scalar images to RGB images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

14.2. Segmentation Based on Watersheds 343

Figure 14.9:Segmented RGB image. At left is the original image. The image in the middle was generated

with parameters: conductance = 2.0, iterations = 10, threshold = 0.0, level = 0.05, principal components =

on. The image on the right was generated with parameters: conductance = 2.0, iterations = 10, threshold

= 0.001, level = 0.15, principal components = off.

typedef itk::Functor::ScalarToRGBPixelFunctor<unsign ed long>
ColorMapFunctorType;

typedef itk::UnaryFunctorImageFilter<LabeledImageTyp e,
RGBImageType, ColorMapFunctorType> ColorMapFilterType ;

ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

The filters are connected into a single pipeline, with readers and writers at each end.

caster->SetInput(reader->GetOutput());
diffusion->SetInput(caster->GetOutput());
gradient->SetInput(diffusion->GetOutput());
watershed->SetInput(gradient->GetOutput());
colormapper->SetInput(watershed->GetOutput());
writer->SetInput(colormapper->GetOutput());

Tuning the filter parameters for any particular applicationis a process of trial and error. The
thresholdparameter can be used to great effect in controlling oversegmentation of the image.
Raising the threshold will generally reduce computation time and produce output with fewer
and larger regions. The trick in tuning parameters is to consider the scale level of the objects
that you are trying to segment in the image. The best time/quality trade-off will be achieved
when the image is smoothed and thresholded to eliminate features just below the desired scale.

Figure 14.9 shows output from the example code. Note that a critical difference between the
two segmentations is the mode of the gradient magnitude calculation.

A note on the computational complexity of the watershed algorithm is warranted. Most of the
complexity of the ITK implementation lies in generating thehierarchy. Processing times for this
stage are non-linear with respect to the number of catchmentbasins in the initial segmentation.
This means that the amount of information contained in an image is more significant than the
number of pixels in the image. A very large, but very flat inputtake less time to segment than a
very small, but very detailed input.

344 Chapter 14. Image Segmentation

14.3 Level Set Segmentation

Zero Set f(x,y)=0

Exterior f(x,y) < 0

Interior
f(x,y) > 0

Figure 14.10:Concept of zero set in a level set.

The paradigm of the level
set is that it is a numeri-
cal method for tracking the
evolution of contours and
surfaces. Instead of ma-
nipulating the contour di-
rectly, the contour is embed-
ded as the zero level set of a
higher dimensional function
called the level-set function,
ψ(X, t). The level-set func-
tion is then evolved under
the control of a differential
equation. At any time, the
evolving contour can be ob-
tained by extracting the zero
level-setΓ((X), t) = {ψ(X, t) = 0} from the output. The main advantages of using level sets is
that arbitrarily complex shapes can be modeled and topological changes such as merging and
splitting are handled implicitly.

Level sets can be used for image segmentation by using image-based features such as mean
intensity, gradient and edges in the governing differential equation. In a typical approach, a
contour is initialized by a user and is then evolved until it fits the form of an object in the image.
Many different implementations and variants of this basic concept have been published in the
literature. An overview of the field has been made by Sethian [80].

The following sections introduce practical examples of some of the level set segmentation meth-
ods available in ITK. The remainder of this section describes features common to all of these
filters except theitk::FastMarchingImageFilter , which is derived from a different code
framework. Understanding these features will aid in using the filters more effectively.

Each filter makes use of a generic level-set equation to compute the update to the solutionψ of
the partial differential equation.

d
dt

ψ = −αA(x) ·∇ψ−βP(x) | ∇ψ | +γZ(x)κ | ∇ψ | (14.3)

whereA is an advection term,P is a propagation (expansion) term, andZ is a spatial modifier
term for the mean curvatureκ. The scalar constantsα, β, andγ weight the relative influence of
each of the terms on the movement of the interface. A segmentation filter may use all of these
terms in its calculations, or it may omit one or more terms. Ifa term is left out of the equation,
then setting the corresponding scalar constant weighting will have no effect.

All of the level-set based segmentation filtersmustoperate with floating point precision to pro-

http://www.melaneum.com/OTB/doxygen/classitk_1_1FastMarchingImageFilter.html

14.3. Level Set Segmentation 345

−0.4

−0.3

−1.3

−1.4

−1.4

−0.2−1.2

−1.1 −0.1

−0.6

0.6

0.4 0.3

−0.7

1.31.6

0.8

−0.3

0.3

−0.8

−0.7

0.7

−0.4−1.3

0.4

1.3 0.3 0.4 −0.6

−0.6

0.2

1.3

0.2 −0.8

−0.8

1.2

2.3

1.2

1.4

−0.6

0.4−0.5−1.5

0.9

−0.6

0.2

−0.8

0.7

−0.6 −1.7

−1.6

−0.7

−1.8

−1.8

−1.8−2.4

−2.4

−2.4

−2.5

−2.5 −1.5

−1.6

−1.6

2.4

1.7

1.8

Ψ(x, t)

Figure 14.11:The implicit level set surface Γ is the black line superimposed over the image grid. The

location of the surface is interpolated by the image pixel values. The grid pixels closest to the implicit

surface are shown in gray.

duce valid results. The third, optional template parameteris thenumerical typeused for calcu-
lations and as the output image pixel type. The numerical type is float by default, but can be
changed todouble for extra precision. A user-defined, signed floating point type that defines
all of the necessary arithmetic operators and has sufficientprecision is also a valid choice. You
should not use types such asint or unsigned char for the numerical parameter. If the input
image pixel types do not match the numerical type, those inputs will be cast to an image of
appropriate type when the filter is executed.

Most filters require two images as input, an initial modelψ(X, t = 0), and afeature image,
which is either the image you wish to segment or some preprocessed version. You must specify
the isovalue that represents the surfaceΓ in your initial model. The single image output of each
filter is the functionψ at the final time step. It is important to note that the contourrepresenting
the surfaceΓ is the zero level-set of the output image, and not the isovalue you specified for
the initial model. To representΓ using the original isovalue, simply add that value back to the
output.

The solutionΓ is calculated to subpixel precision. The best discrete approximation of the sur-
face is therefore the set of grid positions closest to the zero-crossings in the image, as shown in
Figure 14.11. Theitk::ZeroCrossingImageFilter operates by finding exactly those grid
positions and can be used to extract the surface.

There are two important considerations when analyzing the processing time for any particular
level-set segmentation task: the surface area of the evolving interface and the total distance that
the surface must travel. Because the level-set equations are usually solved only at pixels near the
surface (fast marching methods are an exception), the time taken at each iteration depends on
the number of points on the surface. This means that as the surface grows, the solver will slow
down proportionally. Because the surface must evolve slowly to prevent numerical instabilities

http://www.melaneum.com/OTB/doxygen/classitk_1_1ZeroCrossingImageFilter.html

346 Chapter 14. Image Segmentation

Binary
Threshold

Time−Crossing
Map

Fast
Marching

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
otb::Image

Binary
Image

Iterations Sigma Alpha,Beta Seeds Threshold

Figure 14.12:Collaboration diagram of the FastMarchingImageFilter applied to a segmentation task.

in the solution, the distance the surface must travel in the image dictates the total number of
iterations required.

Some level-set techniques are relatively insensitive to initial conditions and are there-
fore suitable for region-growing segmentation. Other techniques, such as the
itk::LaplacianSegmentationLevelSetImageFilter , can easily become “stuck” on image
features close to their initialization and should be used only when a reasonable prior segmenta-
tion is available as the initialization. For best efficiency, your initial model of the surface should
be the best guess possible for the solution.

14.3.1 Fast Marching Segmentation

The source code for this example can be found in the file
Examples/Segmentation/FastMarchingImageFilter.cxx .

When the differential equation governing the level set evolution has a very simple form, a fast
evolution algorithm called fast marching can be used.

The following example illustrates the use of theitk::FastMarchingImageFilter . This filter
implements a fast marching solution to a simple level set evolution problem. In this example,
the speed term used in the differential equation is expectedto be provided by the user in the
form of an image. This image is typically computed as a function of the gradient magnitude.
Several mappings are popular in the literature, for example, the negative exponentialexp(−x)
and the reciprocal 1/(1+x). In the current example we decided to use a Sigmoid function since
it offers a good deal of control parameters that can be customized to shape a nice speed image.

The mapping should be done in such a way that the propagation speed of the front will be very
low close to high image gradients while it will move rather fast in low gradient areas. This
arrangement will make the contour propagate until it reaches the edges of anatomical structures
in the image and then slow down in front of those edges. The output of the FastMarchingIm-
ageFilter is atime-crossing mapthat indicates, for each pixel, how much time it would take for
the front to arrive at the pixel location.

The application of a threshold in the output image is then equivalent to taking a snapshot of
the contour at a particular time during its evolution. It is expected that the contour will take a
longer time to cross over the edges of a particular structure. This should result in large changes
on the time-crossing map values close to the structure edges. Segmentation is performed with
this filter by locating a time range in which the contour was contained for a long time in a region

http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FastMarchingImageFilter.html

14.3. Level Set Segmentation 347

of the image space.

Figure 14.12 shows the major components involved in the application of the FastMarchingIm-
ageFilter to a segmentation task. It involves an initial stage of smoothing using the
itk::CurvatureAnisotropicDiffusionImageFilter . The smoothed image is passed as
the input to theitk::GradientMagnitudeRecursiveGaussianImageFilter and then to the
itk::SigmoidImageFilter . Finally, the output of the FastMarchingImageFilter is passed to
a itk::BinaryThresholdImageFilter in order to produce a binary mask representing the
segmented object.

The code in the following example illustrates the typical setup of a pipeline for performing
segmentation with fast marching. First, the input image is smoothed using an edge-preserving
filter. Then the magnitude of its gradient is computed and passed to a sigmoid filter. The result
of the sigmoid filter is the image potential that will be used to affect the speed term of the
differential equation.

Let’s start by including the following headers. First we include the header of the Curvature-
AnisotropicDiffusionImageFilter that will be used for removing noise from the input image.

#include "itkCurvatureAnisotropicDiffusionImageFilte r.h"

The headers of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter
are included below. Together, these two filters will producethe image potential for regulating
the speed term in the differential equation describing the evolution of the level set.

#include "itkGradientMagnitudeRecursiveGaussianImage Filter.h"
#include "itkSigmoidImageFilter.h"

Of course, we will need theotb::Image class and the FastMarchingImageFilter class. Hence
we include their headers.

#include "otbImage.h"
#include "itkFastMarchingImageFilter.h"

The time-crossing map resulting from the FastMarchingImageFilter will be thresholded using
the BinaryThresholdImageFilter. We include its header here.

#include "itkBinaryThresholdImageFilter.h"

Reading and writing images will be done with theotb::ImageFileReader and
otb::ImageFileWriter .

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SigmoidImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

348 Chapter 14. Image Segmentation

We now define the image type using a pixel type and a particulardimension. In this case the
float type is used for the pixels due to the requirements of the smoothing filter.

typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InternalPixelType, Dimension > Inter nalImageType;

The output image, on the other hand, is declared to be binary.

typedef unsigned char OutputPixelType;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

The type of the BinaryThresholdImageFilter filter is instantiated below using the internal image
type and the output image type.

typedef itk::BinaryThresholdImageFilter< InternalImag eType,
OutputImageType > ThresholdingFilterType;

ThresholdingFilterType::Pointer thresholder = Threshol dingFilterType::New();

The upper threshold passed to the BinaryThresholdImageFilter will define the time snapshot
that we are taking from the time-crossing map.

thresholder->SetLowerThreshold(0.0);
thresholder->SetUpperThreshold(timeThreshold);

thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);

We instantiate reader and writer types in the following lines.

typedef otb::ImageFileReader< InternalImageType > Reade rType;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The CurvatureAnisotropicDiffusionImageFilter type is instantiated using the internal image
type.

typedef itk::CurvatureAnisotropicDiffusionImageFilte r<
InternalImageType,
InternalImageType > SmoothingFilterType;

Then, the filter is created by invoking theNew() method and assigning the result to a
itk::SmartPointer .

SmoothingFilterType::Pointer smoothing = SmoothingFilt erType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1SmartPointer.html

14.3. Level Set Segmentation 349

The types of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter are
instantiated using the internal image type.

typedef itk::GradientMagnitudeRecursiveGaussianImage Filter<
InternalImageType,
InternalImageType > GradientFilterType;

typedef itk::SigmoidImageFilter<
InternalImageType,
InternalImageType > SigmoidFilterType;

The corresponding filter objects are instantiated with theNew() method.

GradientFilterType::Pointer gradientMagnitude = Gradie ntFilterType::New();
SigmoidFilterType::Pointer sigmoid = SigmoidFilterType ::New();

The minimum and maximum values of the SigmoidImageFilter output are defined with the
methodsSetOutputMinimum() andSetOutputMaximum() . In our case, we want these two
values to be 0.0 and 1.0 respectively in order to get a nice speed image to feed to theFast-
MarchingImageFilter.

sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);

We now declare the type of the FastMarchingImageFilter.

typedef itk::FastMarchingImageFilter< InternalImageTy pe,
InternalImageType > FastMarchingFilterType;

Then, we construct one filter of this class using theNew() method.

FastMarchingFilterType::Pointer fastMarching = FastMar chingFilterType::New();

The filters are now connected in a pipeline shown in Figure 14.12 using the following lines.

smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput()) ;
sigmoid->SetInput(gradientMagnitude->GetOutput());
fastMarching->SetInput(sigmoid->GetOutput());
thresholder->SetInput(fastMarching->GetOutput());
writer->SetInput(thresholder->GetOutput());

The CurvatureAnisotropicDiffusionImageFilter class requires a couple of parameters to be de-
fined. The following are typical values. However they may have to be adjusted depending on
the amount of noise present in the input image.

350 Chapter 14. Image Segmentation

smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(10);
smoothing->SetConductanceParameter(2.0);

The GradientMagnitudeRecursiveGaussianImageFilter performs the equivalent of a convolu-
tion with a Gaussian kernel followed by a derivative operator. The sigma of this Gaussian can
be used to control the range of influence of the image edges.

gradientMagnitude->SetSigma(sigma);

The SigmoidImageFilter class requires two parameters to define the linear transformation to
be applied to the sigmoid argument. These parameters are passed using theSetAlpha() and
SetBeta() methods. In the context of this example, the parameters are used to intensify the
differences between regions of low and high values in the speed image. In an ideal case, the
speed value should be 1.0 in the homogeneous regions and the value should decay rapidly to 0.0
around the edges of structures. The heuristic for finding thevalues is the following. From the
gradient magnitude image, let’s callK1 the minimum value along the contour of the structure to
be segmented. Then, let’s callK2 an average value of the gradient magnitude in the middle of
the structure. These two values indicate the dynamic range that we want to map to the interval
[0 : 1] in the speed image. We want the sigmoid to mapK1 to 0.0 andK2 to 1.0. Given thatK1
is expected to be higher thanK2 and we want to map those values to 0.0 and 1.0 respectively,
we want to select a negative value for alpha so that the sigmoid function will also do an inverse
intensity mapping. This mapping will produce a speed image such that the level set will march
rapidly on the homogeneous region and will definitely stop onthe contour. The suggested value
for beta is(K1+K2)/2 while the suggested value for alpha is(K2−K1)/6, which must be a
negative number. In our simple example the values are provided by the user from the command
line arguments. The user can estimate these values by observing the gradient magnitude image.

sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);

The FastMarchingImageFilter requires the user to provide aseed point from which the contour
will expand. The user can actually pass not only one seed point but a set of them. A good
set of seed points increases the chances of segmenting a complex object without missing parts.
The use of multiple seeds also helps to reduce the amount of time needed by the front to visit
a whole object and hence reduces the risk of leaks on the edgesof regions visited earlier. For
example, when segmenting an elongated object, it is undesirable to place a single seed at one
extreme of the object since the front will need a long time to propagate to the other end of the
object. Placing several seeds along the axis of the object will probably be the best strategy to
ensure that the entire object is captured early in the expansion of the front. One of the important
properties of level sets is their natural ability to fuse several fronts implicitly without any extra
bookkeeping. The use of multiple seeds takes good advantageof this property.

The seeds are passed stored in a container. The type of this container is defined as
NodeContainer among the FastMarchingImageFilter traits.

14.3. Level Set Segmentation 351

typedef FastMarchingFilterType::NodeContainer NodeCon tainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();

Nodes are created as stack variables and initialized with a value and anitk::Index position.

NodeType node;
const double seedValue = 0.0;

node.SetValue(seedValue);
node.SetIndex(seedPosition);

The list of nodes is initialized and then every node is inserted using theInsertElement() .

seeds->Initialize();
seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingImageFilter with the method
SetTrialPoints() .

fastMarching->SetTrialPoints(seeds);

The FastMarchingImageFilter requires the user to specify the size of the image to be produced
as output. This is done using theSetOutputSize() . Note that the size is obtained here from
the output image of the smoothing filter. The size of this image is valid only after theUpdate()
methods of this filter has been called directly or indirectly.

fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize()) ;

Since the front representing the contour will propagate continuously over time, it is desirable
to stop the process once a certain time has been reached. Thisallows us to save computation
time under the assumption that the region of interest has already been computed. The value
for stopping the process is defined with the methodSetStoppingValue() . In principle, the
stopping value should be a little bit higher than the threshold value.

fastMarching->SetStoppingValue(stoppingTime);

The invocation of theUpdate() method on the writer triggers the execution of the pipeline.As
usual, the call is placed in atry/catch block should any errors occur or exceptions be thrown.

try
{

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

352 Chapter 14. Image Segmentation

Structure Seed Index σ α β Threshold Output Image from left
Road (91,176) 0.5 -0.5 3.0 100 First
Shadow (118,100) 1.0 -0.5 3.0 100 Second
Building (145,21) 0.5 -0.5 3.0 100 Third

Table 14.4: Parameters used for segmenting some structures shown in Figure 14.14 using the filter

FastMarchingImageFilter. All of them used a stopping value of 100.

writer->Update();
}

catch(itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}

Now let’s run this example using the input imageQB Suburb.png provided in the directory
Examples/Data . We can easily segment structures by providing seeds in the appropriate loca-
tions. The following table presents the parameters used forsome structures.

Figure 14.13 presents the intermediate outputs of the pipeline illustrated in Figure 14.12. They
are from left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the
smoothed image and the sigmoid of the gradient magnitude which is finally used as the speed
image for the FastMarchingImageFilter.

The following classes provide similar functionality:

• itk::ShapeDetectionLevelSetImageFilter

• itk::GeodesicActiveContourLevelSetImageFilter

• itk::ThresholdSegmentationLevelSetImageFilter

• itk::CannySegmentationLevelSetImageFilter

• itk::LaplacianSegmentationLevelSetImageFilter

See the ITK Software Guide for examples of the use of these classes.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapeDetectionLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CannySegmentationLevelSetImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html

14.3. Level Set Segmentation 353

Figure 14.13:Images generated by the segmentation process based on the FastMarchingImageFilter.

From left to right and top to bottom: input image to be segmented, image smoothed with an edge-preserving

smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient magnitude. This last

image, the sigmoid, is used to compute the speed term for the front propagation

Figure 14.14:Images generated by the segmentation process based on the FastMarchingImageFilter.

From left to right: segmentation of the road, shadow, building.

CHAPTER

FIFTEEN

Multi-scale Analysis

15.1 Introduction

In this chapter, the tools for multi-scale and multi-resoltuion processing (analysis, synthesis and
fusion) will be presented. Most of the algorithms are based on pyramidal approaches. These
approaches were first used for image compression and they arebased on the fact that, once an
image has been low-pass filtered it does not have details beyond the cut-off frequency of the
low-pass filter any more. Therefore, the image can be subsampled – decimated – without any
loss of information.

A pyramidal decomposition is thus performed applying the following 3 steps in an iterative
way:

1. Low pas filter the imageIn in order to produceF(In);

2. Compute the differenceDn = In−F(In) which corresponds to the details at leveln;

3. SubsampleF(In) in order to obtainIn+1.

The result is a series of decrasing resolution imagesIk and a series of decreasing resolution
detailsDk.

15.2 Morphological Pyramid

If the smoothing filter used in the pyramidal analysis is a morphological filter, one cannot safely
subsample the filtered image without loss of information. However, by keeping the details
possibly lost in the down-sampling operation, such a decomposition can be used.

The Morphological Pyramid is an approach to such a decomposition. It’s computation process
is an iterative analysis involving smoothing by the morphological filter, computing the details

356 Chapter 15. Multi-scale Analysis

lost in the smoothing, down-sampling the current image, andcomputing the details lost in the
down-sampling.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidAnalysisFil terExample.cxx .

This example illustrates the use of theotb::MorphologicalPyramidAnalyseFilter .

The first step required to use this filter is to include its header file.

#include "otbMorphologicalPyramidAnalysisFilter.h"

The mathematical morphology filters to be used have also to beincluded here.

#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"

As usual, we start by defining the types needed for the pixels,the images, the image reader and
the image writer.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image<InputPixelType,Dimension> InputIma geType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

typedef otb::ImageFileReader<InputImageType> ReaderTy pe;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

Now, we define the types needed for the morphological filters which will be used to build the
morphological pyramid. The first thing to do is define the structuring element, which in our
case, will be a itk::BinaryBallStructuringElement which is templated over the pixel
type and the dimension of the image.

typedef itk::BinaryBallStructuringElement<InputPixel Type,
Dimension> StructuringElementType;

We can now define the type of the filter to be used by the morphological pyramid. In this
case, we choose to use anotb::OpeningClosingMorphologicalFilter which is just the
concatenation of an opening and a closing. This filter is theplated over the input and output
image types and the structurung element type that we just define above.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html

15.2. Morphological Pyramid 357

typedef otb::OpeningClosingMorphologicalFilter<Input ImageType,
InputImageType,StructuringElementType>

OpeningClosingFilterType;

We can finally define the type of the morpholoical pyramid filter. The filter is templated over
the input and output mage types and thelowpasmorphological filter to be used.

typedef otb::MorphologicalPyramidAnalysisFilter<Inpu tImageType,
OutputImageType,OpeningClosingFilterType>

PyramidFilterType;

Since theotb::MorphologicalPyramidAnalyseFilter generates a list of images as output,
it is useful to have an iterator to access the images. This is done as follows :

typedef PyramidFilterType::OutputImageListType::Iter ator
ImageListIterator;

We can now instantiate the reader in order to access the inputimage which has to be analysed.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);

We instantiate the morphological pyramid analysis filter and set its parameters which are:

• the number of iterations or levels of the pyramid;

• the subsample scale or decimation factor between two successive pyramid levels.

After that, we plug the pipeline and run it by calling theUpdate() method.

PyramidFilterType::Pointer pyramid = PyramidFilterType ::New();
pyramid->SetNumberOfLevels(numberOfLevels);
pyramid->SetDecimationRatio(decimationRatio);
pyramid->SetInput(reader->GetOutput());
pyramid->Update();

The morphological pyramid has 5 types of output:

• the analysed image at each level of the pyramid through theGetOutput() method;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html

358 Chapter 15. Multi-scale Analysis

• the brighter details extracted from the filtering operationthrough theGetSupFilter()
method;

• the darker details extracted from the filtering operation through theGetInfFilter()
method;

• the brighter details extracted from the resampling operation through theGetSupDeci()
method;

• the darker details extracted from the resampling operationthrough theGetInfDeci()
method; to decimation

Each one of these methods provides a list of images (one for each level of analysis), so we can
iterate through the image lists by using iterators.

ImageListIterator itAnalyse = pyramid->GetOutput()->Be gin();
ImageListIterator itSupFilter = pyramid->GetSupFilter()->Begin();
ImageListIterator itInfFilter = pyramid->GetInfFilter()->Begin();
ImageListIterator itInfDeci = pyramid->GetSupDeci()->B egin();
ImageListIterator itSupDeci = pyramid->GetInfDeci()->B egin();

We can now instantiate a writer and use it to write all the images to files.

WriterType::Pointer writer = WriterType::New();

int i=1;

// Writing the results images
std::cout<<(itAnalyse!=(pyramid->GetOutput()->End()))<<std::endl;
while(itAnalyse!=pyramid->GetOutput()->End())

{
writer->SetInput(itAnalyse.Get());
writer->SetFileName(argv[0*4+i+1]);
writer->Update();

writer->SetInput(itSupFilter.Get());
writer->SetFileName(argv[1*4+i+1]);
writer->Update();

writer->SetInput(itInfFilter.Get());
writer->SetFileName(argv[2*4+i+1]);
writer->Update();

15.2. Morphological Pyramid 359

Figure 15.1:Test image for the morphological pyramid.

Figure 15.2:Result of the analysis for 4 levels of the pyramid.

writer->SetInput(itInfDeci.Get());
writer->SetFileName(argv[3*4+i+1]);
writer->Update();

writer->SetInput(itSupDeci.Get());
writer->SetFileName(argv[4*4+i+1]);
writer->Update();

++itAnalyse;
++itSupFilter;
++itInfFilter;
++itInfDeci;
++itSupDeci;
++i;

}

Figure 15.1 shows the test image to be processed by the morphological pyramid.

Figure 15.2 shows the 4 levels of analysis of the image.

Figure 15.3 shows the 4 levels of bright details.

360 Chapter 15. Multi-scale Analysis

Figure 15.3:Bright details for 4 levels of the pyramid.

Figure 15.4:Dark details for 4 levels of the pyramid.

Figure 15.4 shows the 4 levels of dark details.

Figure 15.5 shows the 4 levels of bright decimation details.

Figure 15.6 shows the 4 levels of dark decimation details.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSynthesisFi lterExample.cxx .

This example illustrates the use of theotb::MorphologicalPyramidSynthesisFilter .

The first step required to use this filter is to include its header file.

#include "otbMorphologicalPyramidSynthesisFilter.h"

The mathematical morphology filters to be used have also to beincluded here, as well as the
otb::MorphologicalPyramidAnalyseFilter in order to perform the analysis step.

#include "otbMorphologicalPyramidAnalysisFilter.h"
#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"

Figure 15.5:Bright decimation details for 4 levels of the pyramid.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidSynthesisFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidAnalyseFilter.html

15.2. Morphological Pyramid 361

Figure 15.6:Dark decimation details for 4 levels of the pyramid.

As usual, we start by defining the types needed for the pixels,the images, the image reader and
the image writer.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;

typedef otb::Image<InputPixelType,Dimension> InputIma geType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

typedef otb::ImageFileReader<InputImageType> ReaderTy pe;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

Now, we define the types needed for the morphological filters which will be used to build the
morphological pyramid. The first thing to do is define the structuring element, which in our
case, will be a itk::BinaryBallStructuringElement which is templated over the pixel
type and the dimension of the image.

typedef itk::BinaryBallStructuringElement<InputPixel Type,Dimension>
StructuringElementType;

We can now define the type of the filter to be used by the morphological pyramid. In this
case, we choose to use anotb::OpeningClosingMorphologicalFilter which is just the
concatenation of an opening and a closing. This filter is theplated over the input and output
image types and the structurung element type that we just define above.

typedef otb::OpeningClosingMorphologicalFilter<Input ImageType,
InputImageType,StructuringElementType>

OpeningClosingFilterType;

We can now define the type of the morpholoical pyramid filter. The filter is templated over the
input and output mage types and thelowpasmorphological filter to be used.

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryBallStructuringElement.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html

362 Chapter 15. Multi-scale Analysis

typedef otb::MorphologicalPyramidAnalysisFilter<Inpu tImageType,
OutputImageType,OpeningClosingFilterType>

PyramidAnalysisFilterType;

We can finally define the type of the morpholoical pyramid synthesis filter. The filter is tem-
plated over the input and output mage types.

typedef otb::MorphologicalPyramidSynthesisFilter<Inp utImageType,
OutputImageType>

PyramidSynthesisFilterType;

We can now instantiate the reader in order to access the inputimage which has to be analysed.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);

We instantiate the morphological pyramid analysis filter and set its parameters which are:

• the number of iterations or levels of the pyramid;

• the subsample scale or decimation factor between two successive pyramid levels.

After that, we plug the pipeline and run it by calling theUpdate() method.

PyramidAnalysisFilterType::Pointer pyramidAnalysis =
PyramidAnalysisFilterType::New();

pyramidAnalysis->SetNumberOfLevels(numberOfLevels);
pyramidAnalysis->SetDecimationRatio(decimationRatio);
pyramidAnalysis->SetInput(reader->GetOutput());
pyramidAnalysis->Update();

Once the analysis step is finished we can proceed to the synthesis of the image from its different
levels of decomposition. The morphological pyramid has 5 types of output:

• the Analysisd image at each level of the pyramid through theGetOutput() method;

• the brighter details extracted from the filtering operationthrough theGetSupFilter()
method;

• the darker details extracted from the filtering operation through theGetInfFilter()
method;

15.2. Morphological Pyramid 363

• the brighter details extracted from the resampling operation through theGetSupDeci()
method;

• the darker details extracted from the resampling operationthrough theGetInfDeci()
method; to decimation

This outputs can be used as input of the synthesis filter by using the appropriate methods.

PyramidSynthesisFilterType::Pointer pyramidSynthesis = PyramidSynthesisFilterType::New();
pyramidSynthesis->SetInput(pyramidAnalysis->GetOutp ut()->Back());
pyramidSynthesis->SetSupFilter(pyramidAnalysis->Get SupFilter());
pyramidSynthesis->SetSupDeci(pyramidAnalysis->GetSu pDeci());
pyramidSynthesis->SetInfFilter(pyramidAnalysis->Get InfFilter());
pyramidSynthesis->SetInfDeci(pyramidAnalysis->GetIn fDeci());

After that, we plug the pipeline and run it by calling theUpdate() method.

pyramidSynthesis->Update();

We finally instatiate a the writer in order to save the result image to a file.

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(pyramidSynthesis->GetOutput()->Bac k());
writer->Update();

Since the synthesis operation is applied on the result of theanalysis, the input and the output
images should be identical. This is the case as shown in figure15.7.

Of course, in a real application, a specific processing will be applied after the analysis and
before the synthesis to, for instance, denoise the image by removing pixels at the finer scales,
etc.

15.2.1 Morphological Pyramid Exploitation

One of the possible uses of the morphological pyramid is the segmentation of objects – regions
– of a particular scale.

364 Chapter 15. Multi-scale Analysis

Figure 15.7:Result of the morphological pyramid analysis and synthesis. Left: original image. Right:

result of applying the analysis and the synthesis steps.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSegmenterEx ample.cxx .

This example illustrates the use of theotb::MorphologicalPyramid::Segmenter . This
class performs the segmentation of a detail image extractedfrom a morphological pyramid anal-
ysis. The Segmentation is perfomed using theitk::ConnectedThresholdImageFilter . The
seeds are extracted from the image using theotb::ImageToPointSetFilter . The thresolds
are set by using quantiles computed with the HistogramGenerator.

The first step required to use this filter is to include its header file.

#include "otbMorphologicalPyramidSegmenter.h"

As usual, we start by defining the types needed for the pixels,the images, the image reader and
the image writer. Note that, for this example, an RGB image will be created to store the results
of the segmentation.

const unsigned int Dimension = 2;
typedef double InputPixelType;
typedef unsigned short LabelPixelType;
typedef itk::RGBPixel<unsigned char> RGBPixelType;

typedef otb::Image<InputPixelType,Dimension> InputIma geType;
typedef otb::Image<LabelPixelType,Dimension> LabelIma geType;
typedef otb::Image<RGBPixelType, 2> RGBImageType;

typedef otb::ImageFileReader<InputImageType> ReaderTy pe;
typedef otb::ImageFileWriter<RGBImageType> WriterType ;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramid_1_1Segmenter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPointSetFilter.html

15.2. Morphological Pyramid 365

We define now the segmenter. Please pay attention to the fact that this class belongs to the
morphologicalPyramid namespace.

typedef otb::MorphologicalPyramid::Segmenter<InputIm ageType,
LabelImageType>

SegmenterType;

We instantiate the readers which will give us access to the image of details produced by the
morphological pyramid analysis and the original image (before analysis) which is used in order
to produce segmented regions which are sharper than what would have been obtained with the
detail image only.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName(originalFilename);

We instantiate the segmenter and set its parameters as follows. We plug the output of the
readers for the details image and the original image; we set the boolean variable which controls
wether the segmented details are bright or dark; we set the quantile used to threshold the details
image in order to obtain the seed points for the segmentation; we set the quantile for setting
the threshold for the region growing segmentation; and finally, we set the minimum size for a
segmented region to be kept in the final result.

SegmenterType::Pointer segmenter = SegmenterType::New();
segmenter->SetDetailsImage(reader->GetOutput());
segmenter->SetOriginalImage(reader2->GetOutput());
segmenter->SetSegmentDarkDetailsBool(segmentDark);
segmenter->SetSeedsQuantile(seedsQuantile);
segmenter->SetConnectedThresholdQuantile(segmentati onQuantile);
segmenter->SetMinimumObjectSize(minObjectSize);

The output of the segmenter is an image of integer labels, where a label denotes membership of
a pixel in a particular segmented region. This value is usually coded using 16 bits. This format
is not practical for visualization, so for the purposes of this example, we will convert it to RGB
pixels. RGB images have the advantage that they can be saved as a simple png file and viewed
using any standard image viewer software. Theitk::Functor::ScalarToRGBPixelFunctor
class is a special function object designed to hash a scalar value into an itk::RGBPixel .
Plugging this functor into theitk::UnaryFunctorImageFilter creates an image filter for
that converts scalar images to RGB images.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

366 Chapter 15. Multi-scale Analysis

Figure 15.8:Morphological pyramid segmentation. From left to right: original image, image of bright

details and result of the sementation.

typedef itk::Functor::ScalarToRGBPixelFunctor<LabelP ixelType>
ColorMapFunctorType;

typedef itk::UnaryFunctorImageFilter<LabelImageType,
RGBImageType, ColorMapFunctorType> ColorMapFilterType ;

ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

We can now plug the final segment of the pipeline by using the color mapper and the image file
writer.

colormapper->SetInput(segmenter->GetOutput());
WriterType::Pointer writer = WriterType::New();
writer->SetInput(colormapper->GetOutput());
writer->SetFileName(outputFilename1);
writer->Update();

Figure 15.8 shows the results of the segmentation of the image of bright details obtained with
the morphological pyramid analysis.

This same approach can be applied to all the levels of the morphological pyramid analysis.

The source code for this example can be found in the file
Examples/MultiScale/MorphologicalPyramidSegmentatio nExample.cxx .

This example illustrates the use of theotb::MorphologicalSegmentationFilter . This
filter performs a segmentation of the detailssupFilter and infFilter extracted with the
morphological pyramid. The segmentation algorithm used isbased on seeds extraction using
the otb::ImageToPointSetFilter , followed by a connected threshold segmentation using
the itk::ConnectedThresholdImageFilter . The threshold for seeds extraction and seg-
mentation are computed using quantiles. A pre processing step is applied by multiplying the

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalSegmentationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageToPointSetFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConnectedThresholdImageFilter.html

15.2. Morphological Pyramid 367

full resolution brighter details (resp. darker details) with the original image (resp. the inverted
original image). This perfoms an enhancement of the regionscontour precision. The details
from the pyramid are set via theSetBrighterDetails() andSetDarkerDetails() meth-
ods. The brighter and darker details depend on the filter usedin the pyramid analysis. If the
otb::OpeningClosingMorphologicalFilter filter is used, then the brighter details are those
from thesupFilter image list, whereas if theotb::ClosingOpeningMorphologicalFilter
filter is used, the brighter details are those from theinfFilter list. The output of the segmenta-
tion filter is a single segmentation images list, containingfirst the brighter details segmentation
from higher scale to lower, and then the darker details in thesame order. The attention of the
user is drawn to the fact that since the label filter used internally will deal with a large number of
labels, theOutputPixelType is required to be sufficiently precise. Unsigned short or Unsigned
long would be a good choice, unless the user has a very good reason to think that a less precise
type will be sufficient. The first step to use this filter is to include its header file.

#include "otbMorphologicalPyramidSegmentationFilter. h"

The mathematical morphology filters to be used have also to beincluded here, as well as the
morphological pyramid analysis filter.

#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "otbMorphologicalPyramidAnalysisFilter.h"

As usual, we start by defining the types for the pixels, the images, the reader and the writer. We
also define the types needed for the morphological pyramid analysis.

const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned short OutputPixelType;

typedef otb::Image<InputPixelType,Dimension> InputIma geType;
typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;

typedef otb::ImageFileReader<InputImageType> ReaderTy pe;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

typedef itk::BinaryBallStructuringElement<InputPixel Type,Dimension>
StructuringElementType;

typedef otb::OpeningClosingMorphologicalFilter<Input ImageType,
InputImageType,StructuringElementType>

OpeningClosingFilterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1OpeningClosingMorphologicalFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ClosingOpeningMorphologicalFilter.html

368 Chapter 15. Multi-scale Analysis

typedef otb::MorphologicalPyramidAnalysisFilter<Inpu tImageType,
InputImageType,OpeningClosingFilterType>

PyramidFilterType;

We can now define the type for theotb::MorphologicalPyramidSegmentationFilter
which is templated over the input and output image types.

typedef otb::MorphologicalPyramidSegmentationFilter< InputImageType,
OutputImageType>

SegmentationFilterType;

Since the output of the segmentation filter is a list of images, we define an iterator type which
will be used to access the segmented images.

typedef SegmentationFilterType::OutputImageListItera torType
OutputListIteratorType;

The following code snippet shows how to read the input image and perform the morphological
pyramid analysis.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);

PyramidFilterType::Pointer pyramid = PyramidFilterType ::New();
pyramid->SetNumberOfLevels(numberOfLevels);
pyramid->SetDecimationRatio(decimationRatio);
pyramid->SetInput(reader->GetOutput());

We can now instantiate the segmentation filter and set its parameters. As one can see,
the SetReferenceImage() is used to pass the original image in order to obtain sharp re-
gion boundaries. Using theSetBrighterDetails() and SetDarkerDetails() the out-
put of the analysis is passed to the filter. Finally, the parameters for the segmenta-
tion are set by using theSetSeedsQuantile() , SetConnectedThresholdQuantile() and
SetMinimumObjectSize() methods.

SegmentationFilterType::Pointer segmentation = Segment ationFilterType::New();
segmentation->SetReferenceImage(reader->GetOutput());
segmentation->SetBrighterDetails(pyramid->GetSupFil ter());

http://www.melaneum.com/OTB/doxygen/classotb_1_1MorphologicalPyramidSegmentationFilter.html

15.2. Morphological Pyramid 369

segmentation->SetDarkerDetails(pyramid->GetInfFilte r());
segmentation->SetSeedsQuantile(seedsQuantile);
segmentation->SetConnectedThresholdQuantile(segment ationQuantile);
segmentation->SetMinimumObjectSize(minObjectSize);

The pipeline is executed bu calling theUpdate() method.

segmentation->Update();

Finally, we get an iterator to the list generated as output for the segmentation and we use it to
iterate through the list and write the images to files.

OutputListIteratorType it = segmentation->GetOutput()- >Begin();
WriterType::Pointer writer;
int index = 1;
std::stringstream oss;
while(it!=segmentation->GetOutput()->End())

{
oss<<outputFilenamePrefix<<index<<"."<<outputFilena meSuffix;
writer = WriterType::New();
writer->SetInput(it.Get());
writer->SetFileName(oss.str().c_str());
writer->Update();
std::cout<<oss.str()<<" file written."<<std::endl;
oss.str("");
++index;
++it;

}

The user will pay attention to the fact that the list containsfirst the brighter details segmentation
from higher scale to lower, and then the darker details in thesame order.

CHAPTER

SIXTEEN

Change Detection

16.1 Introduction

Change detection techniques try to detect and locate areas which have changed between two
or more observations of the same scene. These changes can be of different types, with dif-
ferent origins and of different temporal length. This allows to distinguish different kinds of
applications:

• land use monitoring, which corresponds to the characterization of the evolution of the
vegetation, or its seasonal changes;

• natural resources management, which corresponds mainly to the characterisation of the
evolution of the urban areas, the evolution of the deforestation, etc.

• damage mapping, which corresponds to the location of damages caused by natural or
industrial disasters.

From the point of view of the observed phenomena, one can distinguish 2 types of changes
whose nature is rather different: the abrupt changes and theprogressive changes, which can
eventually be periodic. From the data point of view, one can have:

• Image pairs before and after the event. The applications aremainly the abrupt changes.

• Multi-temporal image series on which 2 types on changes may appear:

– The slow changes like for instance the erosion, vegetation evolution, etc. The
knowledge of the studied phenomena and of their consequences on the geometri-
cal and radiometrical evolution at the different dates is a very important information
for this kind of analysis.

– The abrupt changes may pose different kinds of problems depending on whether
the date of the change is known in the image series or not. The detection of areas

372 Chapter 16. Change Detection

affected by a change occurred at a known date may exploit thisa priori information
in order to split the image series into two sub-series (before an after) and use the
temporal redundancy in order to improve the detection results. On the other hand,
when the date of the change is not known, the problem has a higher difficulty.

From this classification of the different types of problems,one can infer 4 cases for which one
can look for algorithms as a function of the available data:

1. Abrupt changes in an image pair. This is no doubt the field for which more work has
been done. One can find tools at the 3 classical levels of imageprocessing: data level
(differences, ratios, with or without pre-filtering, etc.), feature level (edges, targets, etc.),
and interpretation level (post-classification comparison).

2. Abrupt changes within an image series and a known date. Onecan rely on bi-date tech-
niques, either by fusing the images into 2 stacks (before andafter), or by fusing the results
obtained by different image couples (one after and one before the event). One can also
use specific discontinuity detection techniques to be applied in the temporal axis.

3. Abrupt changes within an image series and an unknown date.This case can be seen
either as a generalization of the preceding one (testing theN-1 positions for N dates) or
as a particular case of the following one.

4. Progressive changes within an image series. One can work in two steps:

(a) detect the change areas using stability criteria in the temporal areas;

(b) identify the changes using prior information about the type of changes of interest.

16.1.1 Surface-based approaches

In this section we discuss about the damage assessment techniques which can be applied when
only two images (before/after) are available.

As it has been shown in recent review works [18, 60, 73, 74], a relatively high number of meth-
ods exist, but most of them have been developed for optical and infrared sensors. Only a few
recent works on change detection with radar images exist [82, 9, 66, 44, 24, 6, 46]. However,
the intrinsic limits of passive sensors, mainly related to their dependence on meteorological and
illumination conditions, impose severe constraints for operational applications. The principal
difficulties related to change detection are of four types:

1. In the case of radar images, the speckle noise makes the image exploitation difficult.

2. The geometric configuration of the image acquisition can produce images which are dif-
ficult to compare.

16.2. Change Detection Framework 373

3. Also, the temporal gap between the two acquisitions an thus the sensor aging and the
inter-calibration are sources of variability which are difficult to deal with.

4. Finally, the normal evolution of the observed scenes mustnot be confused with the
changes of interest.

The problem of detecting abrupt changes between a pair of images is the following: LetI1, I2 be
two images acquired at different datest1, t2; we aim at producing a thematic map which shows
the areas where changes have taken place.

Three main categories of methods exist:

• Strategy 1: Post Classification Comparison

The principle of this approach [21] is two obtain two land-use maps independently for
each date and comparing them.

• Strategy 2: Joint classification

This method consists in producing the change map directly from a joint classification of
both images.

• Strategy 3: Simple detectors

The last approach consists in producing an image of change likelihood (by differences,
ratios or any other approach) and thresholding it in order toproduce the change map.

Because of its simplicity and its low computation overhead,the third strategy is the one which
has been chosen for the processing presented here.

16.2 Change Detection Framework

The source code for this example can be found in the file
Examples/ChangeDetection/ChangeDetectionFrameworkEx ample.cxx .

This example illustrates the Change Detector framework implemented in OTB. This
framework uses the generic programming approach. All change detection filters are
otb::BinaryFunctorNeighborhoodImageFilter s, that is, they are filters taking two images
as input and providing one image as output. The change detection computation itself is per-
formed on a the neighborhood of each pixel of the input images.

The first step required to build a change detection filter is toinclude the header of the parent
class.

#include "otbBinaryFunctorNeighborhoodImageFilter.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

374 Chapter 16. Change Detection

The change detection operation itself is one of the templates of the change detection filters
and takes the form of a function, that is, something accepting the syntaxfoo() . This can be
implemented using classical C/C++ functions, but it is preferable to implement it using C++
functors. These are classical C++ classes which overload the () operator. This allows to use
them with the same syntax as C/C++ functions.

Since change detectors operate on neighborhoods, the functor call will take 2 arguments which
are itk::ConstNeighborhoodIterator s.

The change detector functor is templated over the types of the input iterators and the output
result type. The core of the change detection is implementedin theoperator() section.

template< class TInput1, class TInput2, class TOutput>
class MyChangeDetector
{
public:

// The constructor and destructor.
MyChangeDetector() {};
˜MyChangeDetector() {};
// Change detection operation
inline TOutput operator()(const TInput1 & itA,

const TInput2 & itB)
{

TOutput result = 0.0;

for(unsigned long pos = 0; pos< itA.Size(); ++pos)
{

result += static_cast<TOutput>(itA.GetPixel(pos)-itB. GetPixel(pos));

}
return static_cast<TOutput>(result/itA.Size());

}
};

The interest of using functors is that complex operations can be performed using internal
protected class methods and that class variables can be used to store information so different
pixel locations can access to results of previous computations.

The next step is the definition of the change detector filter. As stated above, this filter will
inherit from otb::BinaryFunctorNeighborhoodImageFilter which is templated over the
2 input image types, the output image type and the functor used to perform the change detection
operation.

Inside the class only a fewtypedef s and the constructors and destructors have to be declared.

template <class TInputImage1, class TInputImage2, class T OutputImage>

http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

16.2. Change Detection Framework 375

class ITK_EXPORT MyChangeDetectorImageFilter :
public otb::BinaryFunctorNeighborhoodImageFilter<

TInputImage1,TInputImage2,TOutputImage,
MyChangeDetector<

typename itk::ConstNeighborhoodIterator<TInputImage1 >,
typename itk::ConstNeighborhoodIterator<TInputImage2 >,

typename TOutputImage::PixelType> >
{
public:

/** Standard class typedefs. */
typedef MyChangeDetectorImageFilter Self;
typedef typename otb::BinaryFunctorNeighborhoodImageF ilter<

TInputImage1,TInputImage2,TOutputImage,
MyChangeDetector<

typename itk::ConstNeighborhoodIterator<TInputImage1 >,
typename itk::ConstNeighborhoodIterator<TInputImage2 >,
typename TOutputImage::PixelType>

> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;

/** Method for creation through the object factory. */
itkNewMacro(Self);

protected:
MyChangeDetectorImageFilter() {}
virtual ˜MyChangeDetectorImageFilter() {}

private:
MyChangeDetectorImageFilter(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented

};

Pay attention to the fact that no.txx file is needed, since filtering operation is implemented in
the otb::BinaryFunctorNeighborhoodImageFilter class. So all the algorithmics part is
inside the functor.

We can now write a program using the change detector.

As usual, we start by defining the image types. The internal computations will be performed
with floating point precision, while the output image will bestored using one byte per pixel.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType1;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType2;

http://www.melaneum.com/OTB/doxygen/classotb_1_1BinaryFunctorNeighborhoodImageFilter.html

376 Chapter 16. Change Detection

typedef otb::Image<InternalPixelType, Dimension> Chang eImageType;
typedef otb::Image<OutputPixelType, Dimension> OutputI mageType;

We declare the readers, the writer, but also theitk::RescaleIntensityImageFilter which
will be used to rescale the result before writing it to a file.

typedef otb::ImageFileReader< InputImageType1 > ReaderT ype1;
typedef otb::ImageFileReader< InputImageType2 > ReaderT ype2;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;
typedef itk::RescaleIntensityImageFilter< ChangeImage Type,

OutputImageType > RescalerType;

The next step is declaring the filter for the change detection.

typedef MyChangeDetectorImageFilter<
InputImageType1,
InputImageType2,
ChangeImageType > FilterType;

We connect the pipeline.

reader1->SetFileName(inputFilename1);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);
rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());
filter->SetRadius(atoi(argv[3]));

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

And that is all.

16.3 Simple Detectors

16.3.1 Mean Difference

The simplest change detector is based on the pixel-wise differencing of image values:

ID(i, j) = I2(i, j)− I1(i, j). (16.1)

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

16.3. Simple Detectors 377

Figure 16.1:Images used for the change detection. Left: Before the flood. Right: during the flood.

In order to make the algorithm robust to noise, one actually uses local means instead of pixel
values.

The source code for this example can be found in the file
Examples/ChangeDetection/DiffChDet.cxx .

This example illustrates the classotb::MeanDifferenceImageFilter for detecting changes
between pairs of images. This filter computes the mean intensity in the neighborhood of each
pixel of the pair of images to be compared and uses the difference of means as a change indi-
cator. This example will use the images shown in figure 16.1. These correspond to the near
infrared band of two Spot acquisitions before and during a flood.

We start by including the corresponding header file.

#include "otbMeanDifferenceImageFilter.h"

We start by declaring the types for the two input images, the change image and the image to be
stored in a file for visualization.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType1;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType2;
typedef otb::Image<InternalPixelType, Dimension> Chang eImageType;
typedef otb::Image<OutputPixelType, Dimension> OutputI mageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanDifferenceImageFilter.html

378 Chapter 16. Change Detection

We can now declare the types for the readers and the writer.

typedef otb::ImageFileReader< InputImageType1 > ReaderT ype1;
typedef otb::ImageFileReader< InputImageType2 > ReaderT ype2;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

The change detector will give positive and negative values depending on the sign of the differ-
ence. We are usually interested only in the asbolute value ofthe difference. For this purpose,
we will use theitk::AbsImageFilter . Also, before saving the image to a file in, for instance,
PNG format, we will rescale the results of the change detection in order to use all the output
pixel type range of values.

typedef itk::AbsImageFilter< ChangeImageType,
ChangeImageType > AbsType;

typedef itk::RescaleIntensityImageFilter< ChangeImage Type,
OutputImageType > RescalerType;

The otb::MeanDifferenceImageFilter is templated over the types of the two input images
and the type of the generated change image.

typedef otb::MeanDifferenceImageFilter<
InputImageType1,
InputImageType2,
ChangeImageType > FilterType;

The different elements of the pipeline can now be instantiated.

ReaderType1::Pointer reader1 = ReaderType1::New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
AbsType::Pointer absFilter = AbsType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeline.

reader1->SetFileName(inputFilename1);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);
rescaler->SetOutputMinimum(itk::NumericTraits< Outpu tPixelType >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< Outpu tPixelType >::max());

The only parameter for this change detector is the radius of the window used for computing the
mean of the intensities.

http://www.melaneum.com/OTB/doxygen/classitk_1_1AbsImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanDifferenceImageFilter.html

16.3. Simple Detectors 379

Figure 16.2:Result of the mean difference change detector

filter->SetRadius(atoi(argv[4]));

We build the pipeline by plugging all the elements together.

filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());
absFilter->SetInput(filter->GetOutput());
rescaler->SetInput(absFilter->GetOutput());
writer->SetInput(rescaler->GetOutput());

Since the processing time of large images can be long, it is interesting to monitor the evolution
of the computation. In order to do so, the change detectors can use the command/observer
design pattern. This is easily done by attaching an observerto the filter.

typedef otb::CommandProgressUpdate<FilterType> Comman dType;

CommandType::Pointer observer = CommandType::New();
filter->AddObserver(itk::ProgressEvent(), observer);

Figure 16.2 shows the result of the change detection by difference of local means.

380 Chapter 16. Change Detection

Figure 16.3:Images used for the change detection. Left: Before the eruption. Right: after the eruption.

16.3.2 Ratio Of Means

This detector is similar to the previous one except that it uses a ratio instead of the difference:

IR(i, j) =
I2(i, j)
I1(i, j)

. (16.2)

The use of the ratio makes this detector robust to multiplicative noise which is a good model for
the speckle phenomenon which is present in radar images.

In order to have a bounded and normalized detector the following expression is actually used:

IR(i, j) = 1−min

(

I2(i, j)
I1(i, j)

,
I1(i, j)
I2(i, j)

)

. (16.3)

The source code for this example can be found in the file
Examples/ChangeDetection/RatioChDet.cxx .

This example illustrates the classotb::MeanRatioImageFilter for detecting changes be-
tween pairs of images. This filter computes the mean intensity in the neighborhood of each
pixel of the pair of images to be compared and uses the ratio ofmeans as a change indicator.
This change indicator is then normalized between 0 and 1 by using the classical

r = 1−min{µA

µB
,
µB

µA
}, (16.4)

whereµA andµB are the local means. This example will use the images shown infigure 16.3.
These correspond to 2 Radarsat fine mode acquisitions beforeand after a lava flow resulting
from a volcanic eruption.

We start by including the corresponding header file.

#include "otbMeanRatioImageFilter.h"

We start by declaring the types for the two input images, the change image and the image to be
stored in a file for visualization.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

16.3. Simple Detectors 381

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType1;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType2;
typedef otb::Image<InternalPixelType, Dimension> Chang eImageType;
typedef otb::Image<OutputPixelType, Dimension> OutputI mageType;

We can now declare the types for the readers. Since the imagescan be vey large, we will force
the pipeline to use streaming. For this purpose, the file writer will be streamed. This is achieved
by using theotb::StreamingImageFileWriter class.

typedef otb::ImageFileReader< InputImageType1 > ReaderT ype1;
typedef otb::ImageFileReader< InputImageType2 > ReaderT ype2;
typedef otb::StreamingImageFileWriter< OutputImageTyp e > WriterType;

The change detector will give a normalized result between 0 and 1. In order to store the result
in PNG format we will rescale the results of the change detection in order to use all the output
pixel type range of values.

typedef itk::ShiftScaleImageFilter< ChangeImageType,
OutputImageType > RescalerType;

The otb::MeanRatioImageFilter is templated over the types of the two input images and
the type of the generated change image.

typedef otb::MeanRatioImageFilter<
InputImageType1,
InputImageType2,
ChangeImageType > FilterType;

The different elements of the pipeline can now be instantiated.

ReaderType1::Pointer reader1 = ReaderType1::New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeline.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

382 Chapter 16. Change Detection

Figure 16.4:Result of the ratio of means change detector

reader1->SetFileName(inputFilename1);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);
float scale = itk::NumericTraits< OutputPixelType >::max ();
rescaler->SetScale(scale);

The only parameter for this change detector is the radius of the window used for computing the
mean of the intensities.

filter->SetRadius(atoi(argv[4]));

We build the pipeline by plugging all the elements together.

filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());

rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

Figure 16.4 shows the result of the change detection by ratioof local means.

16.4 Statistical Detectors

16.4.1 Distance between local distributions

This detector is similar to the ratio of means detector (seenin the previous section page 380).
Nevertheless, instead of the comparison of means, the comparison is performed to the complete
distribution of the two Random Variables (RVs) [44].

16.4. Statistical Detectors 383

The detector is based on the Kullback-Leibler distance between probability density functions
(pdfs). In the neighborhood of each pixel of the pair of images I1 and I2 to be compared, the
distance between local pdfsf1 and f2 of RVsX1 andX2 is evaluated by:

K (X1,X2) = K(X1|X2)+K(X2|X1) (16.5)

with K(Xj |Xi) =
ZR log

fXi (x)
fXj (x)

fXi (x)dx, i, j = 1,2. (16.6)

In order to reduce the computational time, the local pdfsf1 and f2 are not estimated through
histogram computations but rather by a cumulant expansion,namely the Edgeworth expansion,
with is based on the cumulants of the RVs:

fX(x) =

(

1+
κX;3

6
H3(x)+

κX;4

24
H4(x)+

κX;5

120
H5(x)+

κX;6 +10κ2
X;3

720
H6(x)

)

GX(x). (16.7)

In eq. (16.7),GX stands for the Gaussian pdf which has the same mean and variance as the RV
X. TheκX;k coefficients are the cumulants of orderk, andHk(x) are the Chebyshev-Hermite
polynomials of orderk (see [46] for deeper explanations).

The source code for this example can be found in the file
Examples/ChangeDetection/KullbackLeiblerDistanceChD et.cxx .

This example illustrates the classotb::KullbackLeiblerDistanceImageFilter for detect-
ing changes between pairs of images. This filter computes theKullback-Leibler distance be-
tween probability density functions (pdfs). In fact, the Kullback-Leibler distance is itself ap-
proximated through a cumulant-based expansion, since the pdfs are approximated through an
Edgeworth series. The Kullback-Leibler distance is evaluated by:

KEdgeworth(X1|X2) =
1
12

κ2
X1;3

κ2
X1;2

+
1
2

(

log
κX2;2

κX1;2
−1+

1
κX2;2

(

κX1;1−κX2;1 +κ1/2
X1;2

)2
)

−
(

κX2;3
a1

6
+κX2;4

a2

24
+κ2

X2;3
a3

72

)

− 1
2

κ2
X2;3

36

(

c6−6
c4

κX1;2
+9

c2

κ2
X2;2

)

−10
κX1;3κX2;3 (κX1;1−κX2;1)(κX1;2−κX2;2)

κ6
X2;2

(16.8)

http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html

384 Chapter 16. Change Detection

where

a1 = c3−3
α

κX2;2

a2 = c4−6
c2

κX2;2
+

3

κ2
X2;2

a3 = c6−15
c4

κX2;2
+45

c2

κ2
X2;2

− 15

κ3
X2;2

c2 = α2 +β2

c3 = α3 +3αβ2

c4 = α4 +6α2β2 +3β4

c6 = α6 +15α4β2 +45α2β4 +15β6

α =
κX1;1−κX2;1

κX2;2

β =
κ1/2

X1;2

κX2;2
.

κXi ;1, κXi ;2, κXi ;3 andκXi ;4 are the cumulants up to order 4 of the random variableXi (i = 1,2).
This example will use the images shown in figure 16.3. These correspond to 2 Radarsat fine
mode acquisitions before and after a lava flow resulting froma volcanic eruption.

The program itself is very similar to the ratio of means detector, implemented in
otb::MeanRatioImageFilter , in section 16.3.2. Nevertheless the corresponding headerfile
has to be used instead.

#include "otbKullbackLeiblerDistanceImageFilter.h"

The otb::KullbackLeiblerDistanceImageFilter is templated over the types of the
two input images and the type of the generated change image, in a similar way as the
otb::MeanRatioImageFilter . It is the only line to be changed from the ratio of means change
detection example to perform a change detection through a distance between distributions...

typedef otb::KullbackLeiblerDistanceImageFilter<Imag eType,
ImageType,ImageType> FilterType;

The different elements of the pipeline can now be instantiated. Follow the ratio of means change
detector example.

The only parameter for this change detector is the radius of the window used for computing the
cumulants.

FilterType::Pointer filter = FilterType::New();
filter->SetRadius((winSize-1)/2);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html

16.4. Statistical Detectors 385

Figure 16.5:Result of the Kullback-Leibler change detector

The pipeline is built by plugging all the elements together.

filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());

Figure 16.5 shows the result of the change detection by computing the Kullback-Leibler dis-
tance between local pdf through an Edgeworth approximation.

16.4.2 Local Correlation

The correlation coefficient measures the likelihood of a linear relationship between two random
variables:

Iρ(i, j) =
1
N

∑i, j(I1(i, j)−mI1)(I2(i, j)−mI2)

σI1σI2

= ∑
(I1(i, j),I2(i, j))

(I1(i, j)−mI1)(I2(i, j)−mI2)

σI1σI2
pi j

(16.9)

whereI1(i, j) and I2(i, j) are the pixel values of the 2 images andpi j is the joint probability
density. This is like using a linear model:

I2(i, j) = (I1(i, j)−mI1)
σI2

σI1
+mI2 (16.10)

for which we evaluate the likelihood withpi j .

With respect to the difference detector, this one will be robust to illumination changes.

The source code for this example can be found in the file
Examples/ChangeDetection/CorrelChDet.cxx .

This example illustrates the classotb::CorrelationChangeDetector for detecting changes
between pairs of images. This filter computes the correlation coefficient in the neighborhood

http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationChangeDetector.html

386 Chapter 16. Change Detection

Figure 16.6:Images used for the change detection. Left: Before the flood. Right: during the flood.

of each pixel of the pair of images to be compared. This example will use the images shown in
figure 16.6. These correspond to two ERS acquisitions beforeand during a flood.

We start by including the corresponding header file.

#include "otbCorrelationChangeDetector.h"

We start by declaring the types for the two input images, the change image and the image to be
stored in a file for visualization.

typedef float InternalPixelType;
typedef unsigned char OutputPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType1;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType2;
typedef otb::Image<InternalPixelType, Dimension> Chang eImageType;
typedef otb::Image<OutputPixelType, Dimension> OutputI mageType;

We can now declare the types for the readers. Since the imagescan be vey large, we will force
the pipeline to use streaming. For this purpose, the file writer will be streamed. This is achieved
by using theotb::StreamingImageFileWriter class.

typedef otb::ImageFileReader< InputImageType1 > ReaderT ype1;
typedef otb::ImageFileReader< InputImageType2 > ReaderT ype2;
typedef otb::StreamingImageFileWriter< OutputImageTyp e > WriterType;

The change detector will give a response which is normalizedbetween 0 and 1. Before saving
the image to a file in, for instance, PNG format, we will rescale the results of the change
detection in order to use all the output pixel type range of values.

typedef itk::ShiftScaleImageFilter< ChangeImageType,
OutputImageType > RescalerType;

The otb::CorrelationChangeDetector is templated over the types of the two input images
and the type of the generated change image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1CorrelationChangeDetector.html

16.4. Statistical Detectors 387

typedef otb::CorrelationChangeDetector<
InputImageType1,
InputImageType2,
ChangeImageType > FilterType;

The different elements of the pipeline can now be instantiated.

ReaderType1::Pointer reader1 = ReaderType1::New();
ReaderType2::Pointer reader2 = ReaderType2::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
RescalerType::Pointer rescaler = RescalerType::New();

We set the parameters of the different elements of the pipeline.

reader1->SetFileName(inputFilename1);
reader2->SetFileName(inputFilename2);
writer->SetFileName(outputFilename);

float scale = itk::NumericTraits< OutputPixelType >::max ();
rescaler->SetScale(scale);

The only parameter for this change detector is the radius of the window used for computing the
correlation coefficient.

filter->SetRadius(atoi(argv[4]));

We build the pipeline by plugging all the elements together.

filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());

Since the processing time of large images can be long, it is interesting to monitor the evolution
of the computation. In order to do so, the change detectors can use the command/observer
design pattern. This is easily done by attaching an observerto the filter.

typedef otb::CommandProgressUpdate<FilterType> Comman dType;

CommandType::Pointer observer = CommandType::New();
filter->AddObserver(itk::ProgressEvent(), observer);

Figure 16.7 shows the result of the change detection by localcorrelation.

388 Chapter 16. Change Detection

Figure 16.7:Result of the correlation change detector

16.5 Multi-Scale Detectors

16.5.1 Kullback-Leibler Distance between distributions

This technique is an extension of the distance between distributions change detector presented
in section 16.4.1. Since this kind of detector is based on cumulants estimations through a sliding
window, the idea is just to upgrade the estimation of the cumulants by considering new samples
as soon as the sliding window is increasing in size.

Let’s consider the following problem: how to update the moments when aN+1th observation
xN+1 is added to a set of observations{x1,x2, . . . ,xN} already considered. The evolution of the
central moments may be characterized by:

µ1,[N] =
1
N

s1,[N] (16.11)

µr,[N] =
1
N

r

∑
ℓ=0

(

r
ℓ

)

(

−µ1,[N]

)r−ℓ
sℓ,[N],

where the notationsr,[N] = ∑N
i=1xr

i has been used. Then, Edgeworth series is updated also by
transforming moments to cumulants by using:

κX;1 = µX;1

κX;2 = µX;2−µ2
X;1

κX;3 = µX;3−3µX;2µX;1 +2µ3
X;1

κX;4 = µX;4−4µX;3µX;1−3µ2
X;2 +12µX;2µ2

X;1−6µ4
X;1.

(16.12)

It yields a set of images that represent the change measure according to an increasing size of
the analysis window.

The source code for this example can be found in the file
Examples/ChangeDetection/KullbackLeiblerProfileChDe t.cxx .

This example illustrates the classotb::KullbackLeiblerProfileImageFilter for detecting
changes between pairs of images, according to a range of window size. This example is very

http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html

16.5. Multi-Scale Detectors 389

similar, in its principle, to all of the change detection examples, especially the distance between
distributions one (section 16.4.1) which uses a fixed windowsize.

The main differences are:

1. a set of window range instead of a fixed size of window;

2. an output of typeotb::VectorImage .

Then, the program begins with the otb::VectorImage and the
otb::KullbackLeiblerProfileImageFilter header files in addition to those already
details in theotb::MeanRatioImageFilter example.

#include "otbVectorImage.h"
#include "otbKullbackLeiblerProfileImageFilter.h"

The otb::KullbackLeiblerProfileImageFilter is templated over the types of the two
input images and the type of the generated change image (which is now of multi-components),
in a similar way as theotb::KullbackLeiblerDistanceImageFilter .

typedef otb::Image<PixelType,Dimension> ImageType;
typedef otb::VectorImage<PixelType,Dimension> VectorI mageType;
typedef otb::KullbackLeiblerProfileImageFilter<Image Type,

ImageType,VectorImageType> FilterType;

The different elements of the pipeline can now be instantiated in the same way as the ratio of
means change detector example.

Two parameters are now required to give the minimum and the maximum size of the analysis
window. The program will begin by performing change detection through the smaller window
size and then applying moments update of eq. (16.11) by incrementing the radius of the analysis
window (i.e. add a ring of width 1 pixel around the current neightborhood shape). The process
is applied until the larger window size is reached.

FilterType::Pointer filter = FilterType::New();
filter->SetRadius((winSizeMin-1)/2,(winSizeMax-1)/2);
filter->SetInput1(reader1->GetOutput());
filter->SetInput2(reader2->GetOutput());

Figure 16.8 shows the result of the change detection by computing the Kullback-Leibler dis-
tance between local pdf through an Edgeworth approximation.

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MeanRatioImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerProfileImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1KullbackLeiblerDistanceImageFilter.html

390 Chapter 16. Change Detection

Figure 16.8:Result of the Kullback-Leibler profile change detector, colored composition including the first,

12th and 24th channel of the generated output.

CHAPTER

SEVENTEEN

Classification

17.1 Introduction

In statistical classification, each object is represented by d features (a measurement vector), and
the goal of classification becomes finding compact and disjoint regions (decision regions[28])
for classes in ad-dimensional feature space. Such decision regions are defined by decision
rules that are known or can be trained. The simplest configuration of a classification consists
of a decision rule and multiple membership functions; each membership function represents a
class. Figure 17.1 illustrates this general framework.

Membership function

Membership function

Membership function A priori knowledgeM
ea

su
re

m
en

t v
ec

to
r

Decision Rule

Membership score

Class label

Figure 17.1:Simple conceptual classifier.

This framework closely follows that of Duda and Hart[28]. The classification process can be
described as follows:

1. A measurement vector is input to each membership function.

2. Membership functions feed the membership scores to the decision rule.

3. A decision rule compares the membership scores and returns a class label.

This simple configuration can be used to formulated various classification tasks by using dif-
ferent membership functions and incorporating task specific requirements and prior knowledge

392 Chapter 17. Classification

Membership Function Membership Function

Parameter Estimation

S
am

pl
e

(T
es

t)

M
em

be
rs

hi
pS

am
pl

e

Classifier

Membership scores

Parameter Estimation

parameters

Decision Rule

Figure 17.2:Statistical classification framework.

into the decision rule. For example, instead of using probability density functions as member-
ship functions, through distance functions and a minimum value decision rule (which assigns a
class from the distance function that returns the smallest value) users can achieve a least squared
error classifier. As another example, users can add a rejection scheme to the decision rule so
that even in a situation where the membership scores suggesta “winner”, a measurement vector
can be flagged as ill defined. Such a rejection scheme can avoidrisks of assigning a class label
without a proper win margin.

17.1.1 k-d Tree Based k-Means Clustering

The source code for this example can be found in the file
Examples/Classification/KdTreeBasedKMeansClustering .cxx .

K-means clustering is a popular clustering algorithm because it is simple and usually converges
to a reasonable solution. The k-means algorithm works as follows:

1. Obtains the initial k means input from the user.

2. Assigns each measurement vector in a sample container to its closest mean among the k
number of means (i.e., update the membership of each measurement vectors to the nearest
of the k clusters).

3. Calculates each cluster’s mean from the newly assigned measurement vectors (updates
the centroid (mean) of k clusters).

4. Repeats step 2 and step 3 until it meets the termination criteria.

17.1. Introduction 393

The most common termination criteria is that if there is no measurement vector that changes its
cluster membership from the previous iteration, then the algorithm stops.

The itk::Statistics::KdTreeBasedKmeansEstimator is a variation of this logic. The
k-means clustering algorithm is computationally very expensive because it has to recalcu-
late the mean at each iteration. To update the mean values, wehave to calculate the dis-
tance between k means and each and every measurement vector.To reduce the computa-
tional burden, the KdTreeBasedKmeansEstimator uses a special data structure: the k-d tree
(itk::Statistics::KdTree) with additional information. The additional informationin-
cludes the number and the vector sum of measurement vectors under each node under the tree
architecture.

With such additional information and the k-d tree data structure, we can reduce the compu-
tational cost of the distance calculation and means. Instead of calculating each measurement
vectors and k means, we can simply compare each node of the k-dtree and the k means. This
idea of utilizing a k-d tree can be found in multiple articles[3] [68] [50]. Our implementation
of this scheme follows the article by the Kanungo et al [50].

We use the itk::Statistics::ListSample as the input sample, theitk::Vector as the
measurement vector. The following code snippet includes their header files.

#include "itkVector.h"
#include "itkListSample.h"

Since this k-means algorithm requires aitk::Statistics::KdTree object as an in-
put, we include the KdTree class header file. As mentioned above, we need a k-
d tree with the vector sum and the number of measurement vectors. Therefore
we use the itk::Statistics::WeightedCentroidKdTreeGenerator instead of the
itk::Statistics::KdTreeGenerator that generate a k-d tree without such additional in-
formation.

#include "itkKdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"

The KdTreeBasedKmeansEstimator class is the implementation of the k-means algorithm. It
does not create k clusters. Instead, it returns the mean estimates for the k clusters.

#include "itkKdTreeBasedKmeansEstimator.h"

To generate the clusters, we must create k instances of
itk::Statistics::EuclideanDistance function as the membership functions for each
cluster and plug that—along with a sample—into anitk::Statistics::SampleClassifier
object to get a itk::Statistics::MembershipSample that stores pairs of measurement
vectors and their associated class labels (k labels).

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTree.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTree.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeGenerator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1SampleClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample.html

394 Chapter 17. Classification

#include "itkMinimumDecisionRule.h"
#include "itkEuclideanDistance.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator .

#include "itkNormalVariateGenerator.h"

Since theNormalVariateGenerator class only supports 1-D, we define our measurement
vector type as one component vector. We then, create aListSample object for data inputs.
Each measurement vector is of length 1. We set this using theSetMeasurementVectorSize()
method.

typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1);

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (The mean is zero, and
the standard deviation is one), before pushing random values into thesample , we change the
mean and standard deviation. We want two normal (Gaussian) distribution data. We have two
for loops. Eachfor loop uses different mean and standard deviation. Before we fill the sample
with the second distribution data, we callInitialize(random seed) method, to recreate the
pool of random variables in thenormalGenerator .

To see the probability density plots from the two distribution, refer to the Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma lGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)
{

mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);

}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

17.1. Introduction 395

Figure 17.3: Two normal distributions’ probability density plot (The means are 100 and 200, and the

standard deviation is 30)

for (unsigned int i = 0 ; i < 100 ; ++i)
{

mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);

}

We create a k-d tree.

typedef itk::Statistics::WeightedCentroidKdTreeGener ator< SampleType >
TreeGeneratorType;

TreeGeneratorType::Pointer treeGenerator = TreeGenerat orType::New();

treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

Once we have the k-d tree, it is a simple procedure to produce kmean estimates.

We create the KdTreeBasedKmeansEstimator. Then, we provide the initial mean values using
theSetParameters() . Since we are dealing with two normal distribution in a 1-D space, the
size of the mean value array is two. The first element is the first mean value, and the second is
the second mean value. If we used two normal distributions ina 2-D space, the size of array

396 Chapter 17. Classification

would be four, and the first two elements would be the two components of the first normal
distribution’s mean vector. We plug-in the k-d tree using the SetKdTree() .

The remaining two methods specify the termination condition. The estimation pro-
cess stops when the number of iterations reaches the maximumiteration value
set by the SetMaximumIteration() , or the distances between the newly calcu-
lated mean (centroid) values and previous ones are within the threshold set by
the SetCentroidPositionChangesThreshold() . The final step is to call the
StartOptimization() method.

The for loop will print out the mean estimates from the estimation process.

typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType> EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();

EstimatorType::ParametersType initialMeans(2);
initialMeans[0] = 0.0;
initialMeans[1] = 0.0;

estimator->SetParameters(initialMeans);
estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0) ;
estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimat or->GetParameters();

for (unsigned int i = 0 ; i < 2 ; ++i)
{

std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std ::endl;

}

If we are only interested in finding the mean estimates, we might stop. However, to illustrate
how a classifier can be formed using the statistical classification framework. We go a little bit
further in this example.

Since the k-means algorithm is an minimum distance classifier using the estimated k means and
the measurement vectors. We use the EuclideanDistance class as membership functions. Our
choice for the decision rule is theitk::Statistics::MinimumDecisionRule that returns the
index of the membership functions that have the smallest value for a measurement vector.

After creating a SampleClassifier object and a MinimumDecisionRule object, we plug-in the
decisionRule and thesample to the classifier. Then, we must specify the number of classes
that will be considered using theSetNumberOfClasses() method.

The remainder of the following code snippet shows how to use user-specified class labels. The

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MinimumDecisionRule.html

17.1. Introduction 397

classification result will be stored in a MembershipSample object, and for each measurement
vector, its class label will be one of the two class labels, 100 and 200 (unsigned int).

typedef itk::Statistics::EuclideanDistance< Measureme ntVectorType >
MembershipFunctionType;

typedef itk::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleT ype::New();

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::N ew();

classifier->SetDecisionRule((itk::DecisionRuleBase: :Pointer) decisionRule);
classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;
classLabels.resize(2);
classLabels[0] = 100;
classLabels[1] = 200;

classifier->SetMembershipFunctionClassLabels(classL abels);

Theclassifier is almost ready to do the classification process except that it needs two mem-
bership functions that represents two clusters respectively.

In this example, the two clusters are modeled by two Euclidean distance functions. The dis-
tance function (model) has only one parameter, its mean (centroid) set by theSetOrigin()
method. To plug-in two distance functions, we call theAddMembershipFunction() method.
Then invocation of theUpdate() method will perform the classification.

std::vector< MembershipFunctionType::Pointer > members hipFunctions;
MembershipFunctionType::OriginType origin(sample->Ge tMeasurementVectorSize());
int index = 0;
for (unsigned int i = 0 ; i < 2 ; i++)
{

membershipFunctions.push_back(MembershipFunctionTyp e::New());
for (unsigned int j = 0 ; j < sample->GetMeasurementVectorSi ze(); j++)
{

origin[j] = estimatedMeans[index++];
}
membershipFunctions[i]->SetOrigin(origin);
classifier->AddMembershipFunction(membershipFunctio ns[i].GetPointer());

}

classifier->Update();

The following code snippet prints out the measurement vectors and their class labels in the
sample .

398 Chapter 17. Classification

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();
ClassifierType::OutputType::ConstIterator iter = membe rshipSample->Begin();

while (iter != membershipSample->End())
{

std::cout << "measurement vector = " << iter.GetMeasuremen tVector()
<< "class label = " << iter.GetClassLabel()
<< std::endl;

++iter;
}

17.1.2 K-Means Classification

Simple version

The source code for this example can be found in the file
Examples/Classification/ScalarImageKmeansClassifier .cxx .

This example shows how to use the KMeans model for classifying the pixel of a scalar image.

The itk::Statistics::ScalarImageKmeansImageFilter is used for taking a scalar image
and applying the K-Means algorithm in order to define classesthat represents statistical distri-
butions of intensity values in the pixels. The classes are then used in this filter for generating a
labeled image where every pixel is assigned to one of the classes.

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkScalarImageKmeansImageFilter.h"

First we define the pixel type and dimension of the image that we intend to classify. With
this image type we can also declare theotb::ImageFileReader needed for reading the input
image, create one and set its input filename.

typedef signed short PixelType;
const unsigned int Dimension = 2;

typedef otb::Image<PixelType, Dimension > ImageType;

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputImageFileName);

With the ImageType we instantiate the type of theitk::ScalarImageKmeansImageFilter
that will compute the K-Means model and then classify the image pixels.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ScalarImageKmeansImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarImageKmeansImageFilter.html

17.1. Introduction 399

typedef itk::ScalarImageKmeansImageFilter< ImageType > KMeansFilterType;

KMeansFilterType::Pointer kmeansFilter = KMeansFilterT ype::New();

kmeansFilter->SetInput(reader->GetOutput());

const unsigned int numberOfInitialClasses = atoi(argv[4]);

In general the classification will produce as output an imagewhose pixel values are integers
associated to the labels of the classes. Since typically these integers will be generated in order
(0,1,2,...N), the output image will tend to look very dark when displayed with naive viewers. It
is therefore convenient to have the option of spreading the label values over the dynamic range
of the output image pixel type. When this is done, the dynamic range of the pixels is divided by
the number of classes in order to define the increment betweenlabels. For example, an output
image of 8 bits will have a dynamic range of [0:255], and when it is used for holding four
classes, the non-contiguous labels will be (0,64,128,192). The selection of the mode to use is
done with the methodSetUseContiguousLabels() .

const unsigned int useNonContiguousLabels = atoi(argv[3]);

kmeansFilter->SetUseNonContiguousLabels(useNonConti guousLabels);

For each one of the classes we must provide a tentative initial value for the mean of the class.
Given that this is a scalar image, each one of the means is simply a scalar value. Note however
that in a general case of K-Means, the input image would be a vector image and therefore the
means will be vectors of the same dimension as the image pixels.

for(unsigned k=0; k < numberOfInitialClasses; k++)
{
const double userProvidedInitialMean = atof(argv[k+argo ffset]);
kmeansFilter->AddClassWithInitialMean(userProvidedI nitialMean);
}

The itk::ScalarImageKmeansImageFilter is predefined for producing an 8 bits scalar im-
age as output. This output image contains labels associatedto each one of the classes in the
K-Means algorithm. In the following lines we use theOutputImageType in order to instantiate
the type of a otb::ImageFileWriter . Then create one, and connect it to the output of the
classification filter.

typedef KMeansFilterType::OutputImageType OutputImage Type;

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

WriterType::Pointer writer = WriterType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarImageKmeansImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

400 Chapter 17. Classification

writer->SetInput(kmeansFilter->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking
theUpdate() method in the writer. This call will propagate the update request to the reader and
then to the classifier.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

At this point the classification is done, the labeled image issaved in a file, and we can take
a look at the means that were found as a result of the model estimation performed inside the
classifier filter.

KMeansFilterType::ParametersType estimatedMeans =
kmeansFilter->GetFinalMeans();

const unsigned int numberOfClasses = estimatedMeans.Size ();

for (unsigned int i = 0 ; i < numberOfClasses ; ++i)
{
std::cout << "cluster[" << i << "] ";
std::cout << " estimated mean : " << estimatedMeans[i] << std ::endl;
}

Figure 17.4 illustrates the effect of this filter with three classes. The means can be estimated by
ScalarImageKmeansModelEstimator.cxx.

The source code for this example can be found in the file
Examples/Classification/ScalarImageKmeansModelEstim ator.cxx .

This example shows how to compute the KMeans model of an Scalar Image.

The itk::Statistics::KdTreeBasedKmeansEstimator is used for taking a scalar image
and applying the K-Means algorithm in order to define classesthat represents statistical dis-
tributions of intensity values in the pixels. One of the drawbacks of this technique is that the

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html

17.1. Introduction 401

Figure 17.4:Effect of the KMeans classifier. Left: original image. Right: image of classes.

spatial distribution of the pixels is not considered at all.It is common therefore to combine the
classification resulting from K-Means with other segmentation techniques that will use the clas-
sification as a prior and add spatial information to it in order to produce a better segmentation.

// Create a List from the scalar image
typedef itk::Statistics::ScalarImageToListAdaptor< Im ageType > AdaptorType;

AdaptorType::Pointer adaptor = AdaptorType::New();

adaptor->SetImage(reader->GetOutput());

// Define the Measurement vector type from the AdaptorType
typedef AdaptorType::MeasurementVectorType Measuremen tVectorType;

// Create the K-d tree structure
typedef itk::Statistics::WeightedCentroidKdTreeGener ator<

AdaptorType >
TreeGeneratorType;

TreeGeneratorType::Pointer treeGenerator = TreeGenerat orType::New();

treeGenerator->SetSample(adaptor);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();

typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType> EstimatorType;

402 Chapter 17. Classification

EstimatorType::Pointer estimator = EstimatorType::New();

const unsigned int numberOfClasses = 4;

EstimatorType::ParametersType initialMeans(numberOfC lasses);
initialMeans[0] = 25.0;
initialMeans[1] = 125.0;
initialMeans[2] = 250.0;

estimator->SetParameters(initialMeans);

estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0) ;
estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimat or->GetParameters();

for (unsigned int i = 0 ; i < numberOfClasses ; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std ::endl;
}

General approach

The source code for this example can be found in the file
Examples/Classification/KMeansImageClassificationEx ample.cxx .

The K-Means classification proposed by ITK for images is limited to scalar im-
ages and is not streamed. In this example, we show how the use of the
otb::KMeansImageClassificationFilter allows for a simple implementation of a K-
Means classification application. We will start by including the appropirate header file.

#include "otbKMeansImageClassificationFilter.h"

We will assume double precision input images and will also define the type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process images with any number of bands. We
read the images asotb::VectorImage s. The labeled image will be a scalar image.

http://www.melaneum.com/OTB/doxygen/classotb_1_1KMeansImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

17.1. Introduction 403

typedef otb::VectorImage<PixelType,Dimension> ImageTy pe;
typedef otb::Image<LabeledPixelType,Dimension> Labele dImageType;

We can now define the type for the classifier filter, which is templated over its input and output
image types.

typedef otb::KMeansImageClassificationFilter<ImageTy pe,LabeledImageType>
ClassificationFilterType;

typedef ClassificationFilterType::KMeansParametersTy pe KMeansParametersType;

And finally, we define the reader and the writer. Since the images to classify can be very big,
we will use a streamed writer which will trigger the streaming ability of the classifier.

typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::StreamingImageFileWriter<LabeledImageTy pe> WriterType;

We instantiate the classifier and the reader objects and we set their parameters. Please note the
call of theGenerateOutputInformation() method on the reader in order to have available
the information about the input image (size, number of bands, etc.) without needing to actually
read the image.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);
reader->GenerateOutputInformation();

The classifier needs as input the centroids of the classes. Wedeclare the parameter vector, and
we read the centroids from the arguments of the program.

const unsigned int sampleSize = ClassificationFilterType ::MaxSampleDimension;
const unsigned int parameterSize = nbClasses * sampleSize;

KMeansParametersType parameters;

parameters.SetSize(parameterSize);
parameters.Fill(0);

404 Chapter 17. Classification

for(unsigned int i = 0; i<nbClasses;++i)
{

for(unsigned int j = 0; j <
reader->GetOutput()->GetNumberOfComponentsPerPixel();++j)

{
parameters[i*sampleSize+j]=

atof(argv[4+i*
reader->GetOutput()->GetNumberOfComponentsPerPixel()
+j]);

}
}

std::cout<<"Parameters: "<<parameters<<std::endl;

We set the parameters for the classifier, we plug the pipelineand trigger its execution by updat-
ing the output of the writer.

filter->SetCentroids(parameters);
filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

17.1.3 Bayesian Plug-In Classifier

The source code for this example can be found in the file
Examples/Classification/BayesianPluginClassifier.cx x .

In this example, we present a system that places measurementvectors into two Gaussian classes.
The Figure 17.5 shows all the components of the classifier system and the data flow. This system
differs with the previous k-means clustering algorithms inseveral ways. The biggest difference
is that this classifier uses theitk::Statistics::GaussianDensityFunction s as member-
ship functions instead of theitk::Statistics::EuclideanDistance . Since the member-
ship function is different, the membership function requires a different set of parameters, mean
vectors and covariance matrices. We choose theitk::Statistics::MeanCalculator (sam-
ple mean) and theitk::Statistics::CovarianceCalculator (sample covariance) for the
estimation algorithms of the two parameters. If we want morerobust estimation algorithm, we
can replace these estimation algorithms with more alternatives without changing other compo-
nents in the classifier system.

It is a bad idea to use the same sample for test and training (parameter estimation) of the param-
eters. However, for simplicity, in this example, we use a sample for test and training.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1GaussianDensityFunction.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1EuclideanDistance.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MeanCalculator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1CovarianceCalculator.html

17.1. Introduction 405

(P
ar

am
et

er
 e

st
im

at
io

n)

(P
ar

am
et

er
 e

st
im

at
io

n)

S
am

pl
e

(L
ab

el
ed

)

Subsample (Class sample) Subsample (Class sample)

CovarianceCalculator

MeanCalculator

Covariance matrix

Mean

CovarianceCalculator

MeanCalculator

Mean

Measurement
vectors

Covariance matrix

GaussianDensityFunction GaussianDensityFunction

Probability density

Sample size Sample size

GaussianDensityFunction
Index of winning

SampleClassifier

S
am

pl
e

(T
es

t)

MaximumRatioDecisionRule

Sample size

Sample (Training)

Figure 17.5:Bayesian plug-in classifier for two Gaussian classes.

406 Chapter 17. Classification

We use the itk::Statistics::ListSample as the sample (test and training). The
itk::Vector is our measurement vector class. To store measurement vectors into two sep-
arate sample containers, we use theitk::Statistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"
#include "itkSubsample.h"

The following two files provides us the parameter estimationalgorithms.

#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"

The following files define the components required by ITK statistical classification framework:
the decision rule, the membership function, and the classifier.

#include "itkMaximumRatioDecisionRule.h"
#include "itkGaussianDensityFunction.h"
#include "itkSampleClassifier.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator .

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D,we define our measurement vector
type as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors insample into
two separate sample containers. Each Subsample object stores only the measurement vectors
belonging to a single class. This class sample will be used bythe parameter estimation algo-
rithms.

typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measu rement vectors

// in the sample.

typedef itk::Statistics::Subsample< SampleType > ClassS ampleType;
std::vector< ClassSampleType::Pointer > classSamples;
for (unsigned int i = 0 ; i < 2 ; ++i)

{
classSamples.push_back(ClassSampleType::New());
classSamples[i]->SetSample(sample);
}

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1Subsample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

17.1. Introduction 407

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (the mean is zero, and the
standard deviation is one) before pushing random values into thesample , we change the mean
and standard deviation. We want two normal (Gaussian) distribution data. We have two for
loops. Each for loop uses different mean and standard deviation. Before we fill thesample
with the second distribution data, we callInitialize(random seed) method, to recreate the
pool of random variables in thenormalGenerator . In the second for loop, we fill the two class
samples with measurement vectors using theAddInstance() method.

To see the probability density plots from the two distributions, refer to Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma lGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
SampleType::InstanceIdentifier id = 0UL;
for (unsigned int i = 0 ; i < 100 ; ++i)

{
mv.Fill((normalGenerator->GetVariate() * standardDevi ation) + mean);
sample->PushBack(mv);
classSamples[0]->AddInstance(id);
++id;
}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)

{
mv.Fill((normalGenerator->GetVariate() * standardDevi ation) + mean);
sample->PushBack(mv);
classSamples[1]->AddInstance(id);
++id;
}

In the following code snippet, notice that the template argument for the MeanCalculator and
CovarianceCalculator isClassSampleType (i.e., type of Subsample) instead of SampleType
(i.e., type of ListSample). This is because the parameter estimation algorithms are applied to
the class sample.

typedef itk::Statistics::MeanCalculator< ClassSampleT ype > MeanEstimatorType;
typedef itk::Statistics::CovarianceCalculator< ClassS ampleType >

CovarianceEstimatorType;

408 Chapter 17. Classification

std::vector< MeanEstimatorType::Pointer > meanEstimato rs;
std::vector< CovarianceEstimatorType::Pointer > covari anceEstimators;

for (unsigned int i = 0 ; i < 2 ; ++i)
{
meanEstimators.push_back(MeanEstimatorType::New());
meanEstimators[i]->SetInputSample(classSamples[i]);
meanEstimators[i]->Update();

covarianceEstimators.push_back(CovarianceEstimatorT ype::New());
covarianceEstimators[i]->SetInputSample(classSample s[i]);
covarianceEstimators[i]->SetMean(meanEstimators[i]- >GetOutput());
covarianceEstimators[i]->Update();
}

We print out the estimated parameters.

for (unsigned int i = 0 ; i < 2 ; ++i)
{
std::cout << "class[" << i << "] " << std::endl;
std::cout << " estimated mean : "

<< *(meanEstimators[i]->GetOutput())
<< " covariance matrix : "
<< *(covarianceEstimators[i]->GetOutput()) << std::end l;

}

After creating a SampleClassifier object and a MaximumRatioDecisionRule object, we plug in
thedecisionRule and thesample to the classifier. Then, we specify the number of classes that
will be considered using theSetNumberOfClasses() method.

The MaximumRatioDecisionRule requires a vector ofa priori probability values. Sucha priori
probability will be theP(ωi) of the following variation of the Bayes decision rule:

Decideωi if
p(−→x |ωi)

p(−→x |ω j)
>

P(ω j)

P(ωi)
for all j 6= i (17.1)

The remainder of the code snippet shows how to use user-specified class labels. The classifica-
tion result will be stored in a MembershipSample object, andfor each measurement vector, its
class label will be one of the two class labels, 100 and 200 (unsigned int).

typedef itk::Statistics::GaussianDensityFunction< Mea surementVectorType >
MembershipFunctionType;

typedef itk::MaximumRatioDecisionRule DecisionRuleTyp e;
DecisionRuleType::Pointer decisionRule = DecisionRuleT ype::New();

17.1. Introduction 409

DecisionRuleType::APrioriVectorType aPrioris;
aPrioris.push_back(classSamples[0]->GetTotalFrequen cy()

/ sample->GetTotalFrequency()) ;
aPrioris.push_back(classSamples[1]->GetTotalFrequen cy()

/ sample->GetTotalFrequency()) ;
decisionRule->SetAPriori(aPrioris);

typedef itk::Statistics::SampleClassifier< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::N ew();

classifier->SetDecisionRule((itk::DecisionRuleBase: :Pointer) decisionRule);
classifier->SetSample(sample);
classifier->SetNumberOfClasses(2);

std::vector< unsigned int > classLabels;
classLabels.resize(2);
classLabels[0] = 100;
classLabels[1] = 200;
classifier->SetMembershipFunctionClassLabels(classL abels);

Theclassifier is almost ready to perform the classification except that it needs two member-
ship functions that represent the two clusters.

In this example, we can imagine that the two clusters are modeled by two Euclidean dis-
tance functions. The distance function (model) has only oneparameter, the mean (cen-
troid) set by theSetOrigin() method. To plug-in two distance functions, we call the
AddMembershipFunction() method. Then invocation of theUpdate() method will perform
the classification.

std::vector< MembershipFunctionType::Pointer > members hipFunctions;
for (unsigned int i = 0 ; i < 2 ; i++)

{
membershipFunctions.push_back(MembershipFunctionTyp e::New());
membershipFunctions[i]->SetMean(meanEstimators[i]-> GetOutput());
membershipFunctions[i]->

SetCovariance(covarianceEstimators[i]->GetOutput()) ;
classifier->AddMembershipFunction(membershipFunctio ns[i].GetPointer());
}

classifier->Update();

The following code snippet prints out pairs of a measurementvector and its class label in the
sample .

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();
ClassifierType::OutputType::ConstIterator iter = membe rshipSample->Begin();

410 Chapter 17. Classification

while (iter != membershipSample->End())
{
std::cout << "measurement vector = " << iter.GetMeasuremen tVector()

<< "class label = " << iter.GetClassLabel() << std::endl;
++iter;
}

17.1.4 Expectation Maximization Mixture Model Estimation

The source code for this example can be found in the file
Examples/Classification/ExpectationMaximizationMixt ureModelEstimator.cxx .

In this example, we present ITK’s implementation of the expectation maximization (EM) pro-
cess to generate parameter estimates for a two Gaussian component mixture model.

The Bayesian plug-in classifier example (see Section 17.1.3) used two Gaussian probability
density functions (PDF) to model two Gaussian distributionclasses (two models for two class).
However, in some cases, we want to model a distribution as a mixture of several different
distributions. Therefore, the probability density function (p(x)) of a mixture model can be
stated as follows :

p(x) =
c

∑
i=0

αi fi(x) (17.2)

wherei is the index of the component,c is the number of components,αi is the proportion of
the component, andfi is the probability density function of the component.

Now the task is to find the parameters(the component PDF’s parameters and the proportion
values) to maximize the likelihood of the parameters. If we know which component a measure-
ment vector belongs to, the solutions to this problem is easyto solve. However, we don’t know
the membership of each measurement vector. Therefore, we use the expectation of membership
instead of the exact membership. The EM process splits into two steps:

1. E step: calculate the expected membership values for eachmeasurement vector to each
classes.

2. M step: find the next parameter sets that maximize the likelihood with the expected mem-
bership values and the current set of parameters.

The E step is basically a step that calculates thea posterioriprobability for each measurement
vector.

The M step is dependent on the type of each PDF. Most of distributions be-
longing to exponential family such as Poisson, Binomial, Exponential, and Nor-
mal distributions have analytical solutions for updating the parameter set. The
itk::Statistics::ExpectationMaximizationMixtureMode lEstimator class assumes
that such type of components.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ExpectationMaximizationMixtureModelEstimator.html

17.1. Introduction 411

In the following example we use theitk::Statistics::ListSample as the sample (test and
training). The itk::Vector::i s our measurement vector class. To store measurement vectors
into two separate sample container, we use theitk::Statistics::Subsample objects.

#include "itkVector.h"
#include "itkListSample.h"

The following two files provide us the parameter estimation algorithms.

#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEsti mator.h"

We will fill the sample with random variables from two normal distribution using the
itk::Statistics::NormalVariateGenerator .

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D,we define our measurement vector
type as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors in thesample
into two separate sample containers. Each Subsample objectstores only the measurement vec-
tors belonging to a single class. Thisclass samplewill be used by the parameter estimation
algorithms.

unsigned int numberOfClasses = 2;
typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVecto rType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(1); // length of measu rement vectors

// in the sample.

The following code snippet creates a NormalVariateGenerator object. Since the random variable
generator returns values according to the standard normal distribution (the mean is zero, and the
standard deviation is one) before pushing random values into thesample , we change the mean
and standard deviation. We want two normal (Gaussian) distribution data. We have two for
loops. Each for loop uses different mean and standard deviation. Before we fill thesample
with the second distribution data, we callInitialize() method to recreate the pool of random
variables in thenormalGenerator . In the second for loop, we fill the two class samples with
measurement vectors using theAddInstance() method.

To see the probability density plots from the two distribution, refer to Figure 17.3.

typedef itk::Statistics::NormalVariateGenerator Norma lGeneratorType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Vector_1_1i.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1Subsample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1NormalVariateGenerator.html

412 Chapter 17. Classification

NormalGeneratorType::Pointer normalGenerator = NormalG eneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)

{
mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);
}

normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0 ; i < 100 ; ++i)

{
mv[0] = (normalGenerator->GetVariate() * standardDeviat ion) + mean;
sample->PushBack(mv);
}

In the following code snippet notice that the template argument for the MeanCalculator and
CovarianceCalculator isClassSampleType (i.e., type of Subsample) instead ofSampleType
(i.e., type of ListSample). This is because the parameter estimation algorithms are applied to
the class sample.

typedef itk::Array< double > ParametersType;
ParametersType params(2);

std::vector< ParametersType > initialParameters(number OfClasses);
params[0] = 110.0;
params[1] = 800.0;
initialParameters[0] = params;

params[0] = 210.0;
params[1] = 850.0;
initialParameters[1] = params;

typedef itk::Statistics::GaussianMixtureModelCompone nt< SampleType >
ComponentType;

std::vector< ComponentType::Pointer > components;
for (unsigned int i = 0 ; i < numberOfClasses ; i++)

{
components.push_back(ComponentType::New());
(components[i])->SetSample(sample);

17.1. Introduction 413

(components[i])->SetParameters(initialParameters[i]);
}

We run the estimator.

typedef itk::Statistics::ExpectationMaximizationMixt ureModelEstimator<
SampleType > EstimatorType;

EstimatorType::Pointer estimator = EstimatorType::New();

estimator->SetSample(sample);
estimator->SetMaximumIteration(200);

itk::Array< double > initialProportions(numberOfClasse s);
initialProportions[0] = 0.5;
initialProportions[1] = 0.5;

estimator->SetInitialProportions(initialProportions);

for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
estimator->AddComponent((ComponentType::Superclass*)

(components[i]).GetPointer());
}

estimator->Update();

We then print out the estimated parameters.

for (unsigned int i = 0 ; i < numberOfClasses ; i++)
{
std::cout << "Cluster[" << i << "]" << std::endl;
std::cout << " Parameters:" << std::endl;
std::cout << " " << (components[i])->GetFullParameters()

<< std::endl;
std::cout << " Proportion: ";
std::cout << " " << (*estimator->GetProportions())[i] << s td::endl;
}

17.1.5 Classification using Markov Random Fields

Markov Random Fields are probabilistic models that use the statistical dependency between
pixels in a neighborhood to infeer the value of a give pixel.

414 Chapter 17. Classification

ITK framework

The itk::Statistics::MRFImageFilter uses the maximum a posteriori (MAP) estimates
for modeling the MRF. The object traverses the data set and uses the model generated by the
Mahalanobis distance classifier to get the the distance between each pixel in the data set to a
set of known classes, updates the distances by evaluating the influence of its neighboring pixels
(based on a MRF model) and finally, classifies each pixel to theclass which has the minimum
distance to that pixel (taking the neighborhood influence under consideration). The energy
function minimization is done using the iterated conditional modes (ICM) algorithm [7].

The source code for this example can be found in the file
Examples/Classification/ScalarImageMarkovRandomFiel d1.cxx .

This example shows how to use the Markov Random Field approach for classifying the pixel of
a scalar image.

The itk::Statistics::MRFImageFilter is used for refining an initial classification by in-
troducing the spatial coherence of the labels. The user should provide two images as input. The
first image is the one to be classified while the second image isan image of labels representing
an initial classification.

The following headers are related to reading input images, writing the output image, and making
the necessary conversions between scalar and vector images.

#include "otbImage.h"
#include "itkFixedArray.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkScalarToArrayCastImageFilter.h"

The following headers are related to the statistical classification classes.

#include "itkMRFImageFilter.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
#include "itkImageClassifierBase.h"

First we define the pixel type and dimension of the image that we intend to classify. With
this image type we can also declare theotb::ImageFileReader needed for reading the input
image, create one and set its input filename.

typedef unsigned char PixelType;
const unsigned int Dimension = 2;

typedef otb::Image<PixelType, Dimension > ImageType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader.html

17.1. Introduction 415

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputImageFileName);

As a second step we define the pixel type and dimension of the image of labels that provides
the initial classification of the pixels from the first image.This initial labeled image can be the
output of a K-Means method like the one illustrated in section 17.1.2.

typedef unsigned char LabelPixelType;

typedef otb::Image<LabelPixelType, Dimension > LabelIma geType;

typedef otb::ImageFileReader< LabelImageType > LabelRea derType;
LabelReaderType::Pointer labelReader = LabelReaderType ::New();
labelReader->SetFileName(inputLabelImageFileName);

Since the Markov Random Field algorithm is defined in generalfor images whose pixels
have multiple components, that is, images of vector type, wemust adapt our scalar image
in order to satisfy the interface expected by theMRFImageFilter . We do this by using the
itk::ScalarToArrayCastImageFilter . With this filter we will present our scalar image as
a vector image whose vector pixels contain a single component.

typedef itk::FixedArray<LabelPixelType,1> ArrayPixelT ype;

typedef otb::Image< ArrayPixelType, Dimension > ArrayIma geType;

typedef itk::ScalarToArrayCastImageFilter<
ImageType, ArrayImageType > ScalarToArrayFilterType;

ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();

scalarToArrayFilter->SetInput(reader->GetOutput());

With the input image typeImageType and labeled image typeLabelImageType we instantiate
the type of theitk::MRFImageFilter that will apply the Markov Random Field algorithm in
order to refine the pixel classification.

typedef itk::MRFImageFilter< ArrayImageType, LabelImag eType > MRFFilterType;

MRFFilterType::Pointer mrfFilter = MRFFilterType::New();

mrfFilter->SetInput(scalarToArrayFilter->GetOutput());

We set now some of the parameters for the MRF filter. In particular, the number of classes to
be used during the classification, the maximum number of iterations to be run in this filter and
the error tolerance that will be used as a criterion for convergence.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ScalarToArrayCastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MRFImageFilter.html

416 Chapter 17. Classification

mrfFilter->SetNumberOfClasses(numberOfClasses);
mrfFilter->SetMaximumNumberOfIterations(numberOfIte rations);
mrfFilter->SetErrorTolerance(1e-7);

The smoothing factor represents the tradeoff between fidelity to the observed image and the
smoothness of the segmented image. Typical smoothing factors have values between 1 5. This
factor will multiply the weights that define the influence of neighbors on the classification of
a given pixel. The higher the value, the more uniform will be the regions resulting from the
classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

Given that the MRF filter needs to continually relabel the pixels, it needs access to a set of
membership functions that will measure to what degree everypixel belongs to a particular class.
The classification is performed by theitk::ImageClassifierBase class, that is instantiated
using the type of the input vector image and the type of the labeled image.

typedef itk::ImageClassifierBase<
ArrayImageType,
LabelImageType > SupervisedClassifierType;

SupervisedClassifierType::Pointer classifier =
SupervisedClassifierType::New();

The classifier needs a decision rule to be set by the user. Notethat we must useGetPointer() in
the call of theSetDecisionRule() method because we are passing a SmartPointer, and smart
pointer cannot perform polymorphism, we must then extract the raw pointer that is associated
to the smart pointer. This extraction is done with the GetPointer() method.

typedef itk::MinimumDecisionRule DecisionRuleType;

DecisionRuleType::Pointer classifierDecisionRule = Dec isionRuleType::New();

classifier->SetDecisionRule(classifierDecisionRule. GetPointer());

We now instantiate the membership functions. In this case weuse the
itk::Statistics::DistanceToCentroidMembershipFuncti on class templated over
the pixel type of the vector image, which in our example happens to be a vector of dimension 1.

typedef itk::Statistics::DistanceToCentroidMembershi pFunction<
ArrayPixelType >

MembershipFunctionType;

typedef MembershipFunctionType::Pointer MembershipFun ctionPointer;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageClassifierBase.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html

17.1. Introduction 417

double meanDistance = 0;
vnl_vector<double> centroid(1);
for(unsigned int i=0; i < numberOfClasses; i++)

{
MembershipFunctionPointer membershipFunction =

MembershipFunctionType::New();

centroid[0] = atof(argv[i+numberOfArgumentsBeforeMean s]);

membershipFunction->SetCentroid(centroid);

classifier->AddMembershipFunction(membershipFunctio n);
meanDistance += static_cast< double > (centroid[0]);
}

meanDistance /= numberOfClasses;

and we set the neighborhood radius that will define the size ofthe clique to be used in the
computation of the neighbors’ influence in the classification of any given pixel. Note that despite
the fact that we call this a radius, it is actually the half size of an hypercube. That is, the
actual region of influence will not be circular but rather an N-Dimensional box. For example, a
neighborhood radius of 2 in a 3D image will result in a clique of size 5x5x5 pixels, and a radius
of 1 will result in a clique of size 3x3x3 pixels.

mrfFilter->SetNeighborhoodRadius(1);

We should now set the weights used for the neighbors. This is done by passing an array of values
that contains the linear sequence of weights for the neighbors. For example, in a neighborhood
of size 3x3x3, we should provide a linear array of 9 weight values. The values are packaged in
a std::vector and are supposed to bedouble . The following lines illustrate a typical set of
values for a 3x3x3 neighborhood. The array is arranged and then passed to the filter by using
the methodSetMRFNeighborhoodWeight() .

std::vector< double > weights;
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);

We now scale weights so that the smoothing function and the image fidelity functions have
comparable value. This is necessary since the label image and the input image can have different

418 Chapter 17. Classification

dynamic ranges. The fidelity function is usually computed using a distance function, such as the
itk::DistanceToCentroidMembershipFunction or one of the other membership functions.
They tend to have values in the order of the means specified.

double totalWeight = 0;
for(std::vector< double >::const_iterator wcIt = weights .begin();

wcIt != weights.end(); ++wcIt)
{
totalWeight += *wcIt;
}

for(std::vector< double >::iterator wIt = weights.begin();
wIt != weights.end(); wIt++)

{
*wIt = static_cast< double > ((*wIt) * meanDistance / (2 * tot alWeight));
}

mrfFilter->SetMRFNeighborhoodWeight(weights);

Finally, the classifier class is connected to the Markov Random Fields filter.

mrfFilter->SetClassifier(classifier);

The output image produced by theitk::MRFImageFilter has the same pixel type as the
labeled input image. In the following lines we use theOutputImageType in order to instantiate
the type of a otb::ImageFileWriter . Then create one, and connect it to the output of the
classification filter after passing it through an intensity rescaler to rescale it to an 8 bit dynamic
range

typedef MRFFilterType::OutputImageType OutputImageTyp e;

typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

WriterType::Pointer writer = WriterType::New();

writer->SetInput(intensityRescaler->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking
theUpdate() method in the writer. This call will propagate the update request to the reader and
then to the MRF filter.

try
{
writer->Update();

http://www.melaneum.com/OTB/doxygen/classitk_1_1DistanceToCentroidMembershipFunction.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1MRFImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

17.1. Introduction 419

Figure 17.6:Effect of the MRF filter.

}
catch(itk::ExceptionObject & excp)

{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

Figure 17.6 illustrates the effect of this filter with four classes. In this example the filter was run
with a smoothing factor of 3. The labeled image was produced by ScalarImageKmeansClas-
sifier.cxx and the means were estimated by ScalarImageKmeansModelEstimator.cxx described
in section 17.1.2. The obtained result can be compared with the one of figure 17.4 to see the
interest of using the MRF approach in order to ensure the regularization of the classified image.

OTB framework

The ITK approach was considered not to be flexible enough for some remote sensing applica-
tions. Therefore, we decided to implement our own framework.

The source code for this example can be found in the file
Examples/Markov/MarkovClassification1Example.cxx .

This example illustrates the details of theotb::MarkovRandomFieldFilter . This filter is an
application of the Markov Random Fields for classification,segmentation or restauration.

This example applies theotb::MarkovRandomFieldFilter to classify an image into four
classes defined by their mean and variance. The optimizationis done using an Metropolis
algorithm with a random sampler. The regularization energyis defined by a Potts model and
the fidelity by a Gaussian model.

The first step toward the use of this filter is the inclusion of the proper header files.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

420 Chapter 17. Classification

Figure 17.7:OTB Markov Framework.

#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyGaussianClassification.h"
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"

Then we must decide what pixel type to use for the image. We choose to make all computations
with double precision. The labelled image is of type unsigned char which allows up to 256
different classes.

const unsigned int Dimension = 2;

typedef double InternalPixelType;
typedef unsigned char LabelledPixelType;
typedef otb::Image<InternalPixelType, Dimension> Input ImageType;
typedef otb::Image<LabelledPixelType, Dimension> Label ledImageType;

We define a reader for the image to be classified, an initialisation for the classification (which
could be random) and a writer for the final classification.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
typedef otb::ImageFileWriter< LabelledImageType > Write rType;

ReaderType::Pointer reader = ReaderType::New();

17.1. Introduction 421

WriterType::Pointer writer = WriterType::New();

const char * inputFilename = argv[1];
const char * outputFilename = argv[2];

reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);

Finally, we define the different classes necessary for the Markov classification. A
otb::MarkovRandomFieldFilter is instanciated, this is the main class which connect the
other to do the Markov classification.

typedef otb::MarkovRandomFieldFilter
<InputImageType,LabelledImageType> MarkovRandomField FilterType;

An otb::MRFSamplerRandomMAP , which derives from the otb::MRFSampler , is instan-
ciated. The sampler is in charge of proposing a modification for a given site. The
otb::MRFSamplerRandomMAP , randomly pick one possible value according to the MAP prob-
ability.

typedef otb::MRFSamplerRandom< InputImageType, Labelle dImageType> SamplerType;

An otb::MRFOptimizerMetropoli , which derives from theotb::MRFOptimizer , is instan-
ciated. The optimizer is in charge of accepting or rejectingthe value proposed by the sampler.
The otb::MRFSamplerRandomMAP , accept the proposal according to the variation of energy it
causes and a temperature parameter.

typedef otb::MRFOptimizerMetropolis OptimizerType;

Two energy, deriving from theotb::MRFEnergy class need to be instanciated. One energy is
required for the regularization, taking into account the relashionship between neighborhing pix-
els in the classified image. Here it is done with theotb::MRFEnergyPotts which implement
a Potts model.

The second energy is for the fidelity to the original data. Here it is done with an
otb::MRFEnergyGaussianClassification class, which defines a gaussian model for the
data.

typedef otb::MRFEnergyPotts
<LabelledImageType, LabelledImageType> EnergyRegulari zationType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSampler.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizerMetropoli.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizer.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFSamplerRandomMAP.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergy.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyPotts.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyGaussianClassification.html

422 Chapter 17. Classification

typedef otb::MRFEnergyGaussianClassification
<InputImageType, LabelledImageType> EnergyFidelityTyp e;

The different filters composing our pipeline are created by invoking theirNew() methods, as-
signing the results to smart pointers.

MarkovRandomFieldFilterType::Pointer markovFilter = Ma rkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularizati on = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFid elityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();

Parameter for theotb::MRFEnergyGaussianClassification class, meand and standard de-
viation are created.

unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(2*nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParam eters());
parameters[0]=10.0; //Class 0 mean
parameters[1]=10.0; //Class 0 stdev
parameters[2]=80.0;//Class 1 mean
parameters[3]=10.0; //Class 1 stdev
parameters[4]=150.0; //Class 2 mean
parameters[5]=10.0; //Class 2 stdev
parameters[6]=220.0;//Class 3 mean
parameters[7]=10.0; //Class 3 stde
energyFidelity->SetParameters(parameters);

Parameters are given to the different class an the sampler, optimizer and energies are connected
with the Markov filter.

OptimizerType::ParametersType param(1);
param.Fill(atof(argv[5]));
optimizer->SetParameters(param);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(arg v[4]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[3]));
markovFilter->SetNeighborhoodRadius(1);

http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFEnergyGaussianClassification.html

17.1. Introduction 423

markovFilter->SetEnergyRegularization(energyRegular ization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);

The pipeline is connected. Anitk::RescaleIntensityImageFilter rescale the classified
image before saving it.

markovFilter->SetInput(reader->GetOutput());

typedef itk::RescaleIntensityImageFilter
< LabelledImageType, LabelledImageType > RescaleType;

RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);

rescaleFilter->SetInput(markovFilter->GetOutput());

writer->SetInput(rescaleFilter->GetOutput());

Finally, the pipeline execution is trigerred.

writer->Update();

Figure 17.8 shows the output of the Markov Random Field classification after 20 iterations with
a random sampler and a Metropolis optimizer.

The source code for this example can be found in the file
Examples/Markov/MarkovClassification2Example.cxx .

Using a similar structure as the previous program and the same energy function, we are now
going to slightly alter the program to use a different sampler and optimizer. The proposed
sample is proposed randomly according to the MAP probability and the optimizer is the ICM
which accept the proposed sample if it enable a reduction of the energy.

First, we need to include header specific to these class:

#include "otbMRFSamplerRandomMAP.h"
#include "otbMRFOptimizerICM.h"

And to declare these new type:

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

424 Chapter 17. Classification

Figure 17.8:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-

bird image for classification. The result is obtained after 20 iterations with a random sampler and a Metropo-

lis optimizer. From left to right : original image, classification.

typedef otb::MRFSamplerRandomMAP< InputImageType, Labe lledImageType> SamplerType;
// typedef otb::MRFSamplerRandom< InputImageType, Label ledImageType> SamplerType;

typedef otb::MRFOptimizerICM OptimizerType;

As the otb::MRFOptimizerICM does not have any parameters, the call to
optimizer->SetParameters() must be removed

Apart from these, no further modification is required.

Figure 17.9 shows the output of the Markov Random Field classification after 5 iterations with
a MAP random sampler and an ICM optimizer.

The source code for this example can be found in the file
Examples/Markov/MarkovRegularizationExample.cxx .

This example illustrates the use of theotb::MarkovRandomFieldFilter . to regularize a
classification obtained previously by another classifier. Here we will apply the regularization to
the output of an SVM classifier presented in 17.3.5.

The reference image and the starting image are both going to be the original classification. Both
regularization and fidelity energy are defined by Potts model.

The convergence of the Markov Random Field is done with a random sampler and a Metropolis
model as in example 1. As you should get use to the general program structure to use the MRF
framework, we are not going to repeat the entire example. However, remember you can find the
full source code for this example in your OTB source directory.

To find the number of classes available in the original image we use
the itk::LabelStatisticsImageFilter and more particularly the method

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MRFOptimizerICM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LabelStatisticsImageFilter.html

17.1. Introduction 425

Figure 17.9:Result of applying the otb::MarkovRandomFieldFilter to an extract from a PAN Quick-

bird image for classification. The result is obtained after 5 iterations with a MAP random sampler and an

ICM optimizer. From left to right : original image, classification.

Figure 17.10:Result of applying the otb::MarkovRandomFieldFilter to regularized the result of

another classification. From left to right : original classification, regularized classification

GetNumberOfLabels() .

typedef itk::LabelStatisticsImageFilter
<LabelledImageType, LabelledImageType> LabelledStatTy pe;

LabelledStatType::Pointer labelledStat = LabelledStatT ype::New();
labelledStat->SetInput(reader->GetOutput());
labelledStat->SetLabelInput(reader->GetOutput());
labelledStat->Update();

unsigned int nClass = labelledStat->GetNumberOfLabels() ;

Figure 17.10 shows the output of the Markov Random Field regularization on the classification
output of another method.

http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MarkovRandomFieldFilter.html

426 Chapter 17. Classification

17.2 Statistical Segmentations

17.2.1 Stochastic Expectation Maximization

The Stochastic Expectation Maximization (SEM) approach isa stochastic version of the EM
mixture estimation seen on section 17.1.4. It has been introduced by [14] to prevent conver-
gence of the EM approach from local minima. It avoids the analytical maximization issued by
integrating a stochastic sampling procedure in the estimation process. It induces an almost sure
(a.s.) convergence to the algorithm.

From the initial two step formulation of the EM mixture estimation, the SEM may be decom-
posed into 3 steps:

1. E-step, calculates the expected membership values for each measurement vector to each
classes.

2. S-step, performs a stochastic sampling of the membership vector toeach classes, accord-
ing to the membership values computed in the E-step.

3. M-step, updates the parameters of the membership probabilities (parameters to be defined
through the classitk::Statistics::ModelComponentBase and its inherited classes).

The implementation of the SEM has been turned to a contextualSEM in the sense where the
evaluation of the membership parameters is conditioned to membership values of the spatial
neighborhood of each pixels.

The source code for this example can be found in the file
Examples/Learning/SEMModelEstimatorExample.cxx .

In this example, we present OTB’s implementation of SEM, through the class
otb::SEMClassifier . This class performs a stochastic version of the EM algorithm, but
instead of inheriting fromitk::ExpectationMaximizationMixtureModelEstimator , we
choosed to inherit fromitk::Statistics::ListSample< TSample > , in the same way as
otb::SVMClassifier .

The program begins withotb::VectorImage and outputs itb::Image . Then appropriate
header files have to be included:

#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

otb::SEMClassifier performs estimation of mixture to fit the initial histogram.Ac-
tually, mixture of Gaussian pdf can be performed. Those generic pdf are treated in
otb::Statistics::ModelComponentBase . The Gaussian model is taken in charge with the
class otb::Statistics::GaussianModelComponent .

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ModelComponentBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExpectationMaximizationMixtureModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample< TSample >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html
http://www.melaneum.com/OTB/doxygen/classitb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1ModelComponentBase.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1GaussianModelComponent.html

17.2. Statistical Segmentations 427

#include "otbGaussianModelComponent.h"
#include "otbSEMClassifier.h"

Input/Output images type are define in a classical way. In fact,
a itk::VariableLengthVector is to be considered for the templated
MeasurementVectorType , which will be used in theListSample interface.

typedef double PixelType;

typedef otb::VectorImage< PixelType, 2 > ImageType;
typedef otb::ImageFileReader< ImageType > ReaderType;

typedef itk::Image< unsigned char, 2 > OutputImageType;
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;

Once the input image is opened, the classifier may be initialised bySmartPointer .

typedef otb::SEMClassifier< ImageType, OutputImageType > ClassifType;
ClassifType::Pointer classifier = ClassifType::New();

Then, it follows, classical initialisations of the pipeline.

classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetMaximumIteration(numberOfIteration);
classifier->SetNeighborhood(neighborhood);
classifier->SetTerminationThreshold(terminationThre shold);
classifier->SetSample(reader->GetOutput());

When an initial segmentation is available, the classifier mayuse it as image
(of type OutputImageType) or as a itk::SampleClassifier result (of type
itk::Statistics::MembershipSample< SampleType >).

if (fileNameImgInit != NULL)
{

typedef otb::ImageFileReader< OutputImageType > ImgInit ReaderType;
ImgInitReaderType::Pointer segReader = ImgInitReaderTy pe::New();
segReader->SetFileName(fileNameImgInit);
segReader->Update();
classifier->SetClassLabels(segReader->GetOutput());

}

By default, otb::SEMClassifier performs initialisation ofModelComponentBase by as
many instanciation of otb::Statistics::GaussianModelComponent as the number of
classes to estimate in the mixture. Nevertheless, the user may add specific distribution into
the mixture estimation. It is permited by the use ofAddComponent for the given class number
and the specific distribution.

http://www.melaneum.com/OTB/doxygen/classitk_1_1VariableLengthVector.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SampleClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample< SampleType >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SEMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Statistics_1_1GaussianModelComponent.html

428 Chapter 17. Classification

typedef ClassifType::ClassSampleType ClassSampleType;
typedef otb::Statistics::GaussianModelComponent< Clas sSampleType >

GaussianType;

for (int i = 0; i < numberOfClasses; i++)
classifier->AddComponent(i, GaussianType::New());

Once the pipeline is instanciated. The segmentation by itself may be launched by using the
Update function.

try {
classifier->Update() ;

}

The segmentation may outputs a result of typeitk::Statistics::MembershipSample< SampleType >
as it is the case for theotb::SVMClassifier . But when usingGetOutputImage the output is
directly an Image.

Only for visualization purposes, we choose to rescale the image of classes before saving it to a
file. We will use the itk::RescaleIntensityImageFilter for this purpose.

typedef itk::RescaleIntensityImageFilter< OutputImage Type,
OutputImageType > RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();

rescaler->SetOutputMinimum(itk::NumericTraits< unsig ned char >::min());
rescaler->SetOutputMaximum(itk::NumericTraits< unsig ned char >::max());

rescaler->SetInput(classifier->GetOutputImage());

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(fileNameOut);
writer->SetInput(rescaler->GetOutput());
writer->Update();

Figure 17.11 shows the result of the SEM segmentation with 4 different classes and a contextual
neighborhood of 3 pixels.

As soon as the segmentation is performed by an iterative stochastic process, it is worth verifying
the output status: does the segmentation ends when it has converged or just at the limit of the
iteration numbers.

std::cerr << "Program terminated with a ";
if (classifier->GetTerminationCode() == ClassifType::C ONVERGED)

std::cerr << "converged ";
else

std::cerr << "not-converged ";
std::cerr << "code...\n";

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1MembershipSample< SampleType >.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html

17.3. Support Vector Machines 429

Figure 17.11:SEM Classification results.

The text output gives for each class the parameters of the pdf(e.g. mean of each component of
the class and there covariance matrix, in the case of a Gaussian mixture model).

classifier->Print(std::cerr);

17.3 Support Vector Machines

Kernel based learning methods in general and the Support Vector Machines (SVM) in particular,
have been introduced in the last years in learning theory forclassification and regression tasks,
[88]. SVM have been successfully applied to text categorization, [48], and face recognition,
[67]. Recently, they have been successfully used for the classification of hyperspectral remote-
sensing images, [8].

Simply stated, the approach consists in searching for the separating surface between 2 classes by
the determination of the subset of training samples which best describes the boundary between
the 2 classes. These samples are called support vectors and completely define the classification
system. In the case where the two classes are nonlinearly separable, the method uses a kernel
expansion in order to make projections of the feature space onto higher dimensionality spaces
where the separation of the classes becomes linear.

17.3.1 Mathematical formulation

This section reminds the basic principles of SVM learning and classification. A good tutorial
on SVM can be found in, [10].

We haveN samples represented by the couple(yi ,xi), i = 1. . .N whereyi ∈ {−1,+1} is the

430 Chapter 17. Classification

class label andxi ∈ R
n is the feature vector of dimensionn. A classifier is a function

f (x,α) : x 7→ y

whereα are the classifier parameters. The SVM finds the optimal separating hyperplane which
fulfills the following constraints :

• The samples with labels+1 and−1 are on different sides of the hyperplane.

• The distance of the closest vectors to the hyperplane is maximised. These are the support
vectors (SV) and this distance is called the margin.

The separating hyperplane has the equation

w ·x+b = 0;

with w being its normal vector andx being any point of the hyperplane. The orthogonal distance
to the origin is given by|b|

‖w‖ . Vectors located outside the hyperplane have eitherw ·x+b> 0 or
w ·x+b < 0.

Therefore, the classifier function can be written as

f (x,w,b) = sgn(w ·x+b).

The SVs are placed on two hyperplanes which are parallel to the optimal separating one. In
order to find the optimal hyperplane, one setsw andb :

w ·x+b = ±1.

Since there must not be any vector inside the margin, the following constraint can be used:

w ·xi +b≥ +1 if yi = +1;

w ·xi +b≤−1 if yi = −1;

which can be rewritten as
yi(w ·xi +b)−1≥ 0 ∀i.

The orthogonal distances of the 2 parallel hyperplanes to the origin are|1−b|
‖w‖ and |−1−b|

‖w‖ . There-

fore the modulus of the margin is equal to2‖w‖ and it has to be maximised.

Thus, the problem to be solved is:

• Find w andb which minimise
{

1
2‖w‖2

}

• under the constraint :yi(w ·xi +b) ≥ 1 i = 1. . .N.

17.3. Support Vector Machines 431

This problem can be solved by using the Lagrange multiplierswith one multiplier per sample.
It can be shown that only the support vectors will have a positive Lagrange multiplier.

In the case where the two classes are not exactly linearly separable, one can modify the con-
straints above by using

w ·xi +b≥ +1−ξi if yi = +1;

w ·xi +b≤−1+ξi if yi = −1;

ξi ≥ 0 ∀i.

If ξi > 1, one considers that the sample is wrong. The function whichhas then to be minimised
is 1

2‖w‖2 +C(∑i ξi) ;, whereC is a tolerance parameter. The optimisation problem is the same
than in the linear case, but one multiplier has to be added foreach new constraintξi ≥ 0.

If the decision surface needs to be non-linear, this solution cannot be applied and the kernel
approach has to be adopted.

One drawback of the SVM is that, in their basic version, they can only solve two-class problems.
Some works exist in the field of multi-class SVM (see [2, 91], and the comparison made by
[41]), but they are not used in our system.

For problems withN > 2 classes, one can choose either to trainN SVM (one class against all
the others), or to trainN× (N−1) SVM (one class against each of the others). In the second
approach, which is the one that we use, the final decision is taken by choosing the class which
is most often selected by the whole set of SVM.

17.3.2 Learning With PointSets

The source code for this example can be found in the file
Examples/Learning/SVMPointSetModelEstimatorExample. cxx .

This example illustrates the use of theotb::SVMPointSetModelEstimator in order to per-
form the SVM learning from anitk::PointSet data structure.

The first step required to use this filter is to include its header file.

#include "otbSVMPointSetModelEstimator.h"

In the framework of supervised learning and classification,we will always use feature vectors
for the characterization of the classes. On the other hand, the class labels are scalar values.
Here, we start by defining the type of the features as thePixelType , which will be used to
define the featureVectorType . We also declare the type for the labels.

typedef float PixelType;
typedef std::vector<PixelType> VectorType;
typedef int LabelPixelType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMPointSetModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSet.html

432 Chapter 17. Classification

We can now proceed to define the point sets used for storing thefeatures and the labels.

typedef itk::PointSet< VectorType, Dimension > FeaturePo intSetType;

typedef itk::PointSet< LabelPixelType, Dimension > Label PointSetType;

FeaturePointSetType::Pointer fPSet = FeaturePointSetTy pe::New();
LabelPointSetType::Pointer lPSet = LabelPointSetType:: New();

We will need to get access to the data stored in the point sets,so we define the appropriate for the
points and the points containers used by the point sets (see the section 5.2 for more information
oin haw to use point sets).

typedef FeaturePointSetType::PointType FeaturePointTy pe;
typedef LabelPointSetType::PointType LabelPointType;

typedef FeaturePointSetType::PointsContainer FeatureP ointsContainer;
typedef LabelPointSetType::PointsContainer LabelPoint sContainer;

FeaturePointsContainer::Pointer fCont = FeaturePointsC ontainer::New();
LabelPointsContainer::Pointer lCont = LabelPointsConta iner::New();

We need now to build the training set for the SVM learning. In this simple example, we will
build a SVM who classes points depending on which side of the linex = y they are located. We
start by generating 500 random points.

int lowest = 0;
int range = 1000;

for(unsigned int pointId = 0; pointId<500; pointId++)
{

FeaturePointType fP;
LabelPointType lP;

int x_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));
int y_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));

We set the coordinates of the points. They are the same for thefeature vector and for the label.

fP[0] = x_coord;
fP[1] = y_coord;

lP[0] = x_coord;
lP[1] = y_coord;

17.3. Support Vector Machines 433

We push the features in the vector after a normalization which is useful for SVM convergence.

VectorType feature;
feature.push_back(static_cast<PixelType>((x_coord*1 .0-lowest)/range));
feature.push_back(static_cast<PixelType>((y_coord*1 .0-lowest)/range));

We decide on the label for each point.

LabelPixelType label;

if(x_coord < y_coord)
label= -1;

else
label = 1;

And we insert the points in the points containers.

fCont->InsertElement(pointId , fP);
fPSet->SetPointData(pointId, feature);

lCont->InsertElement(pointId , lP);
lPSet->SetPointData(pointId, label);

}

After the loop, we set the points containers to the point sets.

fPSet->SetPoints(fCont);
lPSet->SetPoints(lCont);

Up to now, we have only prepared the data for the SVM learning.We can now create the SVM
model estimator. This class is templated over the feature and the label point set types.

typedef otb::SVMPointSetModelEstimator< FeaturePointS etType,
LabelPointSetType > EstimatorType;

EstimatorType::Pointer estimator = EstimatorType::New();

434 Chapter 17. Classification

The next step consists in setting the point sets for the estimator and the number of classes for
the model. The feture point set is set using theSetInputPointSet and the label point set is set
with theSetTrainingPointSet method.

estimator->SetInputPointSet(fPSet);
estimator->SetTrainingPointSet(lPSet);
estimator->SetNumberOfClasses(2);

The model estimation is triggered by calling theUpdate method.

estimator->Update();

Finally, we can save the result of the learning to a file.

estimator->SaveModel("svm_model.svm");

The otb::otbSVMModel class provides several accessors in order to get some information
about the result of the learning step. For instance, one can get the number of support vec-
tors kept to define the separation surface by using theGetNumberOfSupportVectors() . This
can be very useful to detect some kind of overlearning (the number of support vectors is
close to the number of examples). One can also get the SVs themselves by calling the
GetSupportVectors() . The α values for the support vectors can be accessed by using the
GetAlpha() method. Finally theEvaluate() method will return the result of the classification
of a sample and theEvaluateHyperplaneDistance() will return the distance of the sample
to the separating surface (or surfaces in the case of multi-class problems).

17.3.3 PointSet Classification

The source code for this example can be found in the file
Examples/Learning/SVMPointSetClassificationExample. cxx .

This example illustrates the use of theotb::SVMClassifier class for performing SVM
classification on pointsets. The first thing to do is include the header file for the
class. Since the otb::SVMClassifier takes itk::ListSample s as input, the class
itk::PointSetToListAdaptor is needed.

We start by including the needed header files.

#include "itkPointSetToListAdaptor.h"
#include "itkListSample.h"
#include "otbSVMClassifier.h"

http://www.melaneum.com/OTB/doxygen/classotb_1_1otbSVMModel.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1PointSetToListAdaptor.html

17.3. Support Vector Machines 435

In the framework of supervised learning and classification,we will always use feature vectors
for the characterization of the classes. On the other hand, the class labels are scalar values.
Here, we start by defining the type of the features as thePixelType , which will be used to
define the featureVectorType . We also declare the type for the labels.

typedef float InputPixelType;

typedef std::vector<InputPixelType> InputVectorType;
typedef int LabelPixelType;

We can now proceed to define the point sets used for storing thefeatures and the labels.

typedef itk::PointSet< InputVectorType, Dimension > Meas urePointSetType;

typedef itk::PointSet< LabelPixelType, Dimension > Label PointSetType;

We will need to get access to the data stored in the point sets,so we define the appropriate for the
points and the points containers used by the point sets (see the section 5.2 for more information
on how to use point sets).

typedef MeasurePointSetType::PointType MeasurePointTy pe;
typedef LabelPointSetType::PointType LabelPointType;

typedef MeasurePointSetType::PointsContainer MeasureP ointsContainer;
typedef LabelPointSetType::PointsContainer LabelPoint sContainer;

MeasurePointSetType::Pointer tPSet = MeasurePointSetTy pe::New();
MeasurePointsContainer::Pointer tCont = MeasurePointsC ontainer::New();

We need now to build the test set for the SVM. In this simple example, we will build a SVM
who classes points depending on which side of the linex = y they are located. We start by
generating 500 random points.

int lowest = 0;
int range = 1000;

for(pointId = 0; pointId<100; pointId++)
{

MeasurePointType tP;

436 Chapter 17. Classification

int x_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));
int y_coord = lowest+static_cast<int>(range*(rand()/(R AND_MAX + 1.0)));

std::cout << "coords : " << x_coord << " " << y_coord << std::en dl;
tP[0] = x_coord;
tP[1] = y_coord;

We push the features in the vector after a normalization which is useful for SVM convergence.

InputVectorType measure;
measure.push_back(static_cast<InputPixelType>((x_co ord*1.0-lowest)/range));
measure.push_back(static_cast<InputPixelType>((y_co ord*1.0-lowest)/range));

And we insert the points in the points container.

tCont->InsertElement(pointId , tP);
tPSet->SetPointData(pointId, measure);

}

After the loop, we set the points container to the point set.

tPSet->SetPoints(tCont);

Once the pointset is ready, we must transform it to a sample which is compatible with the
classification framework. We will use aitk::Statistics::PointSetToListAdaptor for
this task. This class is templated over the point set type used for storing the measures.

typedef itk::Statistics::PointSetToListAdaptor< Measu rePointSetType >
SampleType;
SampleType::Pointer sample = SampleType::New();

After instantiation, we can set the point set as an imput of our sample adaptor.

sample->SetPointSet(tPSet);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics::PointSetToListAdaptor.html

17.3. Support Vector Machines 437

Now, we need to declare the SVM model which is to be used by the classifier. The SVM model
is templated over the type of value used for the measures and the type of pixel used for the
labels.

typedef otb::SVMModel< SampleType::MeasurementVectorT ype::ValueType,
LabelPixelType > ModelType;

ModelType::Pointer model = ModelType::New();

After instantiation, we can load a model saved to a file (see section 17.3.2 for an example of
model estimation and storage to a file).

model->LoadModel(argv[1]);

We have now all the elements to create a classifier. The classifier is templated over the sample
type (the type of the data to be classified) and the label type (the type of the output of the
classifier).

typedef otb::SVMClassifier< SampleType, LabelPixelType > ClassifierType ;

ClassifierType::Pointer classifier = ClassifierType::N ew() ;

We set the classifier parameters : number of classes, SVM model, the sample data. And we
trigger the classification process by calling theUpdate method.

int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetModel(model);
classifier->SetSample(sample.GetPointer()) ;
classifier->Update() ;

After the classification step, we usually want to get the results. The classifier gives an output
under the form of a sample list. This list supports the classical STL iterators.

438 Chapter 17. Classification

ClassifierType::OutputType* membershipSample =
classifier->GetOutput() ;

ClassifierType::OutputType::ConstIterator m_iter =
membershipSample->Begin() ;

ClassifierType::OutputType::ConstIterator m_last =
membershipSample->End() ;

We will iterate through the list, get the labels and compute the classification error.

double error = 0.0;
pointId = 0;
while (m_iter != m_last)

{

We get the label for each point.

ClassifierType::ClassLabelType label = m_iter.GetClass Label();

And we compare it to the corresponding one of the test set.

InputVectorType measure;

tPSet->GetPointData(pointId, &measure);

ClassifierType::ClassLabelType expectedLabel;
if(measure[0] < measure[1])

expectedLabel= -1;
else

expectedLabel = 1;

double dist = fabs(measure[0] - measure[1]);

if(label != expectedLabel)
error++;

std::cout << int(label) << "/" << int(expectedLabel) << " -- - " << dist << std::endl;

17.3. Support Vector Machines 439

Figure 17.12:Images used for the estimation of the SVM model. Left: RGB image. Right: image of

labels.

++pointId;
++m_iter ;
}

std::cout << "Error = " << error/pointId << " % " << std::endl;

17.3.4 Learning With Images

The source code for this example can be found in the file
Examples/Learning/SVMImageModelEstimatorExample.cxx .

This example illustrates the use of theotb::SVMImageModelEstimator class. This class
allows the estimation of a SVM model (supervised learning) from a feature image and an image
of labels. In this example, we will train an SVM to separate between water and non-water pixels
by using the RGB values only. The images used for this exampleare shown in figure 17.12.
The first thing to do is include the header file for the class.

#include "otbSVMImageModelEstimator.h"

We define the types for the input and training images. Even if the input image will be an RGB
image, we can read it as a 3 component vector image. This simplifies the interfacing with OTB’s
SVM framework.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;

typedef otb::VectorImage< InputPixelType, Dimension > In putImageType;

typedef otb::Image< InputPixelType, Dimension > Training ImageType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

440 Chapter 17. Classification

The otb::SVMImageModelEstimator class is templated over the input (features) and the train-
ing (labels) images.

typedef otb::SVMImageModelEstimator< InputImageType,
TrainingImageType > EstimatorType;

As usual, we define the readers for the images.

typedef otb::ImageFileReader< InputImageType > InputRea derType;
typedef otb::ImageFileReader< TrainingImageType > Train ingReaderType;

InputReaderType::Pointer inputReader = InputReaderType ::New();
TrainingReaderType::Pointer trainingReader = TrainingR eaderType::New();

We read the images. It is worth to note that, in order to ensurethe pipeline coherence, the output
of the objects which preceed the model estimator in the pipeline, must be up to date, so we call
the correspondingUpdate methods.

inputReader->SetFileName(inputImageFileName);
trainingReader->SetFileName(trainingImageFileName);

inputReader->Update();
trainingReader->Update();

We can now instantiate the model estimator and set its parameters.

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();

svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetO utput());
svmEstimator->SetNumberOfClasses(2);

The model estimation procedure is triggered by calling the estimator’sUpdate method.

svmEstimator->Update();

Finally, the estimated model can be saved to a file for later use.

svmEstimator->SaveModel(outputModelFileName);

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

17.3. Support Vector Machines 441

17.3.5 Image Classification

The source code for this example can be found in the file
Examples/Classification/SVMImageClassificationExamp le.cxx .

In previous examples, we have used theotb::SVMClassifier , which uses the ITK classif-
cation framework. This good for compatibility with the ITK framework, but introduces the
limitations of not being able to use streaming and being ableto know at compilation time the
number of bands of the image to be classified. In OTB we have avoided this limitation by de-
velopping theotb::SVMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

#include "otbSVMImageClassificationFilter.h"

We will assume double precision input images and will also define the type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process images with any number of bands. We
read the images asotb::VectorImage s. The labeled image will be a scalar image.

typedef otb::VectorImage<PixelType,Dimension> ImageTy pe;
typedef otb::Image<LabeledPixelType,Dimension> Labele dImageType;

We can now define the type for the classifier filter, which is templated over its input and output
image types.

typedef otb::SVMImageClassificationFilter<ImageType, LabeledImageType>
ClassificationFilterType;

typedef ClassificationFilterType::ModelType ModelType ;

And finally, we define the reader and the writer. Since the images to classify can be very big,
we will use a streamed writer which will trigger the streaming ability of the classifier.

typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::StreamingImageFileWriter<LabeledImageTy pe> WriterType;

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

442 Chapter 17. Classification

We instantiate the classifier and the reader objects and we set the existing SVM model obtained
in a previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

ModelType::Pointer model = ModelType::New();
model->LoadModel(modelfname);

filter->SetModel(model);

We plug the pipeline and trigger its execution by updating the output of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

The source code for this example can be found in the file
Examples/Learning/SVMImageEstimatorClassificationMu ltiExample.cxx .

This example illustrates the OTB’s multi-class SVM capabilities. The theory behind this kind
of classification is out of the scope of this guide. In OTB, themulti-class SVM classification is
used in the same way as the two-class one. Figure 17.13 shows the image to be classified and
the associated ground truth, which is composed of 4 classes.

The following header files are needed for the program:

#include "otbSVMImageModelEstimator.h"
#include "itkImageToListAdaptor.h"
#include "itkListSample.h"
#include "otbSVMClassifier.h"

We define the types for the input and training images. Even if the input image will be an RGB
image, we can read it as a 3 component vector image. This simplifies the interfacing with OTB’s
SVM framework.

typedef unsigned short InputPixelType;
const unsigned int Dimension = 2;

17.3. Support Vector Machines 443

Figure 17.13:Images used for the estimation of the SVM model. Left: RGB image. Right: image of

labels.

typedef otb::VectorImage< InputPixelType, Dimension > In putImageType;

typedef otb::Image< InputPixelType, Dimension > Training ImageType;

The otb::SVMImageModelEstimator class is templated over the input (features) and the train-
ing (labels) images.

typedef otb::SVMImageModelEstimator< InputImageType,
TrainingImageType > EstimatorType;

As usual, we define the readers for the images.

typedef otb::ImageFileReader< InputImageType > InputRea derType;
typedef otb::ImageFileReader< TrainingImageType > Train ingReaderType;

InputReaderType::Pointer inputReader = InputReaderType ::New();
TrainingReaderType::Pointer trainingReader = TrainingR eaderType::New();

We read the images. It is worth to note that, in order to ensurethe pipeline coherence, the output
of the objects which preceed the model estimator in the pipeline, must be up to date, so we call
the correspondingUpdate methods.

inputReader->SetFileName(inputImageFileName);
trainingReader->SetFileName(trainingImageFileName);

inputReader->Update();
trainingReader->Update();

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

444 Chapter 17. Classification

We can now instantiate the model estimator and set its parameters.

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();

svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetO utput());
svmEstimator->SetNumberOfClasses(4);

The model estimation procedure is triggered by calling the estimator’sUpdate method.

svmEstimator->Update();

We can now proceed to the image classification. We start by declaring the type of the image to
be classified. ITK’s classification framework needs the typeof the pixel to be of fixed type, so
we declare the following types.

typedef otb::Image< itk::FixedArray<InputPixelType,3> ,
Dimension > ClassifyImageType;

typedef otb::ImageFileReader< ClassifyImageType > Class ifyReaderType;

We can now read the image by calling theUpdate method of the reader.

ClassifyReaderType::Pointer cReader = ClassifyReaderTy pe::New();

cReader->SetFileName(inputImageFileName);

cReader->Update();

The image has now to be transformed to a sample which is compatible with the classification
framework. We will use aitk::Statistics::ImageToListAdaptor for this task. This class
is templated over the image type used for storing the measures.

typedef itk::Statistics::ImageToListAdaptor< Classify ImageType > SampleType;
SampleType::Pointer sample = SampleType::New();

http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics::ImageToListAdaptor.html

17.3. Support Vector Machines 445

After instantiation, we can set the image as an imput of our sample adaptor.

sample->SetImage(cReader->GetOutput());

Now, we need to declare the SVM model which is to be used by the classifier. The SVM model
is templated over the type of value used for the measures and the type of pixel used for the
labels. The model is obtained from the model estimator by calling theGetModel method.

typedef InputPixelType LabelPixelType ;

typedef otb::SVMModel< InputPixelType, LabelPixelType > ModelType;

ModelType::Pointer model = svmEstimator->GetModel();

We have now all the elements to create a classifier. The classifier is templated over the sample
type (the type of the data to be classified) and the label type (the type of the output of the
classifier).

typedef otb::SVMClassifier< SampleType, LabelPixelType > ClassifierType ;

ClassifierType::Pointer classifier = ClassifierType::N ew() ;

We set the classifier parameters : number of classes, SVM model, the sample data. And we
trigger the classification process by calling theUpdate method.

int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetModel(model);
classifier->SetSample(sample.GetPointer()) ;
classifier->Update() ;

After the classification step, we usually want to get the results. The classifier gives an output
under the form of a sample list. This list supports the classical STL iterators. Therefore, we will
create an output image and fill it up with the results of the classification. The pixel type of the
output image is the same as the one used for the labels.

446 Chapter 17. Classification

typedef ClassifierType::ClassLabelType OutputPixelTyp e;
typedef otb::Image< OutputPixelType, Dimension > OutputI mageType;

OutputImageType::Pointer outputImage = OutputImageType ::New();

We allocate the memory for the output image using the information from the input image.

typedef itk::Index<Dimension> myIndexType;
typedef itk::Size<Dimension> mySizeType;
typedef itk::ImageRegion<Dimension> myRegionType;

mySizeType size;
size[0] = cReader->GetOutput()->GetRequestedRegion(). GetSize()[0];
size[1] = cReader->GetOutput()->GetRequestedRegion(). GetSize()[1];

myIndexType start;
start[0] = 0;
start[1] = 0;

myRegionType region;
region.SetIndex(start);
region.SetSize(size);

outputImage->SetRegions(region);
outputImage->Allocate();
std::cout << "---" << std::endl;

We can now declare the interators on the list that we get at theoutput of the classifier as well as
the iterator to fill the output image.

ClassifierType::OutputType* membershipSample =
classifier->GetOutput() ;

ClassifierType::OutputType::ConstIterator m_iter =
membershipSample->Begin() ;

ClassifierType::OutputType::ConstIterator m_last =
membershipSample->End() ;

typedef itk::ImageRegionIterator< OutputImageType> Out putIteratorType;

17.3. Support Vector Machines 447

OutputIteratorType outIt(outputImage,
outputImage->GetBufferedRegion());

outIt.GoToBegin();

We will iterate through the list, get the labels and assign pixel values to the output image.

while (m_iter != m_last && !outIt.IsAtEnd())
{
outIt.Set(m_iter.GetClassLabel());
++m_iter ;
++outIt;
}
std::cout << "---" << std::endl;

Only for visualization purposes, we choose a color mapping to the image of classes before
saving it to a file. Theitk::Functor::ScalarToRGBPixelFunctor class is a special function
object designed to hash a scalar value into anitk::RGBPixel . Plugging this functor into the
itk::UnaryFunctorImageFilter creates an image filter for that converts scalar images to
RGB images.

typedef itk::RGBPixel<unsigned char> RGBPixelType;
typedef otb::Image<RGBPixelType, 2> RGBImageType;
typedef itk::Functor::ScalarToRGBPixelFunctor<unsign ed long>

ColorMapFunctorType;
typedef itk::UnaryFunctorImageFilter<OutputImageType ,
RGBImageType, ColorMapFunctorType> ColorMapFilterType ;
ColorMapFilterType::Pointer colormapper = ColorMapFilt erType::New();

colormapper->SetInput(outputImage);

We can now create an image file writer and save the image.

typedef otb::ImageFileWriter<RGBImageType> WriterResc aledType;

WriterRescaledType::Pointer writerRescaled = WriterRes caledType::New();

writerRescaled->SetFileName(outputRescaledImageFile Name);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1UnaryFunctorImageFilter.html

448 Chapter 17. Classification

Figure 17.14:Result of the SVM classification . Left: RGB image. Right: image of classes.

writerRescaled->SetInput(colormapper->GetOutput());

writerRescaled->Update();

Figure 17.14 shows the result of the SVM classification.

17.3.6 Generic Kernel SVM

OTB has developed a specific interface for user-defined kernels. A functionk(·, ·) is considered
to be a kernel when:

∀g(·) ∈ L2(Rn) so that
Z

g(x)2dx be finite, (17.3)

then
Z

k(x,y)g(x)g(y)dxdy> 0,

which is known as theMercer condition.

When defined through the OTB, a kernel is a class that inherits from
GenericKernelFunctorBase . Several virtual functions have to be overloaded:

• TheEvaluate function, which implements the behavior of the kernel itself. For instance,
the classical linear kernel could be re-implemented with:

double
MyOwnNewKernel
::Evaluate (const svm_node * x, const svm_node * y,

const svm_parameter & param) const
{

return this->dot(x,y);
}

17.3. Support Vector Machines 449

This simple example shows that the classical dot product is already implemented into
otb::GenericKernelFunctorBase::dot() as a protected function.

• TheUpdate() function which synchronizes local variables and their integration into the
initial SVM procedure. The following examples will show theway to use it.

Some pre-defined generic kernels have already been implemented in OTB:

• otb::MixturePolyRBFKernelFunctor which implements a linear mixture of a polyno-
mial and a RBF kernel;

• otb::NonGaussianRBFKernelFunctor which implements a non gaussian RBF kernel;

• otb::SpectralAngleKernelFunctor , a kernel that integrates the Spectral Angle, in-
stead of the Euclidean distance, into an inverse multiquadric kernel. This kernel may be
appropriated when using multispectral data.

• otb::ChangeProfileKernelFunctor , a kernel which is dedicated to the supervized
classification of the multiscale change profile presented insection 16.5.1.

Learning with User Defined Kernels

The source code for this example can be found in the file
Examples/Learning/SVMGenericKernelImageModelEstimat orExample.cxx .

This example illustrates the modifications to be added to theuse of
otb::SVMImageModelEstimator in order to add a user defined kernel. This initial pro-
gram has been explained in section 17.3.4.

The first thing to do is to include the header file for the new kernel.

#include "otbSVMImageModelEstimator.h"
#include "otbMixturePolyRBFKernelFunctor.h"

Once theotb::SVMImageModelEstimator is instanciated, it is possible to add the new kernel
and its parameters.

Then in addition to the initial code:

EstimatorType::Pointer svmEstimator = EstimatorType::N ew();

svmEstimator->SetSVMType(C_SVC);
svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetO utput());
svmEstimator->SetNumberOfClasses(4);

http://www.melaneum.com/OTB/doxygen/classotb_1_1GenericKernelFunctorBase_1_1dot().html
http://www.melaneum.com/OTB/doxygen/classotb_1_1MixturePolyRBFKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1NonGaussianRBFKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SpectralAngleKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ChangeProfileKernelFunctor.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

450 Chapter 17. Classification

The instanciation of the kernel is to be implemented. The kernel which is used here is a linear
combination of a polynomial kernel and an RBF one. It is written as

µk1(x,y)+(1−µ)k2(x,y)

with k1(x,y) = (γ1x ·y+c0)
d andk2(x,y) = exp

(

−γ2‖x−y‖2
)

. Then, the specific parameters
of this kernel are:

• Mixture (µ),

• GammaPoly (γ1),

• CoefPoly (c0),

• DegreePoly (d),

• GammaRBF(γ2).

Their instanciations are achieved through the use of theSetValue function.

otb::MixturePolyRBFKernelFunctor myKernel;
myKernel.SetValue("Mixture", 0.5);
myKernel.SetValue("GammaPoly", 1.0);
myKernel.SetValue("CoefPoly", 0.0);
myKernel.SetValue("DegreePoly", 1);
myKernel.SetValue("GammaRBF", 1.5);
myKernel.Update();

Once the kernel’s parameters are affected and the kernel updated, the connection to
otb::SVMImageModelEstimator takes place here.

svmEstimator->SetKernelFunctor(&myKernel);
svmEstimator->SetKernelType(GENERIC);

The model estimation procedure is triggered by calling the estimator’sUpdate method.

svmEstimator->Update();

The rest of the code remains unchanged...

svmEstimator->SaveModel(outputModelFileName);

In the file outputModelFileName a specific line will appear when using a generic kernel. It
gives the name of the kernel and its parameters name and value.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageModelEstimator.html

17.3. Support Vector Machines 451

Classification with user defined kernel

The source code for this example can be found in the file
Examples/Learning/SVMGenericKernelImageClassificati onExample.cxx .

This example illustrates the modifications to be added to usethe otb::SVMClassifier class
for performing SVM classification on images with a user-defined kernel. In this example, we
will use an SVM model estimated in the previous section to separate between water and non-
water pixels by using the RGB values only. The images used forthis example are shown in
figure 17.12. The first thing to do is include the header file forthe class as well as the header of
the appropriated kernel to be used.

#include "otbSVMClassifier.h"
#include "otbMixturePolyRBFKernelFunctor.h"

We need to declare the SVM model which is to be used by the classifier. The SVM model is
templated over the type of value used for the measures and thetype of pixel used for the labels.

typedef otb::SVMModel< PixelType, LabelPixelType > Model Type;
ModelType::Pointer model = ModelType::New();

After instantiation, we can load a model saved to a file (see section 17.3.4 for an example of
model estimation and storage to a file).

When using a user defined kernel, an explicit instanciation has to be performed.

otb::MixturePolyRBFKernelFunctor myKernel;
model->SetKernelFunctor(&myKernel);

Then, the rest of the classification program remains unchanged.

model->LoadModel(modelFilename);

17.3.7 Multi-band, streamed classification

The source code for this example can be found in the file
Examples/Classification/SVMImageClassifierExample.c xx .

In previous examples, we have used theotb::SVMClassifier , which uses the ITK classif-
cation framework. This good for compatibility with the ITK framework, but introduces the
limitations of not being able to use streaming and being ableto know at compilation time the
number of bands of the image to be classified. In OTB we have avoided this limitation by de-
velopping theotb::SVMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SVMImageClassificationFilter.html

452 Chapter 17. Classification

#include "otbSVMImageClassificationFilter.h"

We will assume double precision input images and will also define the type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process images with any number of bands. We
read the images asotb::VectorImage s. The labeled image will be a scalar image.

typedef otb::VectorImage<PixelType,Dimension> ImageTy pe;
typedef otb::Image<LabeledPixelType,Dimension> Labele dImageType;

We can now define the type for the classifier filter, which is templated over its input and output
image types.

typedef otb::SVMImageClassificationFilter<ImageType, LabeledImageType>
ClassificationFilterType;

typedef ClassificationFilterType::ModelType ModelType ;

And finally, we define the reader and the writer. Since the images to classify can be very big,
we will use a streamed writer which will trigger the streaming ability of the classifier.

typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::StreamingImageFileWriter<LabeledImageTy pe> WriterType;

We instantiate the classifier and the reader objects and we set the existing SVM model obtained
in a previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

ModelType::Pointer model = ModelType::New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

17.4. Kohonen’s Self Organizing Map 453

model->LoadModel(modelfname);

filter->SetModel(model);

We plug the pipeline and trigger its execution by updating the output of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

17.4 Kohonen’s Self Organizing Map

The Self Organizing Map, SOM, introduced by Kohonen is a non-supervised neural learning
algorithm. The map is composed of neighboring cells which are in competition by means of
mutual interactions and they adapt in order to match characteristic patterns of the examples
given during the learning. The SOM is usually on a plane (2D).

The algorithm implements a nonlinear projection from a highdimensional feature space to a
lower dimension space, usually 2D. It is able to find the correspondence between a set of struc-
tured data and a network of much lower dimension while keeping the topological relationships
existing in the feature space. Thanks to this topological organization, the final map presents
clusters and their relationships.

17.4.1 The algorithm

Kohonen’s SOM is usually represented as an array of cells where each cell is,i, associated to a
feature (or weight) vectormi = [mi1,mi2, · · · ,min]

T ∈ R
n (figure 17.15).

A cell (or neuron) in the map is a good detector for a given input vectorx= [x1,x2, · · · ,xn]
T ∈R

n

if the latter iscloseto the former. This distance between vectors can be represented by the
scalar productxT ·mi , but for most of the cases other distances can be used, as for instance the
Euclidean one. The cell having the weight vector closest to the input vector is called thewinner.

Learning

The goal of the learning step is to get a map which is representative of an input example set. It
is an iterative procedure which consists in passing each input example to the map, testing the
response of each neuron and modifying the map to get it closerto the examples.

454 Chapter 17. Classification

mi1

mi3

min

mi2
mi

m1 m2

mM

Figure 17.15:Kohonen’s Self Organizing Map

Algorithm 1 SOM learning:

1. t = 0.

2. Initialize the weight vectors of the map (randomly, for instance).

3. While t< number of iterations, do:

(a) k= 0.

(b) While k< number of examples, do:

i. Find the vector mi(t) which minimizes the distance d(xk,mi(t))

ii. For a neighborhood Nc(t) around the winner cell, apply the transformation:

mi(t +1) = mi(t)+β(t) [xk(t)−mi(t)] (17.4)

iii. k = k+1

(c) t = t +1.

In 17.4, β(t) is a decreasing function with the geometrical distance to the winner cell. For
instance:

β(t) = β0(t)e
− ‖ri−rc‖2

σ2(t) , (17.5)

with β0(t) andσ(t) decreasing functions with time andr the cell coordinates in the output –
map – space.

Therefore the algorithm consists in getting the map closer to the learning set. The use of a
neighborhood around the winner cell allows the organization of the map into areas which spe-
cialize in the recognition of different patterns. This neighborhood also ensures that cells which
are topologically close are also close in terms of the distance defined in the feature space.

17.4. Kohonen’s Self Organizing Map 455

17.4.2 Building a color table

The source code for this example can be found in the file
Examples/Learning/SOMExample.cxx .

This example illustrates the use of theotb::SOM class for building Kohonen’s Self Organizing
Maps.

We will use the SOM in order to build a color table from an inputimage. Our input image is
coded with 3×8 bits and we would like to code it with only 16 levels. We will use the SOM in
order to learn which are the 16 most representative RGB values of the input image and we will
assume that this is the optimal color table for the image.

The first thing to do is include the header file for the class. Wewill also need the header files
for the map itself and the activation map builder whose utility will be explained at the end of
the example.

#include "otbSOMMap.h"
#include "otbSOM.h"
#include "otbSOMActivationBuilder.h"

Since the otb::SOM class uses a distance, we will need to include the header file for the one
we want to use

#include "itkEuclideanDistance.h"

The Self Organizing Map itself is actually an N-dimensionalimage where each pixel contains
a neuron. In our case, we decide to build a 2-dimensional SOM,where the neurons store RGB
values with floating point precision.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef otb::VectorImage< PixelType, Dimension > ImageTy pe;
typedef ImageType::PixelType VectorType;

The distance that we want to apply between the RGB values is the Euclidean one. Of course we
could choose to use other type of distance, as for instance, adistance defined in any other color
space.

typedef itk::Statistics::EuclideanDistance< VectorTyp e > DistanceType;

We can now define the type for the map. Theotb::SOMMap::c lass is templated over the
neuron type –PixelType here –, the distance type and the number of dimensions. Note that the
number of dimensions of the map could be different from the one of the images to be processed.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMMap_1_1c.html

456 Chapter 17. Classification

typedef otb::SOMMap< VectorType, DistanceType, Dimensio n > MapType;

We are going to perform the learning directly on the pixels ofthe input image. Therefore, the
image type is defined using the same pixel type as we used for the map. We also define the type
for the imge file reader.

typedef otb::ImageFileReader<ImageType> ReaderType;

Since the otb::SOM class works on lists of samples, it will need to access the input image
through an adaptor. Its type is defined as follows:

typedef itk::Statistics::ListSample< VectorType > Sampl eListType;

We can now define the type for the SOM, which is templated over the input sample list and the
type of the map to be produced and the two functors that hold the training behavior.

typedef otb::Functor::CzihoSOMLearningBehaviorFuncto r
LearningBehaviorFunctorType;

typedef otb::Functor::CzihoSOMNeighborhoodBehaviorFu nctor
NeighborhoodBehaviorFunctorType;

typedef otb::SOM< SampleListType, MapType,
LearningBehaviorFunctorType, NeighborhoodBehaviorFun ctorType >

SOMType;

As an alternative to standartSOMType, one can decide to use anotb::PeriodicSOM , which
behaves likeotb::SOM but is to be considered to as a torus instead of a simple map. Hence,
the neighborhood behavior of the winning neuron does not depend on its location on the map...
otb::PeriodicSOM is defined in otbPeriodicSOM.h.

We can now start building the pipeline. The first step is to instantiate the reader and pass its
output to the adaptor.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
reader->Update();

SampleListType::Pointer sampleList = SampleListType::N ew();

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PeriodicSOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1PeriodicSOM.html

17.4. Kohonen’s Self Organizing Map 457

sampleList->SetMeasurementVectorSize(reader->GetOut put()->GetVectorLength());

itk::ImageRegionIterator< ImageType > imgIter (reader-> GetOutput(),
reader->GetOutput()->GetBufferedRegion());
imgIter.GoToBegin();

itk::ImageRegionIterator< ImageType > imgIterEnd (reade r->GetOutput(),
reader->GetOutput()->GetBufferedRegion());

imgIterEnd.GoToEnd();

do {
sampleList->PushBack(imgIter.Get());
++imgIter;

} while (imgIter != imgIterEnd);

We can now instantiate the SOM algorithm and set the sample list as input.

SOMType::Pointer som = SOMType::New();
som->SetListSample(sampleList);

We use aSOMType::SizeType array in order to set the sizes of the map.

SOMType::SizeType size;
size[0]=sizeX;
size[1]=sizeY;
som->SetMapSize(size);

The initial size of the neighborhood of each neuron is set in the same way.

SOMType::SizeType radius;
radius[0] = neighInitX;
radius[1] = neighInitY;
som->SetNeighborhoodSizeInit(radius);

The other parameters are the number of iterations, the initial and the final values for the learning
rate –β – and the maximum initial value for the neurons (the map will be randomly initialized).

458 Chapter 17. Classification

Figure 17.16:Result of the SOM learning. Left: RGB image. Center: SOM. Right: Activation map

som->SetNumberOfIterations(nbIterations);
som->SetBetaInit(betaInit);
som->SetBetaEnd(betaEnd);
som->SetMaxWeight(static_cast<PixelType>(initValue));

Now comes the intialisation of the functors.

LearningBehaviorFunctorType learningFunctor;
learningFunctor.SetIterationThreshold(radius, nbIter ations);
som->SetBetaFunctor(learningFunctor);

NeighborhoodBehaviorFunctorType neighborFunctor;
som->SetNeighborhoodSizeFunctor(neighborFunctor);
som->Update();

Finally, we set up the las part of the pipeline where the plug the output of the SOM into the
writer. The learning procedure is triggered by calling theUpdate() method on the writer.
Since the map is itself an image, we can write it to disk with anotb::ImageFileWriter .

Figure 17.16 shows the result of the SOM learning. Since we have performed a learning on
RGB pixel values, the produced SOM can be interpreted as an optimal color table for the input
image. It can be observed that the obtained colors are topologically organised, so similar colors
are also close in the map. This topological organisation canbe exploited to further reduce the
number of coding levels of the pixels without performing a new learning: we can subsample the
map to get a new color table. Also, a bilinear interpolation between the neurons can be used to
increase the number of coding levels.

We can now compute the activation map for the input image. Theactivation map tells us how
many times a given neuron is activated for the set of examplesgiven to the map. The activation
map is stored as a scalar image and an integer pixel type is usually enough.

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

17.4. Kohonen’s Self Organizing Map 459

typedef unsigned char OutputPixelType;

typedef otb::Image<OutputPixelType,Dimension> OutputI mageType;
typedef otb::ImageFileWriter<OutputImageType> Activat ionWriterType;

In a similar way to theotb::SOM class theotb::SOMActivationBuilder is templated over
the sample list given as input, the SOM map type and the activation map to be built as output.

typedef otb::SOMActivationBuilder< SampleListType, Map Type,
OutputImageType> SOMActivationBuilderType;

We instantiate the activation map builder and set as input the SOM map build before and the
image (using the adaptor).

SOMActivationBuilderType::Pointer somAct
= SOMActivationBuilderType::New();

somAct->SetInput(som->GetOutput());
somAct->SetListSample(sampleList);
somAct->Update();

The final step is to write the activation map to a file.

if (actMapFileName != NULL)
{

ActivationWriterType::Pointer actWriter = ActivationWr iterType::New();
actWriter->SetFileName(actMapFileName);

The righthand side of figure 17.16 shows the activation map obtained.

17.4.3 SOM Classification

The source code for this example can be found in the file
Examples/Learning/SOMClassifierExample.cxx .

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOM.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMActivationBuilder.html

460 Chapter 17. Classification

This example illustrates the use of theotb::SOMClassifier class for performing a classifi-
cation using an existing Kohonen’s Self Organizing. Actually, the SOM classification consists
only in the attribution of the winner neuron index to a given feature vector.

We will use the SOM created in section 17.4.2 and we will assume that each neuron represents
a class in the image.

The first thing to do is include the header file for the class.

#include "otbSOMClassifier.h"

As for the SOM learning step, we must define the types for theotb::SOMMap , and therefore,
also for the distance to be used. We will also define the type for the SOM reader, which is
actually anotb::ImageFileReader::w hich the appropiate image type.

typedef itk::Statistics::EuclideanDistance<PixelType > DistanceType;
typedef otb::SOMMap<PixelType,DistanceType,Dimension > SOMMapType;
typedef otb::ImageFileReader<SOMMapType> SOMReaderTyp e;

The classification will be performed by theotb::SOMClassifier::, which, as most of the
classifiers, works onitk::Statistics::ListSample s. In order to be able to perform an im-
age classification, we will need to use theitk::Statistics::ImageToListAdaptor which
is templated over the type of image to be adapted. TheSOMClassifier is templated over the
sample type, the SOMMap type and the pixel type for the labels.

typedef itk::Statistics::ListSample< PixelType> Sample Type;
typedef otb::SOMClassifier<SampleType,SOMMapType,Lab elPixelType>

ClassifierType;

The result of the classification will be stored on an image andsaved to a file. Therefore, we
define the types needed for this step.

typedef otb::Image<LabelPixelType, Dimension > OutputIm ageType;
typedef otb::ImageFileWriter<OutputImageType> WriterT ype;

We can now start reading the input image and the SOM given as inputs to the program. We
instantiate the readers as usual.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileReader_1_1w.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier_1_1,.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ListSample.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Statistics_1_1ImageToListAdaptor.html

17.4. Kohonen’s Self Organizing Map 461

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(imageFilename);
reader->Update();

SOMReaderType::Pointer somreader = SOMReaderType::New();
somreader->SetFileName(mapFilename);
somreader->Update();

The conversion of the input data from image to list sample is easily done using the adaptor.

SampleType::Pointer sample = SampleType::New();

itk::ImageRegionIterator<InputImageType> it(reader-> GetOutput(),reader->GetOutput()->GetLargestPossible

it.GoToBegin();

while(!it.IsAtEnd())
{

sample->PushBack(it.Get());
++it;

}

The classifier can now be instantiated. The input data is set by using theSetSample() method
and the SOM si set using theSetMap() method. The classification is triggered by using the
Update() method.

ClassifierType::Pointer classifier = ClassifierType::N ew() ;
classifier->SetSample(sample.GetPointer());
classifier->SetMap(somreader->GetOutput());
classifier->Update() ;

Once the classification has been performed, the sample list obtained at the output of the classifier
must be converted into an image. We create the image as follows :

OutputImageType::Pointer outputImage = OutputImageType ::New();
outputImage->SetRegions(reader->GetOutput()->GetLar gestPossibleRegion());
outputImage->Allocate();

We can now get a pointer to the classification result.

462 Chapter 17. Classification

ClassifierType::OutputType* membershipSample = classif ier->GetOutput();

And we can declare the iterators pointing to the front and theback of the sample list.

ClassifierType::OutputType::ConstIterator m_iter = mem bershipSample->Begin();
ClassifierType::OutputType::ConstIterator m_last = mem bershipSample->End();

We also declare anitk::ImageRegionIterator::i n order to fill the output image with the
class labels.

typedef itk::ImageRegionIterator< OutputImageType> Out putIteratorType;

OutputIteratorType outIt(outputImage,outputImage->Ge tLargestPossibleRegion());

We iterate through the sample list and the output image and assign the label values to the image
pixels.

outIt.GoToBegin();

while (m_iter != m_last && !outIt.IsAtEnd())
{
outIt.Set(m_iter.GetClassLabel());
++m_iter ;
++outIt;
}

Finally, we write the classified image to a file.

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(outputImage);
writer->Update();

Figure 17.17 shows the result of the SOM classification.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator_1_1i.html

17.4. Kohonen’s Self Organizing Map 463

Figure 17.17:Result of the SOM learning. Left: RGB image. Center: SOM. Right: Classified Image

17.4.4 Multi-band, streamed classification

The source code for this example can be found in the file
Examples/Classification/SOMImageClassificationExamp le.cxx .

In previous examples, we have used theotb::SOMClassifier , which uses the ITK classi-
fication framework. This good for compatibility with the ITKframework, but introduces the
limitations of not being able to use streaming and being ableto know at compilation time the
number of bands of the image to be classified. In OTB we have avoided this limitation by de-
velopping theotb::SOMImageClassificationFilter . In this example we will illustrate its
use. We start by including the appropriate header file.

#include "otbSOMImageClassificationFilter.h"

We will assume double precision input images and will also define the type for the labeled
pixels.

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

Our classifier will be genric enough to be able to process images with any number of bands. We
read the images asotb::VectorImage s. The labeled image will be a scalar image.

typedef otb::VectorImage<PixelType,Dimension> ImageTy pe;
typedef otb::Image<LabeledPixelType,Dimension> Labele dImageType;

We can now define the type for the classifier filter, which is templated over its input and output
image types and the SOM type.

http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMClassifier.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1SOMImageClassificationFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1VectorImage.html

464 Chapter 17. Classification

typedef otb::SOMMap<ImageType::PixelType> SOMMapType;
typedef otb::SOMImageClassificationFilter<ImageType,

LabeledImageType,SOMMapType> ClassificationFilterTyp e;

And finally, we define the readers (for the input image and theSOM) and the writer. Since
the images, to classify can be very big, we will use a streamedwriter which will trigger the
streaming ability of the classifier.

typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileReader<SOMMapType> SOMReaderTyp e;
typedef otb::StreamingImageFileWriter<LabeledImageTy pe> WriterType;

We instantiate the classifier and the reader objects and we set the existing SOM obtained in a
previous training step.

ClassificationFilterType::Pointer filter = Classificat ionFilterType::New();

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);

SOMReaderType::Pointer somreader = SOMReaderType::New();
somreader->SetFileName(somfname);
somreader->Update();

filter->SetMap(somreader->GetOutput());

We plug the pipeline and trigger its execution by updating the output of the writer.

filter->SetInput(reader->GetOutput());

WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();

CHAPTER

EIGHTEEN

Image Visualization

Even if OTB is not a visualization toolkit as for instance VTK(The Visualization Toolkit
http://www.vtk.org), some simple functionnalities for image visualization are given in the
toolbox. Indeed, for algorithm prototyping, it is sometimes more useful toseethe result on the
screen, than saving it to a file and then open in with an external viewer.

OTB provides the otb::ImageViewer class which is compatible with the pipeline and can
therefore replace theotb::ImageFileWriter::d uring proto-typing phases.

The source code for this example can be found in the file
Examples/Visu/VisuExample1.cxx .

This example shows the use of theotb::ImageViewer class for image visualization. As usual,
we start by including the header file for the class.

#include "otbImageViewer.h"

We will build a very simple pipeline where a reader gets an image from a file and gives it to
the viewer. We define the types for the pixel, the image and thereader. The viewer class is
templated over the scalar component of the pixel type.

typedef int PixelType;
typedef otb::VectorImage< PixelType, 2 > ImageType;
typedef otb::ImageFileReader< ImageType > ReaderType;
typedef otb::ImageViewer< PixelType > ViewerType;

We create the objects.

ViewerType::Pointer lViewer = ViewerType::New();
ReaderType::Pointer lReader = ReaderType::New();
lReader->SetFileName(inputFilename);
lReader->Update();

http://www.vtk.org
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html
http://www.melaneum.com/OTB/doxygen/classotb::ImageFileWriter_1_1d.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

466 Chapter 18. Image Visualization

Figure 18.1:Example of image visualization.

We can choose a label for the windows created by the viewer.

lViewer->SetLabel("My Image");

We can now plug the pipeline and trigger the visualization byusing theShow method.

lViewer->SetImage(lReader->GetOutput());

lViewer->Show();

The last step consists in starting the GUI event loop by calling the appropiate FLTK method.

Fl::run();

The the otb::ImageViewer class creates 3 windows (see figure 18.1) for an improved visu-
alization of large images. This procedure is inspired from the navigation window of the Gimp
and other image visualization tools. The navigation windowis called herescroll window and
it shows the complete image but subsampled to a lower resolution. The pricipal window shows

http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageViewer.html

467

the region marked by a red rectangle in the scroll window using the real resolution of the im-
age. Finally, a zoom window displays the region inside the red rectangle shown in the principal
window. A mouse click on a pixel of the scroll (respectively,the pricipal window) updates the
rectangle prosition and, therefore, the region viewed in the principal (respectively, the zoom)
window. The zoom rate can be modified by using the mous wheel.

Part IV

Developper’s guide

CHAPTER

NINETEEN

Iterators

This chapter introduces theimage iterator, an important generic programming construct for
image processing in ITK. An iterator is a generalization of the familiar C programming language
pointer used to reference data in memory. ITK has a wide variety of image iterators, some of
which are highly specialized to simplify common image processing tasks.

The next section is a brief introduction that defines iterators in the context of ITK. Section 19.2
describes the programming interface common to most ITK image iterators. Sections 19.3–19.4
document specific ITK iterator types and provide examples ofhow they are used.

19.1 Introduction

Generic programming models define functionally independent components calledcontainers
andalgorithms. Container objects store data and algorithms operate on data. To access data in
containers, algorithms use a third class of objects callediterators. An iterator is an abstraction
of a memory pointer. Every container type must define its own iterator type, but all iterators are
written to provide a common interface so that algorithm codecan reference data in a generic
way and maintain functional independence from containers.

The iterator is so named because it is used foriterative, sequential access of container val-
ues. Iterators appear infor andwhile loop constructs, visiting each data point in turn. A C
pointer, for example, is a type of iterator. It can be moved forward (incremented) and backward
(decremented) through memory to sequentially reference elements of an array. Many iterator
implementations have an interface similar to a C pointer.

In ITK we use iterators to write generic image processing code for images instantiated with
different combinations of pixel type, pixel container type, and dimensionality. Because ITK
image iterators are specifically designed to work withimagecontainers, their interface and
implementation is optimized for image processing tasks. Using the ITK iterators instead of
accessing data directly through theotb::Image interface has many advantages. Code is more
compact and often generalizes automatically to higher dimensions, algorithms run much faster,

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

472 Chapter 19. Iterators

and iterators simplify tasks such as multithreading and neighborhood-based image processing.

19.2 Programming Interface

This section describes the standard ITK image iterator programming interface. Some special-
ized image iterators may deviate from this standard or provide additional methods.

19.2.1 Creating Iterators

All image iterators have at least one template parameter that is the image type over which they
iterate. There is no restriction on the dimensionality of the image or on the pixel type of the
image.

An iterator constructor requires at least two arguments, a smart pointer to the image to iterate
across, and an image region. The image region, called theiteration region, is a rectilinear
area in which iteration is constrained. The iteration region must be wholly contained within
the image. More specifically, a valid iteration region is anysubregion of the image within the
currentBufferedRegion . See Section 5.1 for more information on image regions.

There is a const and a non-const version of most ITK image iterators. A non-const iterator
cannot be instantiated on a non-const image pointer. Const versions of iterators may read, but
may not write pixel values.

Here is a simple example that defines and constructs a simple image iterator for anotb::Image .

typedef otb::Image<float, 3> ImageType;
typedef itk::ImageRegionConstIterator< ImageType > Cons tIteratorType;
typedef itk::ImageRegionIterator< ImageType > IteratorT ype;

ImageType::Pointer image = SomeFilter->GetOutput();

ConstIteratorType constIterator(image, image->GetRequ estedRegion());
IteratorType iterator(image, image->GetRequestedRegio n());

19.2.2 Moving Iterators

An iterator is described aswalking its iteration region. At any time, the iterator will reference,
or “point to”, one pixel location in the N-dimensional (ND) image.Forward iterationgoes from
the beginning of the iteration region to the end of the iteration region.Reverse iteration, goes
from just past the end of the region back to the beginning. There are two corresponding starting
positions for iterators, thebeginposition and theendposition. An iterator can be moved directly
to either of these two positions using the following methods.

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html

19.2. Programming Interface 473

Iteration region

BEGIN Position

END Position

itk::Image

Figure 19.1:Normal path of an iterator through a 2D image. The iteration region is shown in a darker

shade. An arrow denotes a single iterator step, the result of one ++ operation.

• GoToBegin() Points the iterator to the first valid data element in the region.

• GoToEnd() Points the iterator toone position pastthe last valid element in the region.

Note that the end position is not actually located within theiteration region. This is important to
remember because attempting to dereference an iterator at its end position will have undefined
results.

ITK iterators are moved back and forth across their iterations using the decrement and increment
operators.

• operator++() Increments the iterator one position in the positive direction. Only the
prefix increment operator is defined for ITK image iterators.

• operator--() Decrements the iterator one position in the negative direction. Only
the prefix decrement operator is defined for ITK image iterators.

Figure 19.1 illustrates typical iteration over an image region. Most iterators increment and
decrement in the direction of the fastest increasing image dimension, wrapping to the first po-
sition in the next higher dimension at region boundaries. Inother words, an iterator first moves
across columns, then down rows, then from slice to slice, andso on.

In addition to sequential iteration through the image, someiterators may define random access
operators. Unlike the increment operators, random access operators may not be optimized for
speed and require some knowledge of the dimensionality of the image and the extent of the
iteration region to use properly.

• operator+=(OffsetType) Moves the iterator to the pixel position at the current
index plus specifieditk::Offset .

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

474 Chapter 19. Iterators

• operator-=(OffsetType) Moves the iterator to the pixel position at the current
index minus specified Offset.

• SetPosition(IndexType) Moves the iterator to the givenitk::Index posi-
tion.

The SetPosition() method may be extremely slow for more complicated iterator types. In
general, it should only be used for setting a starting iteration position, like you would use
GoToBegin() or GoToEnd() .

Some iterators do not follow a predictable path through their iteration regions and have no
fixed beginning or ending pixel locations. A conditional iterator, for example, visits pixels only
if they have certain values or connectivities. Random iterators, increment and decrement to
random locations and may even visit a given pixel location more than once.

An iterator can be queried to determine if it is at the end or the beginning of its iteration region.

• bool IsAtEnd() True if the iterator points toone position pastthe end of the iteration
region.

• bool IsAtBegin() True if the iterator points to the first position in the iteration
region. The method is typically used to test for the end of reverse iteration.

An iterator can also report its current image index position.

• IndexType GetIndex() Returns the Index of the image pixel that the iterator cur-
rently points to.

For efficiency, most ITK image iterators do not perform bounds checking. It is possible to
move an iterator outside of its valid iteration region. Dereferencing an out-of-bounds iterator
will produce undefined results.

19.2.3 Accessing Data

ITK image iterators define two basic methods for reading and writing pixel values.

• PixelType Get() Returns the value of the pixel at the iterator position.

• void Set(PixelType) Sets the value of the pixel at the iterator position. Not
defined for const versions of iterators.

TheGet() andSet() methods are inlined and optimized for speed so that their useis equivalent
to dereferencing the image buffer directly. There are a few common cases, however, where using
Get() andSet() do incur a penalty. Consider the following code, which fetches, modifies, and
then writes a value back to the same pixel location.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html

19.2. Programming Interface 475

it.Set(it.Get() + 1);

As written, this code requires one more memory dereference than is necessary. Some iterators
define a third data access method that avoids this penalty.

• PixelType &Value() Returns a reference to the pixel at the iterator position.

The Value() method can be used as either an lval or an rval in an expression. It has all the
properties ofoperator* . TheValue() method makes it possible to rewrite our example code
more efficiently.

it.Value()++;

Consider using theValue() method instead ofGet() or Set() when a call tooperator= on a
pixel is non-trivial, such as when working with vector pixels, and operations are done in-place
in the image. The disadvantage of usingValue is that it cannot support image adapters (see
Section 20 on page 505 for more information about image adaptors).

19.2.4 Iteration Loops

Using the methods described in the previous sections, we cannow write a simple example to
do pixel-wise operations on an image. The following code calculates the squares of all values
in an input image and writes them to an output image.

ConstIteratorType in(inputImage, inputImage->GetReque stedRegion());
IteratorType out(outputImage, inputImage->GetRequeste dRegion());

for (in.GoToBegin(), out.GoToBegin(); !in.IsAtEnd(); ++ in, ++out)
{
out.Set(in.Get() * in.Get());
}

Notice that both the input and output iterators are initialized over the same region, the
RequestedRegion of inputImage . This is good practice because it ensures that the output
iterator walks exactly the same set of pixel indices as the input iterator, but does not require
that the output and input be the same size. The only requirement is that the input image must
contain a region (a starting index and size) that matches theRequestedRegion of the output
image.

Equivalent code can be written by iterating through the image in reverse. The syntax is slightly
more awkward because theendof the iteration region is not a valid position and we can only
test whether the iterator is strictlyequalto its beginning position. It is often more convenient to
write reverse iteration in awhile loop.

476 Chapter 19. Iterators

in.GoToEnd();
out.GoToEnd();
while (! in.IsAtBegin())

{
--in;
--out;
out.Set(in.Get() * in.Get());
}

19.3 Image Iterators

This section describes iterators that walk rectilinear image regions and reference a single pixel
at a time. The itk::ImageRegionIterator is the most basic ITK image iterator and the
first choice for most applications. The rest of the iteratorsin this section are specializations of
ImageRegionIterator that are designed make common image processing tasks more efficient or
easier to implement.

19.3.1 ImageRegionIterator

The source code for this example can be found in the file
Examples/Iterators/ImageRegionIterator.cxx .

The itk::ImageRegionIterator is optimized for iteration speed and is the first choice for
iterative, pixel-wise operations when location in the image is not important. ImageRegionIter-
ator is the least specialized of the ITK image iterator classes. It implements all of the methods
described in the preceding section.

The following example illustrates the use ofitk::ImageRegionConstIterator and Im-
ageRegionIterator. Most of the code constructs introducedapply to other ITK iterators as well.
This simple application crops a subregion from an image by copying its pixel values into to a
second, smaller image.

We begin by including the appropriate header files.

#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"

Next we define a pixel type and corresponding image type. ITK iterator classes expect the
image type as their template parameter.

const unsigned int Dimension = 2;

typedef unsigned char PixelType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionConstIterator.html

19.3. Image Iterators 477

typedef otb::Image< PixelType, Dimension > ImageType;

typedef itk::ImageRegionConstIterator< ImageType > Cons tIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorT ype;

Information about the subregion to copy is read from the command line. The subregion is
defined by anitk::ImageRegion object, with a starting grid index and a size (Section 5.1).

ImageType::RegionType inputRegion;

ImageType::RegionType::IndexType inputStart;
ImageType::RegionType::SizeType size;

inputStart[0] = ::atoi(argv[3]);
inputStart[1] = ::atoi(argv[4]);

size[0] = ::atoi(argv[5]);
size[1] = ::atoi(argv[6]);

inputRegion.SetSize(size);
inputRegion.SetIndex(inputStart);

The destination region in the output image is defined using the input region size, but a different
start index. The starting index for the destination region is the corner of the newly generated
image.

ImageType::RegionType outputRegion;

ImageType::RegionType::IndexType outputStart;

outputStart[0] = 0;
outputStart[1] = 0;

outputRegion.SetSize(size);
outputRegion.SetIndex(outputStart);

After reading the input image and checking that the desired subregion is, in fact, contained in
the input, we allocate an output image. It is fundamental to set valid values to some of the basic
image information during the copying process. In particular, the starting index of the output
region is now filled up with zero values and the coordinates ofthe physical origin are computed
as a shift from the origin of the input image. This is quite important since it will allow us to
later register the extracted region against the original image.

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(outputRegion);

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegion.html

478 Chapter 19. Iterators

const ImageType::SpacingType& spacing = reader->GetOutp ut()->GetSpacing();
const ImageType::PointType& inputOrigin = reader->GetOu tput()->GetOrigin();
double outputOrigin[Dimension];

for(unsigned int i=0; i< Dimension; i++)
{
outputOrigin[i] = inputOrigin[i] + spacing[i] * inputStar t[i];
}

outputImage->SetSpacing(spacing);
outputImage->SetOrigin(outputOrigin);
outputImage->Allocate();

The necessary images and region definitions are now in place.All that is left to do is to create
the iterators and perform the copy. Note that image iterators are not accessed via smart pointers
so they are light-weight objects that are instantiated on the stack. Also notice how the input
and output iterators are defined over thesame corresponding region. Though the images are
different sizes, they both contain the same target subregion.

ConstIteratorType inputIt(reader->GetOutput(), inputR egion);
IteratorType outputIt(outputImage, outputRegion);

for (inputIt.GoToBegin(), outputIt.GoToBegin(); !input It.IsAtEnd();
++inputIt, ++outputIt)

{
outputIt.Set(inputIt.Get());
}

The for loop above is a common construct in ITK/OTB. The beauty of these four lines of code
is that they are equally valid for one, two, three, or even tendimensional data, and no knowledge
of the size of the image is necessary. Consider the ugly alternative of ten nestedfor loops for
traversing an image.

Let’s run this example on the imageQB Suburb.png found inExamples/Data . The command
line arguments specify the input and output file names, then thex, y origin and thex, y size of
the cropped subregion.

ImageRegionIterator QB_Suburb.png ImageRegionIterator Output.png 20 70 210 140

The output is the cropped subregion shown in Figure 19.2.

19.3.2 ImageRegionIteratorWithIndex

The source code for this example can be found in the file
Examples/Iterators/ImageRegionIteratorWithIndex.cxx .

19.3. Image Iterators 479

Figure 19.2:Cropping a region from an image. The original image is shown at left. The image on the

right is the result of applying the ImageRegionIterator example code.

The “WithIndex” family of iterators was designed for algorithms that use both the value and
the location of image pixels in calculations. Unlikeitk::ImageRegionIterator , which cal-
culates an index only when asked for,itk::ImageRegionIteratorWithIndex maintains its
index location as a member variable that is updated during the increment or decrement process.
Iteration speed is penalized, but the index queries are moreefficient.

The following example illustrates the use of ImageRegionIteratorWithIndex. The algorithm
mirrors a 2D image across itsx-axis (see itk::FlipImageFilter for an ND version). The
algorithm makes extensive use of theGetIndex() method.

We start by including the proper header file.

#include "itkImageRegionIteratorWithIndex.h"

For this example, we will use an RGB pixel type so that we can process color images. Like
most other ITK image iterator, ImageRegionIteratorWithIndex class expects the image type as
its single template parameter.

const unsigned int Dimension = 2;

typedef itk::RGBPixel< unsigned char > RGBPixelType;
typedef otb::Image< RGBPixelType, Dimension > ImageType;

typedef itk::ImageRegionIteratorWithIndex< ImageType > IteratorType;

An ImageType smart pointer calledinputImage points to the output of the image reader. After
updating the image reader, we can allocate an output image ofthe same size, spacing, and origin
as the input image.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIteratorWithIndex.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1FlipImageFilter.html

480 Chapter 19. Iterators

Figure 19.3:Results of using ImageRegionIteratorWithIndex to mirror an image across an axis. The

original image is shown at left. The mirrored output is shown at right.

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(inputImage->GetRequestedReg ion());
outputImage->CopyInformation(inputImage);
outputImage->Allocate();

Next we create the iterator that walks the output image. Thisalgorithm requires no iterator for
the input image.

IteratorType outputIt(outputImage, outputImage->GetRe questedRegion());

This axis flipping algorithm works by iterating through the output image, querying the iterator
for its index, and copying the value from the input at an indexmirrored across thex-axis.

ImageType::IndexType requestedIndex =
outputImage->GetRequestedRegion().GetIndex();

ImageType::SizeType requestedSize =
outputImage->GetRequestedRegion().GetSize();

for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outp utIt)
{
ImageType::IndexType idx = outputIt.GetIndex();
idx[0] = requestedIndex[0] + requestedSize[0] - 1 - idx[0];
outputIt.Set(inputImage->GetPixel(idx));
}

Let’s run this example on the imageROI QB MUL 2.tif found in theExamples/Data direc-
tory. Figure 19.3 shows how the original image has been mirrored across itsx-axis in the output.

19.3.3 ImageLinearIteratorWithIndex

The source code for this example can be found in the file
Examples/Iterators/ImageLinearIteratorWithIndex.cxx .

19.3. Image Iterators 481

The itk::ImageLinearIteratorWithIndex is designed for line-by-line processing of an
image. It walks a linear path along a selected image direction parallel to one of the coordinate
axes of the image. This iterator conceptually breaks an image into a set of parallel lines that
span the selected image dimension.

Like all image iterators, movement of the ImageLinearIteratorWithIndex is constrained within
an image regionR. The lineℓ through which the iterator moves is defined by selecting a direc-
tion and an origin. The lineℓ extends from the origin to the upper boundary ofR. The origin
can be moved to any position along the lower boundary ofR.

Several additional methods are defined for this iterator to control movement of the iterator along
the lineℓ and movement of the origin ofℓ.

• NextLine() Moves the iterator to the beginning pixel location of the next line in the
image. The origin of the next line is determined by incrementing the current origin along
the fastest increasing dimension of the subspace of the image that excludes the selected
dimension.

• PreviousLine() Moves the iterator to thelast valid pixel locationin the previous
line. The origin of the previous line is determined by decrementing the current origin
along the fastest increasing dimension of the subspace of the image that excludes the
selected dimension.

• GoToBeginOfLine() Moves the iterator to the beginning pixel of the current line.

• GoToEndOfLine()Move the iterator toone pastthe last valid pixel of the current line.

• IsAtReverseEndOfLine() Returns true if the iterator points toone position before
the beginning pixel of the current line.

• IsAtEndOfLine() Returns true if the iterator points toone position pastthe last valid
pixel of the current line.

The following code example shows how to use the ImageLinearIteratorWithIndex. It imple-
ments the same algorithm as in the previous example, flippingan image across itsx-axis. Two
line iterators are iterated in opposite directions across the x-axis. After each line is traversed,
the iterator origins are stepped along they-axis to the next line.

Headers for both the const and non-const versions are needed.

#include "itkImageLinearConstIteratorWithIndex.h"
#include "itkImageLinearIteratorWithIndex.h"

The RGB image and pixel types are defined as in the previous example. The ImageLinearIt-
eratorWithIndex class and its const version each have single template parameters, the image
type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageLinearIteratorWithIndex.html

482 Chapter 19. Iterators

typedef itk::ImageLinearIteratorWithIndex< ImageType > IteratorType;
typedef itk::ImageLinearConstIteratorWithIndex< Image Type > ConstIteratorType;

After reading the input image, we allocate an output image that of the same size, spacing, and
origin.

ImageType::Pointer outputImage = ImageType::New();
outputImage->SetRegions(inputImage->GetRequestedReg ion());
outputImage->CopyInformation(inputImage);
outputImage->Allocate();

Next we create the two iterators. The const iterator walks the input image, and the non-const
iterator walks the output image. The iterators are initialized over the same region. The direction
of iteration is set to 0, thex dimension.

ConstIteratorType inputIt(inputImage, inputImage->Get RequestedRegion());
IteratorType outputIt(outputImage, inputImage->GetReq uestedRegion());

inputIt.SetDirection(0);
outputIt.SetDirection(0);

Each line in the input is copied to the output. The input iterator moves forward across columns
while the output iterator moves backwards.

for (inputIt.GoToBegin(), outputIt.GoToBegin(); ! input It.IsAtEnd();
outputIt.NextLine(), inputIt.NextLine())

{
inputIt.GoToBeginOfLine();
outputIt.GoToEndOfLine();
--outputIt;
while (! inputIt.IsAtEndOfLine())

{
outputIt.Set(inputIt.Get());
++inputIt;
--outputIt;
}

}

Running this example onROI QB MUL 1.tif produces the same output image shown in Fig-
ure 19.3.

19.4 Neighborhood Iterators

In ITK, a pixel neighborhood is loosely defined as a small set of pixels that are locally adjacent
to one another in an image. The size and shape of a neighborhood, as well the connectivity

19.4. Neighborhood Iterators 483

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

END Position

BEGIN Position

Iteration Region Iterator
Neighborhood

itk::Image

Figure 19.4:Path of a 3x3 neighborhood iterator through a 2D image region. The extent of the neighbor-

hood is indicated by the hashing around the iterator position. Pixels that lie within this extent are accessible

through the iterator. An arrow denotes a single iterator step, the result of one ++ operation.

among pixels in a neighborhood, may vary with the application.

Many image processing algorithms are neighborhood-based,that is, the result at a pixeli is
computed from the values of pixels in the ND neighborhood ofi. Consider finite difference
operations in 2D. A derivative at pixel indexi = (j,k), for example, is taken as a weighted
difference of the values at(j + 1,k) and(j −1,k). Other common examples of neighborhood
operations include convolution filtering and image morphology.

This section describes a class of ITK image iterators that are designed for working with pixel
neighborhoods. An ITK neighborhood iterator walks an imageregion just like a normal image
iterator, but instead of only referencing a single pixel at each step, it simultaneously points to the
entire ND neighborhood of pixels. Extensions to the standard iterator interface provide read and
write access to all neighborhood pixels and information such as the size, extent, and location of
the neighborhood.

Neighborhood iterators use the same operators defined in Section 19.2 and the same code con-
structs as normal iterators for looping through an image. Figure 19.4 shows a neighborhood
iterator moving through an iteration region. This iteratordefines a 3x3 neighborhood around
each pixel that it visits. Thecenterof the neighborhood iterator is always positioned over its
current index and all other neighborhood pixel indices are referenced as offsets from the center
index. The pixel under the center of the neighborhood iterator and all pixels under the shaded
area, orextent, of the iterator can be dereferenced.

484 Chapter 19. Iterators

10 1 2

3 4 5

6 7 8

0 2

3 4 5

6 7 8

9 10 11

12 13 14

0 1 2

0

1

2

3

4

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

(−1, −1) (0, −1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (0,1) (1,1)

(0,1)

(1,2)

(−1,−2) (0,−2) (1,−2)

(−1,−1) (0,−1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (1,1)

(−1,2) (0,2)

(−1,0) (0,0) (1,0)

(0,−2)

(0,−1)

(0,0)

(0,1)

(0,2)

radius = [1,1]
size = [3,3]

radius = [1,2]
size = [3,5]

radius = [1,0]
size = [3,1]

radius = [3,1]
size = [7,3]

size = [1,5]

(−3,−1) (−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1) (3,−1)

(−3,0) (−2,0) (−1,0) (0,0) (1,0) (2,0) (3,0)

(−3,1) (−2,1) (−1,1) (0,1) (1,1) (2,1) (3,1)

radius = [0,2]

Figure 19.5:Several possible 2D neighborhood iterator shapes are shown along with their radii and sizes.

A neighborhood pixel can be dereferenced by its integer index (top) or its offset from the center (bottom).

The center pixel of each iterator is shaded.

In addition to the standard image pointer and iteration region (Section 19.2), neighborhood
iterator constructors require an argument that specifies the extent of the neighborhood to cover.
Neighborhood extent is symmetric across its center in each axis and is given as an array ofN
distances that are collectively called theradius. Each elementd of the radius, where 0< d < N
andN is the dimensionality of the neighborhood, gives the extentof the neighborhood in pixels
for dimensionN. The length of each face of the resulting ND hypercube is 2d + 1 pixels, a
distance ofd on either side of the single pixel at the neighbor center. Figure 19.5 shows the
relationship between the radius of the iterator and the sizeof the neighborhood for a variety of
2D iterator shapes.

The radius of the neighborhood iterator is queried after construction by calling the
GetRadius() method. Some other methods provide some useful informationabout the iter-
ator and its underlying image.

19.4. Neighborhood Iterators 485

• SizeType GetRadius() Returns the ND radius of the neighborhood as an
itk::Size .

• const ImageType *GetImagePointer() Returns the pointer to the image ref-
erenced by the iterator.

• unsigned long Size() Returns the size in number of pixels of the neighborhood.

The neighborhood iterator interface extends the normal ITKiterator interface for setting and
getting pixel values. One way to dereference pixels is to think of the neighborhood as a linear
array where each pixel has a unique integer index. The index of a pixel in the array is deter-
mined by incrementing from the upper-left-forward corner of the neighborhood along the fastest
increasing image dimension: first column, then row, then slice, and so on. In Figure 19.5, the
unique integer index is shown at the top of each pixel. The center pixel is always at position
n/2, wheren is the size of the array.

• PixelType GetPixel(const unsigned int i) Returns the value of the
pixel at neighborhood positioni .

• void SetPixel(const unsigned int i, PixelType p)Sets the value of
the pixel at positioni to p.

Another way to think about a pixel location in a neighborhoodis as an ND offset from the
neighborhood center. The upper-left-forward corner of a 3x3x3 neighborhood, for example, can
be described by offset(−1,−1,−1). The bottom-right-back corner of the same neighborhood
is at offset(1,1,1). In Figure 19.5, the offset from center is shown at the bottomof each
neighborhood pixel.

• PixelType GetPixel(const OffsetType &o) Get the value of the pixel at
the position offseto from the neighborhood center.

• void SetPixel(const OffsetType &o, PixelType p) Set the value at
the position offseto from the neighborhood center to the valuep.

The neighborhood iterators also provide a shorthand for setting and getting the value at the
center of the neighborhood.

• PixelType GetCenterPixel() Gets the value at the center of the neighborhood.

• void SetCenterPixel(PixelType p) Sets the value at the center of the neigh-
borhood to the valuep

There is another shorthand for setting and getting values for pixels that lie some integer distance
from the neighborhood center along one of the image axes.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

486 Chapter 19. Iterators

• PixelType GetNext(unsigned int d) Get the value immediately adjacent to
the neighborhood center in the positive direction along thed axis.

• void SetNext(unsigned int d, PixelType p) Set the value immediately
adjacent to the neighborhood center in the positive direction along thed axis to the value
p.

• PixelType GetPrevious(unsigned int d) Get the value immediately adja-
cent to the neighborhood center in the negative direction along thed axis.

• void SetPrevious(unsigned int d, PixelType p) Set the value imme-
diately adjacent to the neighborhood center in the negativedirection along thed axis to
the valuep.

• PixelType GetNext(unsigned int d, unsigned int s) Get the value
of the pixel locateds pixels from the neighborhood center in the positive direction along
thed axis.

• void SetNext(unsigned int d, unsigned int s, PixelType p)
Set the value of the pixel locateds pixels from the neighborhood center in the positive
direction along thed axis to valuep.

• PixelType GetPrevious(unsigned int d, unsigned int s) Get the
value of the pixel locateds pixels from the neighborhood center in the positive direc-
tion along thed axis.

• void SetPrevious(unsigned int d, unsigned int s, PixelType
p) Set the value of the pixel locateds pixels from the neighborhood center in the positive
direction along thed axis to valuep.

It is also possible to extract or set all of the neighborhood values from an iterator at once using
a regular ITK neighborhood object. This may be useful in algorithms that perform a particu-
larly large number of calculations in the neighborhood and would otherwise require multiple
dereferences of the same pixels.

• NeighborhoodType GetNeighborhood()Return aitk::Neighborhood of the
same size and shape as the neighborhood iterator and contains all of the values at the
iterator position.

• void SetNeighborhood(NeighborhoodType &N) Set all of the values in the
neighborhood at the iterator position to those contained inNeighborhoodN, which must
be the same size and shape as the iterator.

Several methods are defined to provide information about theneighborhood.

• IndexType GetIndex() Return the image index of the center pixel of the neighbor-
hood iterator.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Neighborhood.html

19.4. Neighborhood Iterators 487

• IndexType GetIndex(OffsetType o) Return the image index of the pixel at
offseto from the neighborhood center.

• IndexType GetIndex(unsigned int i) Return the image index of the pixel
at array positioni .

• OffsetType GetOffset(unsigned int i) Return the offset from the neigh-
borhood center of the pixel at array positioni .

• unsigned long GetNeighborhoodIndex(OffsetType o)Return the array
position of the pixel at offseto from the neighborhood center.

• std::slice GetSlice(unsigned int n) Return astd::slice through the
iterator neighborhood along axisn.

A neighborhood-based calculation in a neighborhood close to an image boundary may require
data that falls outside the boundary. The iterator in Figure19.4, for example, is centered on
a boundary pixel such that three of its neighbors actually donot exist in the image. When the
extent of a neighborhood falls outside the image, pixel values for missing neighbors are supplied
according to a rule, usually chosen to satisfy the numericalrequirements of the algorithm. A
rule for supplying out-of-bounds values is called aboundary condition.

ITK neighborhood iterators automatically detect out-of-bounds dereferences and will return val-
ues according to boundary conditions. The boundary condition type is specified by the second,
optional template parameter of the iterator. By default, neighborhood iterators use a Neumann
condition where the first derivative across the boundary is zero. The Neumann rule simply re-
turns the closest in-bounds pixel value to the requested out-of-bounds location. Several other
common boundary conditions can be found in the ITK toolkit. They include a periodic condition
that returns the pixel value from the opposite side of the data set, and is useful when working
with periodic data such as Fourier transforms, and a constant value condition that returns a set
valuev for all out-of-bounds pixel dereferences. The constant value condition is equivalent to
padding the image with valuev.

Bounds checking is a computationally expensive operation because it occurs each time the
iterator is incremented. To increase efficiency, a neighborhood iterator automatically disables
bounds checking when it detects that it is not necessary. A user may also explicitly disable
or enable bounds checking. Most neighborhood based algorithms can minimize the need for
bounds checking through clever definition of iteration regions. These techniques are explored
in Section 19.4.1.

• void NeedToUseBoundaryConditionOn() Explicitly turn bounds checking on.
This method should be used with caution because unnecessarily enabling bounds check-
ing may result in a significant performance decrease. In general you should allow the
iterator to automatically determine this setting.

• void NeedToUseBoundaryConditionOff() Explicitly disable bounds check-
ing. This method should be used with caution because disabling bounds checking when
it is needed will result in out-of-bounds reads and undefinedresults.

488 Chapter 19. Iterators

• void OverrideBoundaryCondition(BoundaryConditionType *b)
Overrides the templated boundary condition, using boundary condition objectb instead.
Objectb should not be deleted until it has been released by the iterator. This method can
be used to change iterator behavior at run-time.

• void ResetBoundaryCondition() Discontinues the use of any run-time speci-
fied boundary condition and returns to using the condition specified in the template argu-
ment.

• void SetPixel(unsigned int i, PixelType p, bool status) Sets
the value at neighborhood array positioni to valuep. If the positioni is out-of-bounds,
status is set tofalse , otherwisestatus is set totrue .

The following sections describe the two ITK neighborhood iterator classes,
itk::NeighborhoodIterator and itk::ShapedNeighborhoodIterator . Each has a
const and a non-const version. The shaped iterator is a refinement of the standard Neighbor-
hoodIterator that supports an arbitrarily-shaped (non-rectilinear) neighborhood.

19.4.1 NeighborhoodIterator

The standard neighborhood iterator class in ITK is theitk::NeighborhoodIterator . To-
gether with itsconst version, itk::ConstNeighborhoodIterator , it implements the com-
plete API described above. This section provides several examples to illustrate the use of Neigh-
borhoodIterator.

Basic neighborhood techniques: edge detection

The source code for this example can be found in the file
Examples/Iterators/NeighborhoodIterators1.cxx .

This example uses theitk::NeighborhoodIterator to implement a simple Sobel edge de-
tection algorithm [35]. The algorithm uses the neighborhood iterator to iterate through an input
image and calculate a series of finite difference derivatives. Since the derivative results cannot
be written back to the input image without affecting later calculations, they are written instead
to a second, output image. Most neighborhood processing algorithms follow this read-only
model on their inputs.

We begin by including the proper header files. Theitk::ImageRegionIterator will be used
to write the results of computations to the output image. A const version of the neighborhood
iterator is used because the input image is read-only.

#include "itkConstNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionIterator.html

19.4. Neighborhood Iterators 489

The finite difference calculations in this algorithm require floating point values. Hence, we
define the image pixel type to befloat and the file reader will automatically cast fixed-point
data tofloat .

We declare the iterator types using the image type as the template parameter. The second
template parameter of the neighborhood iterator, which specifies the boundary condition, has
been omitted because the default condition is appropriate for this algorithm.

typedef float PixelType;
typedef otb::Image< PixelType, 2 > ImageType;
typedef otb::ImageFileReader< ImageType > ReaderType;

typedef itk::ConstNeighborhoodIterator< ImageType > Nei ghborhoodIteratorType;
typedef itk::ImageRegionIterator< ImageType> IteratorT ype;

The following code creates and executes the OTB image reader. TheUpdate call on the reader
object is surrounded by the standardtry/catch blocks to handle any exceptions that may be
thrown by the reader.

ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
try

{
reader->Update();
}

catch (itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

We can now create a neighborhood iterator to range over the output of the reader. For Sobel
edge-detection in 2D, we need a square iterator that extendsone pixel away from the neighbor-
hood center in every dimension.

NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, reader->GetOutput (),

reader->GetOutput()->GetRequestedRegion());

The following code creates an output image and iterator.

ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequeste dRegion());

490 Chapter 19. Iterators

output->Allocate();

IteratorType out(output, reader->GetOutput()->GetRequ estedRegion());

Sobel edge detection uses weighted finite difference calculations to construct an edge magnitude
image. Normally the edge magnitude is the root sum of squaresof partial derivatives in all
directions, but for simplicity this example only calculates thex component. The result is a
derivative image biased toward maximally vertical edges.

The finite differences are computed from pixels at six locations in the neighborhood. In this
example, we use the iteratorGetPixel() method to query the values from their offsets in the
neighborhood. The example in Section 19.4.1 uses convolution with a Sobel kernel instead.

Six positions in the neighborhood are necessary for the finite difference calculations. These
positions are recorded inoffset1 throughoffset6 .

NeighborhoodIteratorType::OffsetType offset1 = {{-1,-1 }};
NeighborhoodIteratorType::OffsetType offset2 = {{1,-1} };
NeighborhoodIteratorType::OffsetType offset3 = {{-1,0 } };
NeighborhoodIteratorType::OffsetType offset4 = {{1,0}} ;
NeighborhoodIteratorType::OffsetType offset5 = {{-1,1} };
NeighborhoodIteratorType::OffsetType offset6 = {{1,1}} ;

It is equivalent to use the six corresponding integer array indices instead. For example, the
offsets(-1,-1) and(1, -1) are equivalent to the integer indices0 and2, respectively.

The calculations are done in afor loop that moves the input and output iterators synchronously
across their respective images. Thesum variable is used to sum the results of the finite differ-
ences.

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++ it, ++out)
{
float sum;
sum = it.GetPixel(offset2) - it.GetPixel(offset1);
sum += 2.0 * it.GetPixel(offset4) - 2.0 * it.GetPixel(offse t3);
sum += it.GetPixel(offset6) - it.GetPixel(offset5);
out.Set(sum);
}

The last step is to write the output buffer to an image file. Writing is done inside atry/catch
block to handle any exceptions. The output is rescaled to intensity range[0,255] and cast to
unsigned char so that it can be saved and visualized as a PNG image.

typedef unsigned char WritePixelType;
typedef otb::Image< WritePixelType, 2 > WriteImageType;
typedef otb::ImageFileWriter< WriteImageType > WriterTy pe;

19.4. Neighborhood Iterators 491

Figure 19.6:Applying the Sobel operator to an image (left) produces x (right) derivative image.

typedef itk::RescaleIntensityImageFilter<
ImageType, WriteImageType > RescaleFilterType;

RescaleFilterType::Pointer rescaler = RescaleFilterTyp e::New();

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(output);

WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescaler->GetOutput());
try

{
writer->Update();
}

catch (itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}

The center image of Figure 19.6 shows the output of the Sobel algorithm applied to
Examples/Data/ROI QB PAN 1.tif .

Convolution filtering: Sobel operator

The source code for this example can be found in the file
Examples/Iterators/NeighborhoodIterators2.cxx .

In this example, the Sobel edge-detection routine is rewritten using convolution filtering. Con-

492 Chapter 19. Iterators

volution filtering is a standard image processing techniquethat can be implemented numerically
as the inner product of all image neighborhoods with a convolution kernel [35] [13]. In ITK,
we use a class of objects calledneighborhood operatorsas convolution kernels and a special
function object calleditk::NeighborhoodInnerProduct to calculate inner products.

The basic ITK convolution filtering routine is to step through the image with a neighborhood
iterator and use NeighborhoodInnerProduct to find the innerproduct of each neighborhood
with the desired kernel. The resulting values are written toan output image. This exam-
ple uses a neighborhood operator called theitk::SobelOperator , but all neighborhood
operators can be convolved with images using this basic routine. Other examples of neigh-
borhood operators include derivative kernels, Gaussian kernels, and morphological operators.
itk::NeighborhoodOperatorImageFilter is a generalization of the code in this section to
ND images and arbitrary convolution kernels.

We start writing this example by including the header files for the Sobel kernel and the inner
product function.

#include "itkSobelOperator.h"
#include "itkNeighborhoodInnerProduct.h"

Refer to the previous example for a description of reading the input image and setting up the
output image and iterator.

The following code creates a Sobel operator. The Sobel operator requires a direction for its
partial derivatives. This direction is read from the command line. Changing the direction of
the derivatives changes the bias of the edge detection, i.e.maximally vertical or maximally
horizontal.

itk::SobelOperator<PixelType, 2> sobelOperator;
sobelOperator.SetDirection(::atoi(argv[3]));
sobelOperator.CreateDirectional();

The neighborhood iterator is initialized as before, exceptthat now it takes its radius directly
from the radius of the Sobel operator. The inner product function object is templated over
image type and requires no initialization.

NeighborhoodIteratorType::RadiusType radius = sobelOpe rator.GetRadius();
NeighborhoodIteratorType it(radius, reader->GetOutput (),

reader->GetOutput()->GetRequestedRegion());

itk::NeighborhoodInnerProduct<ImageType> innerProduc t;

Using the Sobel operator, inner product, and neighborhood iterator objects, we can now write
a very simplefor loop for performing convolution filtering. As before, out-of-bounds pixel
values are supplied automatically by the iterator.

http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodInnerProduct.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SobelOperator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodOperatorImageFilter.html

19.4. Neighborhood Iterators 493

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++ it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}

The output is rescaled and written as in the previous example. Applying this example in thex
andy directions produces the images at the center and right of Figure 19.6. Note that x-direction
operator produces the same output image as in the previous example.

Optimizing iteration speed

The source code for this example can be found in the file
Examples/Iterators/NeighborhoodIterators3.cxx .

This example illustrates a technique for improving the efficiency of neighborhood calculations
by eliminating unnecessary bounds checking. As described in Section 19.4, the neighborhood
iterator automatically enables or disables bounds checking based on the iteration region in
which it is initialized. By splitting our image into boundary and non-boundary regions, and then
processing each region using a different neighborhood iterator, the algorithm will only perform
bounds-checking on those pixels for which it is actually required. This trick can provide a sig-
nificant speedup for simple algorithms such as our Sobel edgedetection, where iteration speed
is a critical.

Splitting the image into the necessary regions is an easy task when you use the
itk::ImageBoundaryFacesCalculator . The face calculator is so named because it returns
a list of the “faces” of the ND dataset. Faces are those regions whose pixels all lie within a
distanced from the boundary, whered is the radius of the neighborhood stencil used for the
numerical calculations. In other words, faces are those regions where a neighborhood iterator
of radiusd will always overlap the boundary of the image. The face calculator also returns the
single inner region, in which out-of-bounds values are never required and bounds checking is
not necessary.

The face calculator object is defined initkNeighborhoodAlgorithm.h . We include this file
in addition to those from the previous two examples.

#include "itkNeighborhoodAlgorithm.h"

First we load the input image and create the output image and inner product function as in the
previous examples. The image iterators will be created in a later step. Next we create a face
calculator object. An empty list is created to hold the regions that will later on be returned by
the face calculator.

typedef itk::NeighborhoodAlgorithm
::ImageBoundaryFacesCalculator< ImageType > FaceCalcul atorType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageBoundaryFacesCalculator.html

494 Chapter 19. Iterators

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;

The face calculator function is invoked by passing it an image pointer, an image region, and a
neighborhood radius. The image pointer is the same image used to initialize the neighborhood
iterator, and the image region is the region that the algorithm is going to process. The radius is
the radius of the iterator.

Notice that in this case the image region is given as the region of theoutput image and the
image pointer is given as that of theinput image. This is important if the input and output
images differ in size, i.e. the input image is larger than theoutput image. ITK and OTB
image filters, for example, operate on data from the input image but only generate results in the
RequestedRegion of the output image, which may be smaller than the full extentof the input.

faceList = faceCalculator(reader->GetOutput(), output- >GetRequestedRegion(),
sobelOperator.GetRadius());

The face calculator has returned a list of 2N+1 regions. The first element in the list is always
the inner region, which may or may not be important dependingon the application. For our
purposes it does not matter because all regions are processed the same way. We use an iterator
to traverse the list of faces.

FaceCalculatorType::FaceListType::iterator fit;

We now rewrite the main loop of the previous example so that each region in the list is processed
by a separate iterator. The iteratorsit andout are reinitialized over each region in turn. Bounds
checking is automatically enabled for those regions that require it, and disabled for the region
that does not.

IteratorType out;
NeighborhoodIteratorType it;

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
it = NeighborhoodIteratorType(sobelOperator.GetRadius (),

reader->GetOutput(), *fit);
out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++ it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}

}

The output is written as before. Results for this example arethe same as the previous example.
You may not notice the speedup except on larger images. When moving to 3D and higher

19.4. Neighborhood Iterators 495

dimensions, the effects are greater because the volume to surface area ratio is usually larger. In
other words, as the number of interior pixels increases relative to the number of face pixels, there
is a corresponding increase in efficiency from disabling bounds checking on interior pixels.

Separable convolution: Gaussian filtering

The source code for this example can be found in the file
Examples/Iterators/NeighborhoodIterators4.cxx .

We now introduce a variation on convolution filtering that isuseful when a convolution kernel is
separable. In this example, we create a different neighborhood iterator for each axial direction
of the image and then take separate inner products with a 1D discrete Gaussian kernel. The idea
of using several neighborhood iterators at once has applications beyond convolution filtering
and may improve efficiency when the size of the whole neighborhood relative to the portion of
the neighborhood used in calculations becomes large.

The only new class necessary for this example is the Gaussianoperator.

#include "itkGaussianOperator.h"

The Gaussian operator, like the Sobel operator, is instantiated with a pixel type and a dimension-
ality. Additionally, we set the variance of the Gaussian, which has been read from the command
line as standard deviation.

itk::GaussianOperator< PixelType, 2 > gaussianOperator;
gaussianOperator.SetVariance(::atof(argv[3]) * ::atof (argv[3]));

The only further changes from the previous example are in themain loop. Once again we use
the results from face calculator to construct a loop that processes boundary and non-boundary
image regions separately. Separable convolution, however, requires an additional, outer loop
over all the image dimensions. The direction of the Gaussianoperator is reset at each iteration
of the outer loop using the new dimension. The iterators change direction to match because they
are initialized with the radius of the Gaussian operator.

Input and output buffers are swapped at each iteration so that the output of the previous iteration
becomes the input for the current iteration. The swap is not performed on the last iteration.

ImageType::Pointer input = reader->GetOutput();
for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)

{
gaussianOperator.SetDirection(i);
gaussianOperator.CreateDirectional();

faceList = faceCalculator(input, output->GetRequestedR egion(),
gaussianOperator.GetRadius());

496 Chapter 19. Iterators

Figure 19.7:Results of convolution filtering with a Gaussian kernel of increasing standard deviation σ
(from left to right, σ = 0, σ = 1, σ = 2, σ = 5). Increased blurring reduces contrast and changes the

average intensity value of the image, which causes the image to appear brighter when rescaled.

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
it = NeighborhoodIteratorType(gaussianOperator.GetRad ius(),

input, *fit);

out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); ! it.IsAtEnd(); ++ it, ++out)
{
out.Set(innerProduct(it, gaussianOperator));
}

}

// Swap the input and output buffers
if (i != ImageType::ImageDimension - 1)

{
ImageType::Pointer tmp = input;
input = output;
output = tmp;
}

}

The output is rescaled and written as in the previous examples. Figure 19.7 shows the results of
Gaussian blurring the imageExamples/Data/QB Suburb.png using increasing kernel widths.

Random access iteration

The source code for this example can be found in the file
Examples/Iterators/NeighborhoodIterators6.cxx .

Some image processing routines do not need to visit every pixel in an image. Flood-fill and
connected-component algorithms, for example, only visit pixels that are locally connected to
one another. Algorithms such as these can be efficiently written using the random access capa-
bilities of the neighborhood iterator.

19.4. Neighborhood Iterators 497

The following example finds local minima. Given a seed point,we can search the neighborhood
of that point and pick the smallest valuem. While m is not at the center of our current neigh-
borhood, we move in the direction ofm and repeat the analysis. Eventually we discover a local
minimum and stop. This algorithm is made trivially simple inND using an ITK neighborhood
iterator.

To illustrate the process, we create an image that descends everywhere to a single minimum:
a positive distance transform to a point. The details of creating the distance transform are not
relevant to the discussion of neighborhood iterators, but can be found in the source code of this
example. Some noise has been added to the distance transformimage for additional interest.

The variableinput is the pointer to the distance transform image. The local minimum algorithm
is initialized with a seed point read from the command line.

ImageType::IndexType index;
index[0] = ::atoi(argv[2]);
index[1] = ::atoi(argv[3]);

Next we create the neighborhood iterator and position it at the seed point.

NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, input, input->GetR equestedRegion());

it.SetLocation(index);

Searching for the local minimum involves finding the minimumin the current neighborhood,
then shifting the neighborhood in the direction of that minimum. Thefor loop below records
the itk::Offset of the minimum neighborhood pixel. The neighborhood iterator is then
moved using that offset. When a local minimum is detected,flag will remain false and the
while loop will exit. Note that this code is valid for an image of anydimensionality.

bool flag = true;
while (flag == true)

{
NeighborhoodIteratorType::OffsetType nextMove;
nextMove.Fill(0);

flag = false;

PixelType min = it.GetCenterPixel();
for (unsigned i = 0; i < it.Size(); i++)

{
if (it.GetPixel(i) < min)

{
min = it.GetPixel(i);
nextMove = it.GetOffset(i);

http://www.melaneum.com/OTB/doxygen/classitk_1_1Offset.html

498 Chapter 19. Iterators

Figure 19.8:Paths traversed by the neighborhood iterator from different seed points to the local minimum.

The true minimum is at the center of the image. The path of the iterator is shown in white. The effect of

noise in the image is seen as small perturbations in each path.

flag = true;
}

}
it.SetCenterPixel(255.0);
it += nextMove;
}

Figure 19.8 shows the results of the algorithm for several seed points. The white line is the path
of the iterator from the seed point to the minimum in the center of the image. The effect of the
additive noise is visible as the small perturbations in the paths.

19.4.2 ShapedNeighborhoodIterator

This section describes a variation on the neighborhood iterator called ashapedneigh-
borhood iterator. A shaped neighborhood is defined like a bitmask, or stencil, with
different offsets in the rectilinear neighborhood of the normal neighborhood itera-
tor turned off or on to create a pattern. Inactive positions (those not in the sten-
cil) are not updated during iteration and their values cannot be read or written. The
shaped iterator is implemented in the classitk::ShapedNeighborhoodIterator ,
which is a subclass of itk::NeighborhoodIterator . A const version,
itk::ConstShapedNeighborhoodIterator , is also available.

Like a regular neighborhood iterator, a shaped neighborhood iterator must be initialized with an
ND radius object, but the radius of the neighborhood of a shaped iterator only defines the set
of possibleneighbors. Any number of possible neighbors can then be activated or deactivated.
The shaped neighborhood iterator defines an API for activating neighbors. When a neighbor
location, defined relative to the center of the neighborhood, is activated, it is placed on the
active listand is then part of the stencil. An iterator can be “reshaped”at any time by adding or
removing offsets from the active list.

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1NeighborhoodIterator.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ConstShapedNeighborhoodIterator.html

19.4. Neighborhood Iterators 499

• void ActivateOffset(OffsetType &o) Include the offseto in the stencil of
active neighborhood positions. Offsets are relative to theneighborhood center.

• void DeactivateOffset(OffsetType &o)Remove the offseto from the sten-
cil of active neighborhood positions. Offsets are relativeto the neighborhood center.

• void ClearActiveList() Deactivate all positions in the iterator stencil by clear-
ing the active list.

• unsigned int GetActiveIndexListSize() Return the number of pixel loca-
tions that are currently active in the shaped iterator stencil.

Because the neighborhood is less rigidly defined in the shaped iterator, the set of pixel access
methods is restricted. Only theGetPixel() andSetPixel() methods are available, and calling
these methods on an inactive neighborhood offset will return undefined results.

For the common case of traversing all pixel offsets in a neighborhood, the shaped iterator class
provides an iterator through the active offsets in its stencil. This stencil iteratorcan be incre-
mented or decremented and definesGet() andSet() for reading and writing the values in the
neighborhood.

• ShapedNeighborhoodIterator::Iterator Begin() Return a const or non-
const iterator through the shaped iterator stencil that points to the first valid location in
the stencil.

• ShapedNeighborhoodIterator::Iterator End() Return a const or non-
const iterator through the shaped iterator stencil that points one position pastthe last
valid location in the stencil.

The functionality and interface of the shaped neighborhooditerator is best described by exam-
ple. We will use the ShapedNeighborhoodIterator to implement some binary image morphology
algorithms (see [35], [13], et al.). The examples that follow implement erosion and dilation.

Shaped neighborhoods: morphological operations

The source code for this example can be found in the file
Examples/Iterators/ShapedNeighborhoodIterators1.cxx .

This example usesitk::ShapedNeighborhoodIterator to implement a binary erosion al-
gorithm. If we think of an imageI as a set of pixel indices, then erosion ofI by a smaller set
E, called thestructuring element, is the set of all indices at locationsx in I such that whenE is
positioned atx, every element inE is also contained inI .

This type of algorithm is easy to implement with shaped neighborhood iterators because we
can use the iterator itself as the structuring elementE and move it sequentially through all

http://www.melaneum.com/OTB/doxygen/classitk_1_1ShapedNeighborhoodIterator.html

500 Chapter 19. Iterators

positionsx. The result atx is obtained by checking values in a simple iteration loop through the
neighborhood stencil.

We need two iterators, a shaped iterator for the input image and a regular image iterator for
writing results to the output image.

#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"

Since we are working with binary images in this example, anunsigned char pixel type will
do. The image and iterator types are defined using the pixel type.

typedef unsigned char PixelType;
typedef otb::Image< PixelType, 2 > ImageType;

typedef itk::ConstShapedNeighborhoodIterator<
ImageType

> ShapedNeighborhoodIteratorType;

typedef itk::ImageRegionIterator< ImageType> IteratorT ype;

Refer to the examples in Section 19.4.1 or the source code of this example for a description of
how to read the input image and allocate a matching output image.

The size of the structuring element is read from the command line and used to define a radius
for the shaped neighborhood iterator. Using the method developed in section 19.4.1 to minimize
bounds checking, the iterator itself is not initialized until entering the main processing loop.

unsigned int element_radius = ::atoi(argv[3]);
ShapedNeighborhoodIteratorType::RadiusType radius;
radius.Fill(element_radius);

The face calculator object introduced in Section 19.4.1 is created and used as before.

typedef itk::NeighborhoodAlgorithm::ImageBoundaryFac esCalculator<
ImageType > FaceCalculatorType;

FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;

faceList = faceCalculator(reader->GetOutput(),
output->GetRequestedRegion(),
radius);

Now we initialize some variables and constants.

19.4. Neighborhood Iterators 501

IteratorType out;

const PixelType background_value = 0;
const PixelType foreground_value = 255;
const float rad = static_cast<float>(element_radius);

The outer loop of the algorithm is structured as in previous neighborhood iterator examples.
Each region in the face list is processed in turn. As each new region is processed, the input and
output iterators are initialized on that region.

The shaped iterator that ranges over the input is our structuring element and its active stencil
must be created accordingly. For this example, the structuring element is shaped like a circle
of radiuselement radius . Each of the appropriate neighborhood offsets is activatedin the
doublefor loop.

for (fit=faceList.begin(); fit != faceList.end(); ++fit)
{
ShapedNeighborhoodIteratorType it(radius, reader->Get Output(), *fit);
out = IteratorType(output, *fit);

// Creates a circular structuring element by activating all the pixels less
// than radius distance from the center of the neighborhood.

for (float y = -rad; y <= rad; y++)
{
for (float x = -rad; x <= rad; x++)

{
ShapedNeighborhoodIteratorType::OffsetType off;

float dis = ::sqrt(x*x + y*y);
if (dis <= rad)

{
off[0] = static_cast<int>(x);
off[1] = static_cast<int>(y);
it.ActivateOffset(off);
}

}
}

The inner loop, which implements the erosion algorithm, is fairly simple. Thefor loop steps
the input and output iterators through their respective images. At each step, the active stencil
of the shaped iterator is traversed to determine whether allpixels underneath the stencil contain
the foreground value, i.e. are contained within the setI . Note the use of the stencil iterator,ci ,
in performing this check.

// Implements erosion

502 Chapter 19. Iterators

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++ it, ++out)
{
ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = true;
for (ci = it.Begin(); ci != it.End(); ci++)

{
if (ci.Get() == background_value)

{
flag = false;
break;
}

}
if (flag == true)

{
out.Set(foreground_value);
}

else
{
out.Set(background_value);
}

}
}

The source code for this example can be found in the file
Examples/Iterators/ShapedNeighborhoodIterators2.cxx .

The logic of the inner loop can be rewritten to perform dilation. Dilation of the setI by E is the
set of allx such thatE positioned atx contains at least one element inI .

// Implements dilation
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++ it, ++out)

{
ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = false;
for (ci = it.Begin(); ci != it.End(); ci++)

{
if (ci.Get() != background_value)

{
flag = true;
break;
}

}
if (flag == true)

{
out.Set(foreground_value);
}

19.4. Neighborhood Iterators 503

Figure 19.9:The effects of morphological operations on a binary image using a circular structuring ele-

ment of size 4. Left: original image. Right: dilation.

else
{
out.Set(background_value);
}

}
}

The output image is written and visualized directly as a binary image ofunsigned chars .
Figure 19.9 illustrates the results of dilation on the imageExamples/Data/BinaryImage.png .
Applying erosion and dilation in sequence effects the morphological operations of opening and
closing.

CHAPTER

TWENTY

Image Adaptors

The purpose of animage adaptoris to make one image appear like another image, possibly of
a different pixel type. A typical example is to take an image of pixel typeunsigned char and
present it as an image of pixel typefloat . The motivation for using image adaptors in this
case is to avoid the extra memory resources required by usinga casting filter. When we use the
itk::CastImageFilter for the conversion, the filter creates a memory buffer large enough
to store thefloat image. Thefloat image requires four times the memory of the original
image and contains no useful additional information. Imageadaptors, on the other hand, do not
require the extra memory as pixels are converted only when they are read using image iterators
(see Chapter 19).

Image adaptors are particularly useful when there is infrequent pixel access, since the actual
conversion occurs on the fly during the access operation. In such cases the use of image adap-
tors may reduce overall computation time as well as reduce memory usage. The use of image
adaptors, however, can be disadvantageous in some situations. For example, when the down-
stream filter is executed multiple times, a CastImageFilterwill cache its output after the first
execution and will not re-execute when the filter downstreamis updated. Conversely, an image
adaptor will compute the cast every time.

Another application for image adaptors is to perform lightweight pixel-wise operations replac-
ing the need for a filter. In the toolkit, adaptors are defined for many single valued and single
parameter functions such as trigonometric, exponential and logarithmic functions. For example,

• itk::ExpImageAdaptor

• itk::SinImageAdaptor

• itk::CosImageAdaptor

The following examples illustrate common applications of image adaptors.

http://www.melaneum.com/OTB/doxygen/classitk_1_1CastImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ExpImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1SinImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CosImageAdaptor.html

506 Chapter 20. Image Adaptors

Y
ImageCasting

Filter
Filter

B
Image

Z
Filter

A
Image

X

Filter
B

Image
Z

Filter
A

Image
X

Adaptor

Y

Figure 20.1: The difference between using a CastImageFilter and an ImageAdaptor. ImageAdaptors

convert pixel values when they are accessed by iterators. Thus, they do not produces an intermediate

image. In the example illustrated by this figure, the Image Y is not created by the ImageAdaptor; instead,

the image is simulated on the fly each time an iterator from the filter downstream attempts to access the

image data.

20.1 Image Casting

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor1.cxx .

This example illustrates how theitk::ImageAdaptor can be used to cast an image from one
pixel type to another. In particular, we willadaptanunsigned char image to make it appear
as an image of pixel typefloat .

We begin by including the relevant headers.

#include "otbImage.h"
#include "itkImageAdaptor.h"

First, we need to define apixel accessorclass that does the actual conversion. Note that in
general, the only valid operations for pixel accessors are those that only require the value of
the input pixel. As such, neighborhood type operations are not possible. A pixel accessor
must provide methodsSet() and Get() , and define the types ofInternalPixelType and
ExternalPixelType . TheInternalPixelType corresponds to the pixel type of the image to
be adapted (unsigned char in this example). TheExternalPixelType corresponds to the
pixel type we wish to emulate with the ImageAdaptor (float in this case).

class CastPixelAccessor
{
public:

typedef unsigned char InternalType;
typedef float ExternalType;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html

20.1. Image Casting 507

static void Set(InternalType & output, const ExternalType & input)
{

output = static_cast<InternalType>(input);
}

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input);
}

};

The CastPixelAccessor class simply applies astatic cast to the pixel values. We now use
this pixel accessor to define the image adaptor type and create an instance using the standard
New() method.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InputPixelType, Dimension > ImageTyp e;

typedef itk::ImageAdaptor< ImageType, CastPixelAccesso r > ImageAdaptorType;
ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

We also create an image reader templated over the input imagetype and read the input image
from file.

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

The output of the reader is then connected as the input to the image adaptor.

adaptor->SetImage(reader->GetOutput());

In the following code, we visit the image using an iterator instantiated using the adapted image
type and compute the sum of the pixel values.

typedef itk::ImageRegionIteratorWithIndex< ImageAdapt orType > IteratorType;
IteratorType it(adaptor, adaptor->GetBufferedRegion());

double sum = 0.0;
it.GoToBegin();
while(!it.IsAtEnd())

{
float value = it.Get();
sum += value;
++it;
}

508 Chapter 20. Image Adaptors

Although in this example, we are just performing a simple summation, the key concept is that
access to pixels is performed as if the pixel is of typefloat . Additionally, it should be noted
that the adaptor is used as if it was an actual image and not as afilter. ImageAdaptors conform
to the same API as theotb::Image class.

20.2 Adapting RGB Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor2.cxx .

This example illustrates how to use theitk::ImageAdaptor to access the individual compo-
nents of an RGB image. In this case, we create an ImageAdaptorthat will accept a RGB image
as input and presents it as a scalar image. The pixel data willbe taken directly from the red
channel of the original image.

As with the previous example, the bulk of the effort in creating the image adaptor is associated
with the definition of the pixel accessor class. In this case,the accessor converts a RGB vector
to a scalar containing the red channel component. Note that in the following, we do not need to
define theSet() method since we only expect the adaptor to be used for readingdata from the
image.

class RedChannelPixelAccessor
{
public:

typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input.GetRed());
}

};

TheGet() method simply calls theGetRed() method defined in theitk::RGBPixel class.

Now we use the internal pixel type of the pixel accessor to define the input image type, and then
proceed to instantiate the ImageAdaptor type.

typedef RedChannelPixelAccessor::InternalType InputPi xelType;
const unsigned int Dimension = 2;
typedef otb::Image< InputPixelType, Dimension > ImageTyp e;

typedef itk::ImageAdaptor< ImageType,
RedChannelPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBPixel.html

20.2. Adapting RGB Images 509

We create an image reader and connect the output to the adaptor as before.

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

adaptor->SetImage(reader->GetOutput());

We create an itk::RescaleIntensityImageFilter and an otb::ImageFileWriter to
rescale the dynamic range of the pixel values and send the extracted channel to an image file.
Note that the image type used for the rescaling filter is theImageAdaptorType itself. That is,
the adaptor type is used in the same context as an image type.

typedef otb::Image< unsigned char, Dimension > OutputImag eType;
typedef itk::RescaleIntensityImageFilter< ImageAdapto rType,

OutputImageType
> RescalerType;

RescalerType::Pointer rescaler = RescalerType::New();
typedef otb::ImageFileWriter< OutputImageType > WriterT ype;
WriterType::Pointer writer = WriterType::New();

Now we connect the adaptor as the input to the rescaler and setthe parameters for the intensity
rescaling.

rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);

rescaler->SetInput(adaptor);
writer->SetInput(rescaler->GetOutput());

Finally, we invoke theUpdate() method on the writer and take precautions to catch any excep-
tion that may be thrown during the execution of the pipeline.

try
{
writer->Update();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << "Exception caught " << excp << std::endl;
return 1;
}

ImageAdaptors for the green and blue channels can easily be implemented by modifying the
pixel accessor of the red channel and then using the new pixelaccessor for instantiating the type
of an image adaptor. The following define a green channel pixel accessor.

http://www.melaneum.com/OTB/doxygen/classitk_1_1RescaleIntensityImageFilter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageFileWriter.html

510 Chapter 20. Image Adaptors

class GreenChannelPixelAccessor
{
public:

typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input.GetGreen());
}

};

A blue channel pixel accessor is similarly defined.

class BlueChannelPixelAccessor
{
public:

typedef itk::RGBPixel<float> InternalType;
typedef float ExternalType;

static ExternalType Get(const InternalType & input)
{

return static_cast<ExternalType>(input.GetBlue());
}

};

20.3 Adapting Vector Images

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor3.cxx .

This example illustrates the use ofitk::ImageAdaptor to obtain access to the components
of a vector image. Specifically, it shows how to manage pixel accessors containing internal
parameters. In this example we create an image of vectors by using a gradient filter. Then, we
use an image adaptor to extract one of the components of the vector image. The vector type
used by the gradient filter is theitk::CovariantVector class.

We start by including the relevant headers.

#include "itkCovariantVector.h"
#include "itkGradientRecursiveGaussianImageFilter.h"

A pixel accessors class may have internal parameters that affect the operations performed on
input pixel data. Image adaptors support parameters in their internal pixel accessor by using the

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html

20.3. Adapting Vector Images 511

assignment operator. Any pixel accessor which has internalparameters must therefore imple-
ment the assignment operator. The following defines a pixel accessor for extracting components
from a vector pixel. Them Index member variable is used to select the vector component to
be returned.

class VectorPixelAccessor
{
public:

typedef itk::CovariantVector<float,2> InternalType;
typedef float ExternalType;

void operator=(const VectorPixelAccessor & vpa)
{

m_Index = vpa.m_Index;
}

ExternalType Get(const InternalType & input) const
{

return static_cast<ExternalType>(input[m_Index]);
}

void SetIndex(unsigned int index)
{

m_Index = index;
}

private:
unsigned int m_Index;

};

The Get() method simply returns thei-th component of the vector as indicated by the index.
The assignment operator transfers the value of the index member variable from one instance of
the pixel accessor to another.

In order to test the pixel accessor, we generate an image of vectors using the
itk::GradientRecursiveGaussianImageFilter . This filter produces an output image of
itk::CovariantVector pixel type. Covariant vectors are the natural representation for gradi-
ents since they are the equivalent of normals to iso-values manifolds.

typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef otb::Image< InputPixelType, Dimension > InputIma geType;
typedef itk::CovariantVector< float, Dimension > VectorP ixelType;
typedef otb::Image< VectorPixelType, Dimension > VectorI mageType;
typedef itk::GradientRecursiveGaussianImageFilter< In putImageType,

VectorImageType> GradientFilterType;

GradientFilterType::Pointer gradient = GradientFilterT ype::New();

We instantiate the ImageAdaptor using the vector image typeas the first template parameter and
the pixel accessor as the second template parameter.

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientRecursiveGaussianImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1CovariantVector.html

512 Chapter 20. Image Adaptors

typedef itk::ImageAdaptor< VectorImageType,
VectorPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

The index of the component to be extracted is specified from the command line. In the follow-
ing, we create the accessor, set the index and connect the accessor to the image adaptor using
theSetPixelAccessor() method.

VectorPixelAccessor accessor;
accessor.SetIndex(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

We create a reader to load the image specified from the commandline and pass its output as the
input to the gradient filter.

typedef otb::ImageFileReader< InputImageType > ReaderTy pe;
ReaderType::Pointer reader = ReaderType::New();
gradient->SetInput(reader->GetOutput());

reader->SetFileName(argv[1]);
gradient->Update();

We now connect the output of the gradient filter as input to theimage adaptor. The adaptor
emulates a scalar image whose pixel values are taken from theselected component of the vector
image.

adaptor->SetImage(gradient->GetOutput());

20.4 Adaptors for Simple Computation

The source code for this example can be found in the file
Examples/DataRepresentation/Image/ImageAdaptor4.cxx .

Image adaptors can also be used to perform simple pixel-wisecomputations on image data. The
following example illustrates how to use theitk::ImageAdaptor for image thresholding.

A pixel accessor for image thresholding requires that the accessor maintain the threshold value.
Therefore, it must also implement the assignment operator to set this internal parameter.

class ThresholdingPixelAccessor
{
public:

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageAdaptor.html

20.4. Adaptors for Simple Computation 513

typedef unsigned char InternalType;
typedef unsigned char ExternalType;

ExternalType Get(const InternalType & input) const
{

return (input > m_Threshold) ? 1 : 0;
}

void SetThreshold(const InternalType threshold)
{

m_Threshold = threshold;
}

void operator=(const ThresholdingPixelAccessor & vpa)
{

m_Threshold = vpa.m_Threshold;
}

private:
InternalType m_Threshold;

};

TheGet() method returns one if the input pixel is above the threshold and zero otherwise. The
assignment operator transfers the value of the threshold member variable from one instance of
the pixel accessor to another.

To create an image adaptor, we first instantiate an image typewhose pixel type is the same as
the internal pixel type of the pixel accessor.

typedef ThresholdingPixelAccessor::InternalType Pixel Type;
const unsigned int Dimension = 2;
typedef otb::Image< PixelType, Dimension > ImageType;

We instantiate the ImageAdaptor using the image type as the first template parameter and the
pixel accessor as the second template parameter.

typedef itk::ImageAdaptor< ImageType,
ThresholdingPixelAccessor > ImageAdaptorType;

ImageAdaptorType::Pointer adaptor = ImageAdaptorType:: New();

The threshold value is set from the command line. A thresholdpixel accessor is created and
connected to the image adaptor in the same manner as in the previous example.

ThresholdingPixelAccessor accessor;
accessor.SetThreshold(atoi(argv[3]));
adaptor->SetPixelAccessor(accessor);

514 Chapter 20. Image Adaptors

Figure 20.2:Using ImageAdaptor to perform a simple image computation. An ImageAdaptor is used to

perform binary thresholding on the input image on the left. The center image was created using a threshold

of 100, while the image on the right corresponds to a threshold of 200.

We create a reader to load the input image and connect the output of the reader as the input to
the adaptor.

typedef otb::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
reader->Update();

adaptor->SetImage(reader->GetOutput());

As before, we rescale the emulated scalar image before writing it out to file. Figure 20.2 illus-
trates the result of applying the thresholding adaptor to a typical gray scale image using two
different threshold values. Note that the same effect couldhave been achieved by using the
itk::BinaryThresholdImageFilter but at the price of holding an extra copy of the image
in memory.

20.5 Adaptors and Writers

Image adaptors will not behave correctly when connected directly to a writer. The reason is
that writers tend to get direct access to the image buffer from their input, since image adaptors
do not have a real buffer their behavior in this circumstances is incorrect. You should avoid
instantiating theImageFileWriter or theImageSeriesWriter over an image adaptor type.

http://www.melaneum.com/OTB/doxygen/classitk_1_1BinaryThresholdImageFilter.html

CHAPTER

TWENTYONE

Streaming and Threading

Streaming and threading are a complex issue in computing in general. This chapter provides
the keys to help you understand how it is working so you can make the right choices later.

21.1 Introduction

First, you have to be aware that streaming and threading are two different things even if they
are linked to a certain extent. In OTB:

• Streaming describes the ability to combine the processing of several portion of a big
image and to make the output identical as what you would have gotten if the whole
image was processed at once. Streaming is compulsory when you’re processing gigabyte
images.

• Threading is the ability to process simultaneously different parts of the image. Threading
will give you some benefits only if you have a fairly recent processor (dual, quad core
and some older P4).

To sum up: streaming is good if you have big images, threadingis good if you have several
processing units.

However, these two properties are not unrelated. Both rely on the filter ability to process parts
of the image and combine the result, that what the ThreadedGenerateData() method can do.

21.2 Streaming and threading in OTB

For OTB, streaming is pipeline related while threading is filter related. If you build a pipeline
where one filter is not streamable, the whole pipeline is not streamable: at one point, you would
hold the entire image in memory. Whereas you will benefit from athreaded filter even if the

516 Chapter 21. Streaming and Threading

rest of the pipeline is made of non-threadable filters (the processing time will be shorter for this
particular filter).

Even if you use a non streamed writer, each filter which has a ThreadedGenerateData() will
split the image into two and send each part to one thread and you will notice two calls to the
function.

If you have some particular requirement and want to use only one thread, you can call the
SetNumberOfThreads() method on each of your filter.

When you are writing your own filter, you have to follow some rules to make your filter stream-
able and threadable. Some details are provided in sections 22.3 and 22.4.

21.3 Division strategies

The division of the image occurs generally at the writer level. Different strategies are available
and can be specified explicitly. In OTB, these are referred assplitter. Several available splitters
are:

• itk::ImageRegionSplitter

• itk::ImageRegionMultidimensionalSplitter

• otb::ImageRegionNonUniformMultidimensionalSplitter

You can add your own strategies based on these examples.

To change the splitting strategy of the writer, you can use the following model:

typedef otb::ImageRegionNonUniformMultidimensionalSp litter<3> splitterType;
splitterType::Pointer splitter=splitterType::New() ;
writer->SetRegionSplitter(splitter);

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionSplitter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegionMultidimensionalSplitter.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1ImageRegionNonUniformMultidimensionalSplitter.html

CHAPTER

TWENTYTWO

How To Write A Filter

This purpose of this chapter is help developers create theirown filter (process object). This
chapter is divided into four major parts. An initial definition of terms is followed by an overview
of the filter creation process. Next, data streaming is discussed. The way data is streamed in
ITK must be understood in order to write correct filters. Finally, a section on multithreading
describes what you must do in order to take advantage of shared memory parallel processing.

22.1 Terminology

The following is some basic terminology for the discussion that follows. Chapter 3 provides
additional background information.

• The data processing pipelineis a directed graph ofprocessand data objects. The
pipeline inputs, operators on, and outputs data.

• A filter , or process object, has one or more inputs, and one or more outputs.

• A source, or source process object, initiates the data processing pipeline, and has one or
more outputs.

• A mapper, or mapper process object, terminates the data processing pipeline. The map-
per has one or more outputs, and may write data to disk, interface with a display system,
or interface to any other system.

• A data object represents and provides access to data. In ITK, the data object (ITK class
itk::DataObject) is typically of type otb::Image or itk::Mesh .

• A region (ITK class itk::Region) represents a piece, or subset of the entire data set.

• An image region(ITK class itk::ImageRegion) represents a structured portion of data.
ImageRegion is implemented using theitk::Index and itk::Size classes

http://www.melaneum.com/OTB/doxygen/classitk_1_1DataObject.html
http://www.melaneum.com/OTB/doxygen/classotb_1_1Image.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Mesh.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Region.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageRegion.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Index.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1Size.html

518 Chapter 22. How To Write A Filter

• A mesh region(ITK class itk::MeshRegion) represents an unstructured portion of
data.

• TheLargestPossibleRegionis the theoretical single, largest piece (region) that could rep-
resent the entire dataset. The LargestPossibleRegion is used in the system as the measure
of the largest possible data size.

• TheBufferedRegionis a contiguous block of memory that is less than or equal to insize
to the LargestPossibleRegion. The buffered region is what has actually been allocated by
a filter to hold its output.

• TheRequestedRegionis the piece of the dataset that a filter is required to produce. The
RequestedRegion is less than or equal in size to the BufferedRegion. The Requeste-
dRegion may differ in size from the BufferedRegion due to performance reasons. The
RequestedRegion may be set by a user, or by an application that needs just a portion of
the data.

• Themodified time (represented by ITK classitk::TimeStamp) is a monotonically in-
creasing integer value that characterizes a point in time when an object was last modified.

• Downstream is the direction of dataflow, from sources to mappers.

• Upstream is the opposite of downstream, from mappers to sources.

• Thepipeline modified time for a particular data object is the maximum modified time of
all upstream data objects and process objects.

• The terminformation refers to metadata that characterizes data. For example, index and
dimensions are information characterizing an image region.

22.2 Overview of Filter Creation

Reader Gaussian
Filter

Image

ProcessObjectDataObject
ProcessObject

Figure 22.1: Relationship between DataObject and

ProcessObject.

Filters are defined with respect to the type
of data they input (if any), and the type
of data they output (if any). The key to
writing a ITK filter is to identify the num-
ber and types of input and output. Having
done so, there are often superclasses that
simplify this task via class derivation. For
example, most filters in ITK take a single
image as input, and produce a single im-
age on output. The superclassitk::ImageToImageFilter is a convenience class that provide
most of the functionality needed for such a filter.

Some common base classes for new filters include:

http://www.melaneum.com/OTB/doxygen/classitk_1_1MeshRegion.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1TimeStamp.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

22.3. Streaming Large Data 519

• ImageToImageFilter : the most common filter base for segmentation algorithms. Takes
an image and produces a new image, by default of the same dimensions. Override
GenerateOutputInformation to produce a different size.

• UnaryFunctorImageFilter : used when defining a filter that applies a function to an
image.

• BinaryFunctorImageFilter : used when defining a filter that applies an operation to
two images.

• ImageFunction : a functor that can be applied to an image, evaluatingf (x) at each point
in the image.

• MeshToMeshFilter : a filter that transforms meshes, such as tessellation, polygon reduc-
tion, and so on.

• LightObject : abstract base for filters that don’t fit well anywhere else inthe class hierar-
chy. Also useful for “calculator” filters; ie. a sink filter that takes an input and calculates
a result which is retrieved using aGet() method.

Once the appropriate superclass is identified, the filter writer implements the class defining the
methods required by most all ITK objects:New() , PrintSelf() , and protected constructor,
copy constructor, delete, and operator=, and so on. Also, don’t forget standard typedefs like
Self , Superclass , Pointer , andConstPointer . Then the filter writer can focus on the most
important parts of the implementation: defining the API, data members, and other implemen-
tation details of the algorithm. In particular, the filter writer will have to implement either a
GenerateData() (non-threaded) orThreadedGenerateData() method. (See Section 3.2.7
for an overview of multi-threading in ITK.)

An important note: the GenerateData() method is required toallocate memory for the
output. The ThreadedGenerateData() method is not. In default implementation (see
itk::ImageSource , a superclass ofitk::ImageToImageFilter) GenerateData() allocates
memory and then invokesThreadedGenerateData() .

One of the most important decisions that the developer must make is whether the filter can
stream data; that is, process just a portion of the input to produce a portion of the output. Often
superclass behavior works well: if the filter processes the input using single pixel access, then
the default behavior is adequate. If not, then the user may have to a) find a more specialized
superclass to derive from, or b) override one or more methodsthat control how the filter operates
during pipeline execution. The next section describes these methods.

22.3 Streaming Large Data

The data associated with multi-dimensional images is largeand becoming larger. This trend
is due to advances in scanning resolution, as well as increases in computing capability. Any

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageSource.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

520 Chapter 22. How To Write A Filter

Image
File

Reader
Filter

Gaussian Thresholding

Writer

Image
File

Renderer

Display

Image Image
Image

Figure 22.2:The Data Pipeline

practical segmentation and registration software system must address this fact in order to be
useful in application. ITK addresses this problem via its data streaming facility.

In ITK, streaming is the process of dividing data into pieces, or regions, and then processing this
data through the data pipeline. Recall that the pipeline consists of process objects that generate
data objects, connected into a pipeline topology. The inputto a process object is a data object
(unless the process initiates the pipeline and then it is a source process object). These data
objects in turn are consumed by other process objects, and soon, until a directed graph of data
flow is constructed. Eventually the pipeline is terminated by one or more mappers, that may
write data to storage, or interface with a graphics or other system. This is illustrated in figures
22.1 and 22.2.

A significant benefit of this architecture is that the relatively complex process of managing
pipeline execution is designed into the system. This means that keeping the pipeline up to
date, executing only those portions of the pipeline that have changed, multithreading execution,
managing memory allocation, and streaming is all built intothe architecture. However, these
features do introduce complexity into the system, the bulk of which is seen by class developers.
The purpose of this chapter is to describe the pipeline execution process in detail, with a focus
on data streaming.

22.3.1 Overview of Pipeline Execution

The pipeline execution process performs several importantfunctions.

1. It determines which filters, in a pipeline of filters, need to execute. This prevents redun-
dant execution and minimizes overall execution time.

22.3. Streaming Large Data 521

Reader
Filter

Gaussian Thresholding

Image Image Image

Update()

GenerateData()

Update()

GenerateData()

GenerateData()

Update()

Figure 22.3:Sequence of the Data Pipeline updating mechanism

2. It initializes the (filter’s) output data objects, preparing them for new data. In addition, it
determines how much memory each filter must allocate for its output, and allocates it.

3. The execution process determines how much data a filter must process in order to produce
an output of sufficient size for downstream filters; it also takes into account any limits on
memory or special filter requirements. Other factors include the size of data processing
kernels, that affect how much data input data (extra padding) is required.

4. It subdivides data into subpieces for multithreading. (Note that the division of data into
subpieces is exactly same problem as dividing data into pieces for streaming; hence mul-
tithreading comes for free as part of the streaming architecture.)

5. It may free (or release) output data if filters no longer need it to compute, and the user
requests that data is to be released. (Note: a filter’s outputdata object may be considered
a “cache”. If the cache is allowed to remain (ReleaseDataFlagOff()) between pipeline
execution, and the filter, or the input to the filter, never changes, then process objects
downstream of the filter just reuse the filter’s cache to re-execute.)

To perform these functions, the execution process negotiates with the filters that define the
pipeline. Only each filter can know how much data is required on input to produce a particular
output. For example, a shrink filter with a shrink factor of two requires an image twice as
large (in terms of its x-y dimensions) on input to produce a particular size output. An image
convolution filter would require extra input (boundary padding) depending on the size of the
convolution kernel. Some filters require the entire input toproduce an output (for example, a
histogram), and have the option of requesting the entire input. (In this case streaming does not
work unless the developer creates a filter that can request multiple pieces, caching state between
each piece to assemble the final output.)

Ultimately the negotiation process is controlled by the request for data of a particular size (i.e.,
region). It may be that the user asks to process a region of interest within a large image, or that

522 Chapter 22. How To Write A Filter

memory limitations result in processing the data in severalpieces. For example, an application
may compute the memory required by a pipeline, and then useitk::StreamingImageFilter
to break the data processing into several pieces. The data request is propagated through the
pipeline in the upstream direction, and the negotiation process configures each filter to produce
output data of a particular size.

The secret to creating a streaming filter is to understand howthis negotiation process works,
and how to override its default behavior by using the appropriate virtual functions defined in
itk::ProcessObject . The next section describes the specifics of these methods, and when to
override them. Examples are provided along the way to illustrate concepts.

22.3.2 Details of Pipeline Execution

Typically pipeline execution is initiated when a process object receives the
ProcessObject::Update() method invocation. This method is simply delegated to the
output of the filter, invoking theDataObject::Update() method. Note that this behavior is
typical of the interaction between ProcessObject and DataObject: a method invoked on one is
eventually delegated to the other. In this way the data request from the pipeline is propagated
upstream, initiating data flow that returns downstream.

TheDataObject::Update() method in turn invokes three other methods:

• DataObject::UpdateOutputInformation()

• DataObject::PropagateRequestedRegion()

• DataObject::UpdateOutputData()

UpdateOutputInformation()

TheUpdateOutputInformation() method determines the pipeline modified time. It may set
the RequestedRegion and the LargestPossibleRegion depending on how the filters are config-
ured. (The RequestedRegion is set to process all the data, i.e., the LargestPossibleRegion, if
it has not been set.) The UpdateOutputInformation() propagates upstream through the entire
pipeline and terminates at the sources.

During UpdateOutputInformation() , filters have a chance to over-
ride the ProcessObject::GenerateOutputInformation() method
(GenerateOutputInformation() is invoked by UpdateOutputInformation()). The
default behavior is for theGenerateOutputInformation() to copy the metadata describing
the input to the output (viaDataObject::CopyInformation()). Remember, information is
metadata describing the output, such as the origin, spacing, and LargestPossibleRegion (i.e.,
largest possible size) of an image.

A good example of this behavior isitk::ShrinkImageFilter . This filter takes an input image
and shrinks it by some integral value. The result is that the spacing and LargestPossibleRegion

http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ProcessObject.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ShrinkImageFilter.html

22.3. Streaming Large Data 523

of the output will be different to that of the input. Thus,GenerateOutputInformation() is
overloaded.

PropagateRequestedRegion()

The PropagateRequestedRegion() call propagates upstream to satisfy a data request. In
typical application this data request is usually the LargestPossibleRegion, but if streaming is
necessary, or the user is interested in updating just a portion of the data, the RequestedRegion
may be any valid region within the LargestPossibleRegion.

The function ofPropagateRequestedRegion() is, given a request for data (the amount is
specified by RequestedRegion), propagate upstream configuring the filter’s input and output
process object’s to the correct size. Eventually, this means configuring the BufferedRegion, that
is the amount of data actually allocated.

The reason for the buffered region is this: the output of a filter may be consumed by more than
one downstream filter. If these consumers each request different amounts of input (say due to
kernel requirements or other padding needs), then the upstream, generating filter produces the
data to satisfy both consumers, that may mean it produces more data than one of the consumers
needs.

The ProcessObject::PropagateRequestedRegion() method invokes three methods that
the filter developer may choose to overload.

• EnlargeOutputRequestedRegion(DataObject *output) gives the (filter) subclass a
chance to indicate that it will provide more data than required for the output. This can
happen, for example, when a source can only produce the wholeoutput (i.e., the Largest-
PossibleRegion).

• GenerateOutputRequestedRegion(DataObject *output) gives the subclass a
chance to define how to set the requested regions for each of its outputs, given this out-
put’s requested region. The default implementation is to make all the output requested
regions the same. A subclass may need to override this methodif each output is a different
resolution. This method is only overridden if a filter has multiple outputs.

• GenerateInputRequestedRegion() gives the subclass a chance to request a larger re-
quested region on the inputs. This is necessary when, for example, a filter requires more
data at the “internal” boundaries to produce the boundary values - due to kernel operations
or other region boundary effects.

itk::RGBGibbsPriorFilter is an example of a filter that needs to invoke
EnlargeOutputRequestedRegion() . The designer of this filter decided that the fil-
ter should operate on all the data. Note that a subtle interplay between this method
and GenerateInputRequestedRegion() is occurring here. The default behavior of
GenerateInputRequestedRegion() (at least for itk::ImageToImageFilter) is to set the

http://www.melaneum.com/OTB/doxygen/classitk_1_1RGBGibbsPriorFilter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

524 Chapter 22. How To Write A Filter

input RequestedRegion to the output’s ReqestedRegion. Hence, by overriding the method
EnlargeOutputRequestedRegion() to set the output to the LargestPossibleRegion, ef-
fectively sets the input to this filter to the LargestPossibleRegion (and probably causing all
upstream filters to process their LargestPossibleRegion aswell. This means that the filter, and
therefore the pipeline, does not stream. This could be fixed by reimplementing the filter with
the notion of streaming built in to the algorithm.)

itk::GradientMagnitudeImageFilter is an example of a filter that needs to invoke
GenerateInputRequestedRegion() . It needs a larger input requested region because a kernel
is required to compute the gradient at a pixel. Hence the input needs to be “padded out” so the
filter has enough data to compute the gradient at each output pixel.

UpdateOutputData()

UpdateOutputData() is the third and final method as a result of theUpdate() method. The
purpose of this method is to determine whether a particular filter needs to execute in order to
bring its output up to date. (A filter executes when itsGenerateData() method is invoked.)
Filter execution occurs when a) the filter is modified as a result of modifying an instance vari-
able; b) the input to the filter changes; c) the input data has been released; or d) an invalid
RequestedRegion was set previously and the filter did not produce data. Filters execute in or-
der in the downstream direction. Once a filter executes, all filters downstream of it must also
execute.

DataObject::UpdateOutputData() is delegated to the DataObject’s source (i.e., the Pro-
cessObject that generated it) only if the DataObject needs to be updated. A comparison
of modified time, pipeline time, release data flag, and valid requested region is made. If
any one of these conditions indicate that the data needs regeneration, then the source’s
ProcessObject::UpdateOutputData() is invoked. These calls are made recursively up the
pipeline until a source filter object is encountered, or the pipeline is determined to be up to date
and valid. At this point, the recursion unrolls, and the execution of the filter proceeds. (This
means that the output data is initialized, StartEvent is invoked, the filtersGenerateData()
is called, EndEvent is invoked, and input data to this filter may be released, if requested. In
addition, this filter’s InformationTime is updated to the current time.)

The developer will never overrideUpdateOutputData() . The developer need only write the
GenerateData() method (non-threaded) orThreadedGenerateData() method. A discussion
of threading follows in the next section.

22.4 Threaded Filter Execution

Filters that can process data in pieces can typically multi-process using the data parallel, shared
memory implementation built into the pipeline execution process. To create a multithreaded
filter, simply define and implement aThreadedGenerateData() method. For example, a

http://www.melaneum.com/OTB/doxygen/classitk_1_1GradientMagnitudeImageFilter.html

22.5. Filter Conventions 525

itk::ImageToImageFilter would create the method:

void ThreadedGenerateData(const OutputImageRegionType &
outputRegionForThread, int threadId)

The key to threading is to generate output for the output region given (as the first parameter in
the argument list above). In ITK, this is simple to do becausean output iterator can be created
using the region provided. Hence the output can be iterated over, accessing the corresponding
input pixels as necessary to compute the value of the output pixel.

Multi-threading requires caution when performing I/O (including usingcout or cerr) or in-
voking events. A safe practice is to allow only thread id zeroto perform I/O or generate events.
(The thread id is passed as argument intoThreadedGenerateData()). If more than one thread
tries to write to the same place at the same time, the program can behave badly, and possibly
even deadlock or crash.

22.5 Filter Conventions

In order to fully participate in the ITK pipeline, filters areexpected to follow certain conven-
tions, and provide certain interfaces. This section describes the minimum requirements for a
filter to integrate into the ITK framework.

The class declaration for a filter should include the macroITK EXPORT, so that on certain plat-
forms an export declaration can be included.

A filter should define public types for the class itself (Self) and itsSuperclass , andconst
and non-const smart pointers, thus:

typedef ExampleImageFilter Self;
typedef ImageToImageFilter<TImage,TImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;

The Pointer type is particularly useful, as it is a smart pointer that will be used by all client
code to hold a reference-counted instantiation of the filter.

Once the above types have been defined, you can use the following convenience macros, which
permit your filter to participate in the object factory mechanism, and to be created using the
canonical::New() :

/** Method for creation through the object factory. */
itkNewMacro(Self);

/** Run-time type information (and related methods). */
itkTypeMacro(ExampleImageFilter, ImageToImageFilter) ;

http://www.melaneum.com/OTB/doxygen/classitk_1_1ImageToImageFilter.html

526 Chapter 22. How To Write A Filter

The default constructor should beprotected , and provide sensible defaults (usually zero) for
all parameters. The copy constructor and assignment operator should be declaredprivate and
not implemented, to prevent instantiating the filter without the factory methods (above).

Finally, the template implementation code (in the.txx file) should be included, bracketed by a
test for manual instantiation, thus:

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkExampleFilter.txx"
#endif

22.5.1 Optional

A filter can be printed to anstd::ostream (such asstd::cout) by implementing the following
method:

void PrintSelf(std::ostream& os, Indent indent) const;

and writing the name-value pairs of the filter parameters to the supplied output stream. This is
particularly useful for debugging.

22.5.2 Useful Macros

Many convenience macros are provided by ITK, to simplify filter coding. Some of these are
described below:

itkStaticConstMacro Declares a static variable of the given type, with the specified initial
value.

itkGetMacro Defines an accessor method for the specified scalar data member. The conven-
tion is for data members to have a prefix ofm .

itkSetMacro Defines a mutator method for the specified scalar data member,of the supplied
type. This will automatically set theModified flag, so the filter stage will be executed
on the nextUpdate() .

itkBooleanMacro Defines a pair ofOnFlag and OffFlag methods for a boolean variable
m Flag .

itkGetObjectMacro, itkSetObjectMacro Defines an accessor and mutator for an ITK object.
The Get form returns a smart pointer to the object.

Much more useful information can be learned from browsing the source in
Code/Common/itkMacro.h and for the itk::Object and itk::LightObject classes.

http://www.melaneum.com/OTB/doxygen/classitk_1_1Object.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1LightObject.html

22.6. How To Write A Composite Filter 527

Source Stage1 Stage2 Sink

Composite

Stage...n

Figure 22.4:A Composite filter encapsulates a number of other filters.

22.6 How To Write A Composite Filter

In general, most ITK/OTB filters implement one particular algorithm, whether it be image fil-
tering, an information metric, or a segmentation algorithm. In the previous section, we saw how
to write new filters from scratch. However, it is often very useful to be able to make a new
filter by combining two or more existing filters, which can then be used as a building block in
a complex pipeline. This approach follows the Composite pattern [33], whereby the composite
filter itself behaves just as a regular filter, providing its own (potentially higher level) interface
and using other filters (whose detail is hidden to users of theclass) for the implementation. This
composite structure is shown in Figure 22.4, where the various Stage-n filters are combined
into one by theComposite filter. TheSource andSink filters only see the interface published
by theComposite . Using the Composite pattern, a composite filter can encapsulate a pipeline
of arbitrary complexity. These can in turn be nested inside other pipelines.

22.6.1 Implementing a Composite Filter

There are a few considerations to take into account when implementing a composite filter. All
the usual requirements for filters apply (as discussed above), but the following guidelines should
be considered:

1. The template arguments it takes must be sufficient to instantiate all of the component
filters. Each component filter needs a type supplied by eitherthe implementor or the
enclosing class. For example, anImageToImageFilter normally takes an input and
output image type (which may be the same). But if the output ofthe composite filter is a
classified image, we need to either decide on the output type inside the composite filter,
or restrict the choices of the user when she/he instantiatesthe filter.

2. The types of the component filters should be declared in theheader, preferably with
protected visibility. This is because the internal structure normally should not be visible
to users of the class, but should be to descendent classes that may need to modify or
customize the behavior.

3. The component filters should be private data members of thecomposite class, as in
FilterType::Pointer .

528 Chapter 22. How To Write A Filter

Gradient RescaleThreshold

Reader Writer

CompositeExampleImageFilter

Figure 22.5:Example of a typical composite filter. Note that the output of the last filter in the internal

pipeline must be grafted into the output of the composite filter.

4. The default constructor should build the pipeline by creating the stages and connect them
together, along with any default parameter settings, as appropriate.

5. The input and output of the composite filter need to be grafted on to the head and tail
(respectively) of the component filters.

This grafting process is illustrated in Figure 22.5.

22.6.2 A Simple Example

The source code for this example can be found in the file
Examples/Filtering/CompositeFilterExample.cxx .

The composite filter we will build combines three filters: a gradient magnitude operator, which
will calculate the first-order derivative of the image; a thresholding step to select edges over
a given strength; and finally a rescaling filter, to ensure theresulting image data is visible by
scaling the intensity to the full spectrum of the output image type.

Since this filter takes an image and produces another image (of identical type), we will specialize
the ImageToImageFilter:

#include "itkImageToImageFilter.h"

Next we include headers for the component filters:

#include "itkGradientMagnitudeImageFilter.h"
#include "itkThresholdImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

Now we can declare the filter itself. It is within the OTB namespace, and we decide to make
it use the same image type for both input and output, thus the template declaration needs only
one parameter. Deriving fromImageToImageFilter provides default behavior for several im-
portant aspects, notably allocating the output image (and making it the same dimensions as the
input).

22.6. How To Write A Composite Filter 529

namespace otb {

template <class TImageType>
class ITK_EXPORT CompositeExampleImageFilter :

public itk::ImageToImageFilter<TImageType, TImageType >
{
public:

Next we have the standard declarations, used for object creation with the object factory:

typedef CompositeExampleImageFilter Self;
typedef itk::ImageToImageFilter<TImageType,TImageTyp e> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;

Here we declare an alias (to save typing) for the image’s pixel type, which determines the type
of the threshold value. We then use the convenience macros todefine the Get and Set methods
for this parameter.

typedef typename TImageType::PixelType PixelType;

itkGetMacro(Threshold, PixelType);
itkSetMacro(Threshold, PixelType);

Now we can declare the component filter types, templated overthe enclosing image type:

protected:

typedef itk::ThresholdImageFilter< TImageType > Thresho ldType;
typedef itk::GradientMagnitudeImageFilter< TImageType , TImageType >

GradientType;
typedef itk::RescaleIntensityImageFilter< TImageType, TImageType >

RescalerType;

The component filters are declared as data members, all usingthe smart pointer types.

typename GradientType::Pointer m_GradientFilter;
typename ThresholdType::Pointer m_ThresholdFilter;
typename RescalerType::Pointer m_RescaleFilter;

PixelType m_Threshold;
};

} /* namespace otb */

530 Chapter 22. How To Write A Filter

The constructor sets up the pipeline, which involves creating the stages, connecting them to-
gether, and setting default parameters.

template <class TImageType>
CompositeExampleImageFilter<TImageType>
::CompositeExampleImageFilter()
{

m_GradientFilter = GradientType::New();
m_ThresholdFilter = ThresholdType::New();
m_RescaleFilter = RescalerType::New();

m_ThresholdFilter->SetInput(m_GradientFilter->GetOu tput());
m_RescaleFilter->SetInput(m_ThresholdFilter->GetOut put());

m_Threshold = 1;

m_RescaleFilter->SetOutputMinimum(
itk::NumericTraits<PixelType>::NonpositiveMin());

m_RescaleFilter->SetOutputMaximum(itk::NumericTrait s<PixelType>::max());
}

TheGenerateData() is where the composite magic happens. First, we connect the first com-
ponent filter to the inputs of the composite filter (the actualinput, supplied by the upstream
stage). Then we graft the output of the last stage onto the output of the composite, which en-
sures the filter regions are updated. We force the composite pipeline to be processed by calling
Update() on the final stage, then graft the output back onto the output of the enclosing filter,
so it has the result available to the downstream filter.

template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
GenerateData()
{

m_GradientFilter->SetInput(this->GetInput());

m_ThresholdFilter->ThresholdBelow(this->m_Threshold);

m_RescaleFilter->GraftOutput(this->GetOutput());
m_RescaleFilter->Update();
this->GraftOutput(m_RescaleFilter->GetOutput());

}

Finally we define thePrintSelf method, which (by convention) prints the filter parameters.
Note how it invokes the superclass to print itself first, and also how the indentation prefixes each
line.

22.6. How To Write A Composite Filter 531

template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
PrintSelf(std::ostream& os, itk::Indent indent) const
{

Superclass::PrintSelf(os,indent);

os
<< indent << "Threshold:" << this->m_Threshold
<< std::endl;

}

} /* end namespace otb */

It is important to note that in the above example, none of the internal details of the pipeline
were exposed to users of the class. The interface consisted of the Threshold parameter (which
happened to change the value in the component filter) and the regular ImageToImageFilter
interface. This example pipeline is illustrated in Figure 22.5.

Part V

Appendix

CHAPTER

TWENTYTHREE

Frequently Asked Questions

23.1 Introduction

23.1.1 What is OTB?

OTB, the ORFEO Toolbox is a library of image processing algorithms developed by CNES
in the frame of the ORFEO Accompaniment Program. OTB is basedon the medical image
processing library ITK,http://www.itk.org , and offers particular functionalities for remote
sensing image processing in general and for high spatial resolution images in particular.

OTB provides:

• image access: optimized read/write access for most of remote sensing image formats,
meta-data access, simple visualization;

• sensor geometry: sensor models, cartographic projections;

• radiometry: atmospheric corrections, vegetation indices;

• filtering: blurring, denoising, enhancement;

• fusion: image pansharpening;

• feature extraction: interest points, alignments, lines;

• image segmentation: region growing, watershed, level sets;

• classification: K-means, SVM, Markov random fields;

• change detection.

Many of these functionalities are provided by ITK and have been tested and documented for the
use with remote sensing data.

http://www.itk.org

536 Chapter 23. Frequently Asked Questions

23.1.2 What is ORFEO?

ORFEO stands for Optical and Radar Federated Earth Observation. In 2001 a cooperation pro-
gram was set between France and Italy to develop ORFEO, an Earth observation dual system
with metric resolution: Italy is in charge of COSMO-Skymed the radar component develop-
ment, and France of PLEIADES the optic component.

The PLEIADES optic component is composed of two ”small satellites” (mass of one ton) of-
fering a spatial resolution at nadir of 0.7 m and a field of viewof 20 km. Their great agility
enables a daily access all over the world, essentially for defense and civil security applications,
and a coverage capacity necessary for the cartography kind of applications at scales better than
those accessible to SPOT family satellites. Moreover, PLEIADES will have stereoscopic acqui-
sition capacity to meet the fine cartography needs, notably in urban regions, and to bring more
information when used with aerial photography.

The ORFEO ”targeted” acquisition capacities made it a system particularly adapted to defense
or civil security missions, as well as critical geophysicalphenomena survey such as volcanic
eruptions, which require a priority use of the system resources.

With respect to the constraints of the franco-italian agreement, cooperations have been set up
for the PLEIADES optical component with Sweden, Belgium, Spain and Austria.

Where can I get more information about ORFEO?

At the PLEIADES HR web site:http://smsc.cnes.fr/PLEIADES/ .

23.1.3 What is the ORFEO Accompaniment Program?

Beside the Pleiades (PHR) and Cosmo-Skymed (CSK) systems developments forming ORFEO,
the dual and bilateral system (France - Italy) for Earth Observation, the ORFEO Accompani-
ment Program was set up, to prepare, accompany and promote the use and the exploitation of
the images derived from these sensors.

The creation of a preparatory program is needed because of :

• the new capabilities and performances of the ORFEO systems (optical and radar high
resolution, access capability, data quality, possibilityto acquire simultaneously in optic
and radar),

• the implied need of new methodological developments : new processing methods, or
adaptation of existing methods,

• the need to realize those new developments in very close cooperation with the final users,
the integration of new products in their systems.

http://smsc.cnes.fr/PLEIADES/

23.2. Licence 537

This program was initiated by CNES mid-2003 and will last until 2009. It consists in two parts,
between which it is necessary to keep a strong interaction:

• A Methodological part,

• A Thematic part.

This Accompaniment Program uses simulated data (acquired during airborne campaigns) and
satellite images quite similar to Pleiades (as QuickBird and Ikonos), used in a communal way
on a set of special sites. The validation of specified products and services will be realized with
those simulated data

Apart from the initial cooperation with Italy, the ORFEO Accompaniment Program enlarged to
Belgium, with integration of Belgian experts in the different WG as well as a participation to
the methodological part.

Where can I get more information about the ORFEO Accompaniment Program?

Go to the following web site:http://smsc.cnes.fr/PLEIADES/A prog accomp.htm .

23.1.4 Who is responsible for the OTB development?

The French Centre National d’Études Spatiales, CNES, initiated the ORFEO Toolbox and is
responsible for the specification of the library. CNES fundsthe industrial development contracts
and research contracts needed for the evolution of OTB.

23.2 Licence

23.2.1 Which is the OTB licence?

OTB is distributed under a free software licence:
http://www.cecill.info/licences/Licence CeCILL V2-en.html .

23.2.2 If I write an application using OTB am I forced to distribute that applica-
tion?

No. The license gives you the option to distribute your application if you want to. You do not
have to exercise this option in the license.

http://smsc.cnes.fr/PLEIADES/A_prog_accomp.htm
http://www.cecill.info/licences/Licence_CeCILL_V2-en.html

538 Chapter 23. Frequently Asked Questions

23.2.3 If I wanted to distribute an application using OTB what license would I
need to use?

The CeCILL licence.

23.2.4 I am a commercial user. Is there any restriction on the use of OTB?

OTB can be used internally (”in-house”) without restriction, but only redistributed in other
software that is under the CeCILL licence.

23.3 Getting OTB

23.3.1 Who can download the OTB?

Anybody can download the OTB at no cost.

23.3.2 Where can I download the OTB?

Go tohttp://otb.cnes.fr and follow the ”download OTB” link. You will have access to the
OTB source code and to the Software User’s Guide.

23.4 Installing OTB

23.4.1 Which platforms are supported

OTB is a multi-platform library. It has successfully been installed on the following platforms:

• Linux/Unix with GCC (2.95.X, 3.3.X, 4.1.X, 4.2.X).

• Windows with Microsoft Visual Studio C++ 7.1 .NET 2003.

• Windows with Microsoft Visual Studio C++ 8.0 .NET 2005.

• Windows with MinGW. (mingw + msys athttp://www.mingw.org)

• Cygwin. (http://www.cygwin.com)

Support for the following platforms is planned:

• Windows with Microsoft Visual Studio C++ 6.0.

http://otb.cnes.fr
http://www.mingw.org
http://www.cygwin.com

23.4. Installing OTB 539

23.4.2 Which libraries/packages are needed before installing OTB?

• CMake (http://www.cmake.org)

• GDAL (http://www.gdal.org)

• Fltk (http://www.fltk.org)

23.4.3 Main steps

In order to install OTB on your system follow these steps (in the given order):

1. Install CMake.

2. Install GDAL.

3. Install Fltk using the CMake scripts. Do not use theconfigure approach or the project
files for Microsoft Visual Studio shipped with Fltk.

4. Install OTB using CMake for the configuration.

We assume that you will install everything on a directory called INSTALL DIR, which usually
is /usr/local , /home/jordi/local or whatever you want. Make sure that you have down-
loaded the source code for:

• CMake (http://www.cmake.org)

• GDAL (http://www.gdal.org)

• Fltk (http://www.fltk.org)

Unix/Linux Platforms

Important note : on some Linux distributions (eg. Debian, Ubuntu, Fedora),you may use the
official packages for CMake, GDAL and Fltk. Once you have installed these packages, you can
skip to step 4.

1. Install GDAL

cd INSTALL_DIR
gunzip gdal.1.4.2.tar.gz
tar xvf gdal.1.4.2.tar
cd gdal.1.4.2
./configure --prefix=INSTALL_DIR
make
make install

http://www.cmake.org
http://www.gdal.org
http://www.fltk.org
http://www.cmake.org
http://www.gdal.org
http://www.fltk.org

540 Chapter 23. Frequently Asked Questions

It seems to be a bug in the GDAL install procedure: if you are installing it without root
privileges, even if yourINSTALL DIR is a directory for which you have the write permis-
sions, GDAL tries to copy the python bindings together with the Python site packages,
which are usually somewhere in /usr/lib.

Actually, since this is the last step in the GDAL install procedure, when you get the error
message, the GDAL libs and header files are already installed, so you can safely ignore
the error.

The --without-python option passed to theconfigure step avoids this. However,
some users may want to have Python bindings, so recommendingthis option for the
install may not be OK for everybody.

2. Install CMake

cd INSTALL_DIR
gunzip cmake-2.4.7.tar.gz
tar xvf cmake-2.4.7.tar
cd cmake-2.4.7
./configure --prefix=INSTALL_DIR
make
make install

In order to properly use cmake, addINSTALL DIR/bin to your path withexport
PATH=$PATH:INSTALL DIR/bin or something similar.

3. Install Fltk (optional) using CMake (do not use the configure script)

cd INSTALL_DIR
bunzip2 fltk-1.1.7-source.tar.bz2 OR
gunzip fltk-1.1.7-source.tar.gz
tar xvf fltk-1.1.7-source.tar
mkdir Fltk-binary
cd Fltk-binary
ccmake ../fltk-1.1.7
--> follow the CMake instructions, in particular:

--> set CMAKE_INSTALL_PREFIX to INSTALL_DIR within CMake
--> set BUILD_EXAMPLES to ON within CMake
--> generate the configuration with ’g’

make
make install
--> check that the examples located in
INSTALL_DIR/Fltk-binary/bin work, in particular, the fra ctals
example which makes use of the OpenGL library needed by OTB.

23.4. Installing OTB 541

You can choose not to install Fltk but in this case, you will not be able to compile the
visualization features of OTB.

4. Install OTB

cd INSTALL_DIR
gunzip OrfeoToolbox-2.0.0.tgz
tar xvf OrfeoToolbox-2.0.0.tar
mkdir OTB-Binary
cd OTB-Binary
ccmake ../OrfeoToolbox-2.0.0
--> follow the CMake instructions, in particular:

--> set BUILD_EXAMPLES to ON within CMake
--> set BUILD_SHARED_LIBS to ON within CMake
--> set BUILD_TESTING to OFF within CMake
--> set CMAKE_INSTALL_PREFIX to INSTALL_DIR within CMake
--> set GDAL_INCLUDE_DIRS to INSTALL_DIR/include within C Make
--> set GDAL_LIBRARY_DIRS to INSTALL_DIR/lib within CMake
--> set OTB_USE_EXTERNAL_ITK to OFF within CMake
--> set FLTK_DIR to INSTALL_DIR/Fltk-Binary within CMake O R

if you do not have FLTK press ’t’ to change to advanced
mode and set OTB_USE_VISU to OFF

--> generate the configuration with ’g’
make

If you want a faster compilation and don’t want the compilation of the examples,
you can setBUILD EXAMPLESto OFF. Some plateforms apparently have more diffi-
culties with shared libraries, if you experience any problem with that, you can set
BUILD SHARED LIBS to OFFbut the built size might reach 1 GB.

After these steps, you have the source of OTB inINSTALL DIR/OrfeoToolbox-2.0.0
and the compiled binaries and libraries inINSTALL DIR/OTB-Binary . Keeping the
sources is important as most programs you will designed willneed an access to the txx
files during compilation. However, the binaries directory knows were its sources are and
you will need to point only to theINSTALL DIR/OTB-Binary when thecmake for your
program will ask you where the OTB is.

If you want to put OTB in a standard location, you can proceed with:

make install

but this is only optional.

542 Chapter 23. Frequently Asked Questions

Microsoft Visual Studio C++ 7.1

1. Install GDAL

MSVC++ 7.1 project files are needed to compile GDAL.

These files can be downloaded athttp://vterrain.org/dist/gdal132 vc71.zip .

Then, unzip it to your GDAL folder, and it will create a folder(named ”VisualStudio”).

Load the solution (.sln file) and build the gdal project.

More details can be found athttp://vterrain.org/Distrib/gdal.html .

2. Install Fltk

Use CMake on Windows to generate MSVC++ 7.1 project files fromfltk sources.

Open the solution and build the fltk project.

3. Install OTB

Use CMake on Windows to generate MSVC++ 7.1 project files fromotb sources.

Open the solution and build the otb project.

Microsoft Visual Studio C++ 8.0

1. Install GDAL

Open a MS-DOS prompt.

Run the VCVARS32.bat script that comes with the compiler (itcan be found in Microsoft
Visual Studio 8/VC/bin).

Then, go to the GDAL root directory, and tape :

nmake /f makefile.vc

Once the build is successful, tape this line to install GDAL :

nmake /f makefile.vc install

More details about this install can be found at
http://www.gdal.org/gdal building.html .

2. Install Fltk

Use CMake on Windows to generate MSVC++ 8.0 project files fromfltk sources.

Open the solution and build the fltk project.

3. Install OTB

Use CMake on Windows to generate MSVC++ 8.0 project files fromotb sources.

Open the solution and build the otb project.

http://vterrain.org/dist/gdal132_vc71.zip
http://vterrain.org/Distrib/gdal.html
http://www.gdal.org/gdal_building.html

23.4. Installing OTB 543

MinGW on Windows platform

1. Download the lastest version of mingw and msys athttp://www.mingw.org and install
those two programs.

Then, launch MinGW : a prompt appears (similar to Linux one).

2. Install GDAL

To compile GDAL, at configure step, use these options :

./configure -prefix=INSTALL_DIR --host=mingw32 --witho ut-libtool
--without-python --with-png=internal --with-libtiff=i nternal
--with-jpeg=internal

Then the usual make and make install.

3. Install Fltk

Generate MSYS Makefiles with CMake (Windows version) from fltk sources.

Then, under prompt, tape make and make install where you havegenerated Makefiles
with CMake.

4. Install OTB

Similar to fltk install.

Cygwin

1. Download the lastest version athttp://www.cygwin.com and install it. Then, launch it,
a prompt appears (similar to Linux one).

2. Install GDAL

To compile GDAL, at configure step, use these options :

./configure --prefix=INSTALL_DIR --with-png=internal - -with-libtiff=internal
--with-jpeg=internal

Then the usual make and make install.

3. Install Fltk

See Linux part for details (same procedure).

4. Install OTB

See Linux part for details (same procedure).

That should be all! Otherwise, subscribe to otb-users@googlegroups.com and you will get
some help.

http://www.mingw.org
http://www.cygwin.com

544 Chapter 23. Frequently Asked Questions

23.4.4 Specific platform issues

SunOS/HP UX

Due to a bug in the tar command shipped with some versions of SunOS, problems may appear
when configuring, compiling or installing OTB.

Seehttp://www.gnu.org/software/tar/manual/tar.html#Che cksumming for details on
the bug characterization.

The solution is to use the GNU tar command if it is available onyour system (gtar).

Linux Debian/Ubuntu

If you used the official gdal package version 1.4.0, the library is namedlibgdal1.4.0.so
so you have to create a simlink namedlibgdal.so : ln -s /usr/lib/libgdal1.4.0.so
/usr/lib/libgdal.so .

Cygwin

Due to an unknown bug, Fltk can’t compile on some versions of Cygwin (OpenGL problems).

Put OTB USE VISU to OFF to avoid these problems.

Some bugs can appear while compiling GDAL with JPEG2000 files: disable this format to
solve the problem.

MSVC++ 8.0

Execution errors can appear on some platforms, using GDAL compiled with MSVC++ 8.0.

This problem can be solved by downloading GDAL binaries for Windows at
http://vterrain.org/Distrib/gdal.html .

23.5 Using OTB

23.5.1 Where to start ?

OTB presents a large set of features and it is not always easy to start using it. After the instal-
lation, you can proceed to the tutorials (in the Software Guide). This should give you a quick
overview of the possibilities of OTB and will teach you how tobuild your own programs.

http://www.gnu.org/software/tar/manual/tar.html#Checksumming
http://vterrain.org/Distrib/gdal.html

23.6. Getting help 545

23.5.2 What is the image size limitation of OTB ?

The maximum physical space a user can allocate depends on herplatform. Therefore, image
allocation in OTB is restricted by image dimension, size, pixel type and number of bands.

Fortunately, thanks to the streaming mechanism implemented within OTB’s pipeline (actually
ITK’s), this limitation can be bypassed. The use of theotb::StreamingImageFileWriter
at the end of the pipeline, or theitk::StreamingImageFilter at any point of the pipeline
will seamlessly break the large, problematic data into small pieces whose allocation is possible.
These pieces are processed one afther the other, so that there is not allocation problem anymore.
We are often working with images of 25000×25000 pixels.

For the streaming to work, all the filters in the pipeline mustbe streaming capable (this is the
case for most of the filters in OTB). The output image format also need to be streamable (not
PNG or JPEG, but TIFF or ENVI, for instance).

To tune the size of the streaming pieces, the OTB has two CMakevariables. The first
is named OTBSTREAM IMAGE SIZE TO ACTIVATE STREAMING. It represents the
minimum size of the image in bytes for which streaming may be helpful. The second,
OTB STREAM MAX SIZE BUFFER FOR STREAMING, specifies the maximum size in
bytes a streaming piece should have. It can be used to computethe optimal number of pieces to
break the input data into.

These two parameters have been used in the OTB-Applications/Utils/ applications. Take this as
an example of how they can be used. They can also be tuned by theuser to match her specific
needs.

23.6 Getting help

23.6.1 Is there any mailing list?

Yes. There is a discussion group athttp://groups.google.com/group/otb-users/ where
you can get help on the set up and the use of OTB.

23.6.2 Which is the main source of documentation?

The main source of documentation is the OTB Software Guide which can be downloaded
at http://orfeo-toolbox.sourceforge.net/Docs/OTBSoftwa reGuide.pdf . It contains
tenths of commented examples and a tutorial which should be agood starting point for
any new OTB user. The code source for these examples is distributed with the tool-
box. Another information source is the on-line API documentation which is available at
http://orfeo-toolbox.sourceforge.net/Doxygen .

http://www.melaneum.com/OTB/doxygen/classotb_1_1StreamingImageFileWriter.html
http://www.melaneum.com/OTB/doxygen/classitk_1_1StreamingImageFilter.html
http://groups.google.com/group/otb-users/
http://orfeo-toolbox.sourceforge.net/Docs/OTBSoftwareGuide.pdf
http://orfeo-toolbox.sourceforge.net/Doxygen

546 Chapter 23. Frequently Asked Questions

23.7 Contributing to OTB

23.7.1 I want to contribute to OTB, where to begin?

First, you can send an email to otb@cnes.fr to let us know whatfunctionality you would like to
introduce in OTB. If the functionality seems important for the OTB users, we will then discuss
on how to send your code, make the necessary adaptions, checkwith you that the results are
correct and finally include it in the next release.

23.7.2 What are the benefits of contributing to OTB?

Besides the satisfaction of contributing to an open source project, we will include the references
to relevant papers in the software guide. Having algorithmspublished in the form of repro-
ducible research helps science move faster and encourages people who needs your algorithms
to use them.

You will also benefit from the strengths of OTB: multiplatform, streaming and threading, etc.

23.7.3 What functionality can I contribute?

All functionalities which are useful for remote sensing data are of interest. As OTB is a library,
it should be generic algorithms: change, detection, fusion, object detection, segmentation, in-
terpolation, etc.

More specific applications can be contributed to the OTB-Applications package.

23.8 OTB’s Roadmap

23.8.1 Which will be the next version of OTB?

OTB’s version numbers have 3 digits. The first one is for majorversions, the second one is for
minor versions and the last one is for bugfixes.

The first version was 1.0.0 in July 2006. Version 1.2.0, 1.4.0and 1.6.0 were released in between
and the current one 2.0.0 was released in December 2007. The next one will probably be 2.2.0.

What is a major version?

A major version of the library implies the addition of high-level functionalities as for instance
image registration, object recognition, etc.

23.8. OTB’s Roadmap 547

What is a minor version?

A minor version is released when low-level functionalitiesare available within one major func-
tionality, as for instance a new change detector, a new feature extractor, etc.

What is a bugfix version?

A bugfix version is released when significant bugs are identified and fixed.

23.8.2 When will the next version of OTB be available?

We plan to release major new OTB version once a year, that is, version 2.0.0 was available at
the end of 2007, version 3.0.0 should be released by the end of2008, and so on.

23.8.3 What features will the OTB include and when?

There is no detailed plan about the availability of OTB new features, since OTB’s content de-
pends on ongoing research work and on feedback from thematicusers of the ORFEO Accom-
paniment Program.

Nevertheless, the main milestones for the OTB development are the following:

• Version 1 (2006):

– core of the system,

– IO,

– basic filtering, segmentation and classification,

– basic feature extraction,

– basic change detection.

• Version 2 (2007):

– geometric corrections,

– radiometric corrections,

– registration.

• Version 3 (2008):

– multi-scale and multi-resolution analysis,

– object detection and recognition,

– supervised learning.

548 Chapter 23. Frequently Asked Questions

• Version 4 (2009):

– data fusion,

– spatial reasoning.

BIBLIOGRAPHY

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Professional Computing Series. Addison-Wesley, 2001. 8.6.1

[2] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. InProc. 17th International Conf. on Machine Learning,
pages 9–16. Morgan Kaufmann, San Francisco, CA, 2000. 17.3.1

[3] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. InFirst
Workshop on High-Performance Data Mining, 1998. 17.1.1

[4] L. Alvarez and J.-M. Morel.A Morphological Approach To Multiscale Analysis: From
Principles to Equations, pages 229–254. Kluwer Academic Publishers, 1994. 7.6.2

[5] M. H. Austern. Generic Programming and the STL:. Professional Computing Series.
Addison-Wesley, 1999. 3.2.1, 8.6.1

[6] Y. Bazi, L. Bruzzone, and F. Melgani. An unsupervised approach based on the general-
ized Gaussian model to automatic change detection in multitemporal SAR images.IEEE
Trans. Geoscience and Remote Sensing, 43(4):874–887, April 2005. 16.1.1

[7] J. Besag. On the statistical analysis of dirty pictures.J. Royal Statist. Soc. B., 48:259–
302, 1986. 17.1.5

[8] L. Bruzzone and F. Melgani. Support vector machines for classification of hyperspectral
remote-sensing images. InIEEE International Geoscience and Remote Sensing Sympo-
sium, IGARSS, volume 1, pages 506–508, June 2002. 17.3

[9] L. Bruzzone and D. F. Prieto. An adaptive semiparametricand context-based approach
to unsupervised change detection in multitemporal remote-sensing images.IEEE Trans.
Image Processing, 11(4):452–466, April 2002. 16.1.1

[10] C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining
and Knowledge Discovery, 2(2):121–167, 1998. 17.3.1

550 Bibliography

[11] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208,
1995. 8.8

[12] R. H. B. C. Zhu and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines
for large scale bound constrained optimization.ACM Transactions on Mathematical
Software, 23(4):550–560, November 1997. 8.8

[13] K. Castleman.Digital Image Processing. Prentice Hall, Upper Saddle River, NJ, 1996.
19.4.1, 19.4.2

[14] G. Celeux and J. Diebolt. The SEM algorithm: a probabilistic teacher algorithm derived
from the EM algorithm for the mixture problem.Computational Statistics Quarterly,
2(1):73–82, 1985. 17.2.1

[15] E. Christophe and J. Inglada. Robust road extraction for high resolution satellite images.
In IEEE International Conference on Image Processing, ICIP07, 2007. 13.6.1

[16] A. Chung, W. Wells, A. Norbash, and W. Grimson. Multi-modal image registration by
minimising kullback-leibler distance. InMICCAI’02 Medical Image Computing and
Computer-Assisted Intervention, Lecture Notes in Computer Science, pages 525–532,
2002. 8.7.5

[17] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Auto-
mated multimodality image registration based on information theory. InInformation
Processing in Medical Imaging 1995, pages 263–274. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1995. 8.4

[18] P. R. Coppin, I. Jonckheere, and K. Nachaerts. Digital change detection in ecosystem
monitoring: a review.Int. J. of Remote Sensing, 24:1–33, 2003. 16.1.1

[19] P. E. Danielsson. Euclidean distance mapping.Computer Graphics and Image Process-
ing, 14:227–248, 1980. 7.7

[20] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. Aphysics-based coordinate
transformation for 3-d image matching.IEEE Transactions on Medical Imaging, 16(3),
June 1997. 8.6.18

[21] P. Deer. Digital change detection in remotely sensed imagery using fuzzy set theory.
Phd thesis, University of Adelaı̈de, Australia, Department of Geography and Computer
Science, 1998. 16.1.1

[22] R. Deriche. Fast algorithms for low level vision.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(1):78–87, 1990. 7.2.2, 7.6.1

[23] R. Deriche. Recursively implementing the gaussian andits derivatives. Technical Report
1893, Unite de recherche INRIA Sophia-Antipolis, avril 1993. Research Repport. 7.2.2,
7.6.1

Bibliography 551

[24] S. Derrode, G. Mercier, and W. Pieczynski. Unsupervised change detection in SAR
images using a multicomponent hidden Markov chain model. InSecond Int. Workshop
on the Analysis of Multi-temporal Remote Sensing Images, volume 3, pages 195–203,
Ispra, Italy, July 16-18 2003. 16.1.1

[25] A. Desolneux, L. Moisan, and J.-M. Morel. Meaningful alignments. Int. J. Comput.
Vision, 40(1):7–23, 2000. 13.3

[26] C. Dodson and T. Poston.Tensor Geometry: The Geometric Viewpoint and its Uses.
Springer, 1997. 8.6.1, 2

[27] J. R. Dominique Fasbender and P. Bogaert. Bayesian DataFusion for Adaptable Image
Pansharpening.Transactions on Geoscience and Remote Sensing, in press, 2007. 12.2

[28] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern classification. A Wiley-Interscience
Publication, second edition, 2000. 17.1, 17.1

[29] S. Dudani, K. Breeding, and R. McGhee. Aircraft identification by moments invariants.
IEEE Transanctions on Computers, 26:39–45, 1977. 13.5.2

[30] V. N. Dvorchenko. Bounds on (deterministic) correlation functions with applications to
registration.IEEE Trans. PAMI, 5(2):206–213, 1983. 9.1

[31] D. Eberly.Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dordrecht,
1996. 14.2.1

[32] J. Flusser. On the independence of rotation moment invariants. Pattern Recognition,
33:1405–1410, 2000. 13.5.2, 13.5.3

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns, Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995. 3.2.6,
6.2, 22.6

[34] G. Gerig, O. K̈ubler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI
data.IEEE Transactions on Medical Imaging, 11(2):221–232, June 1992. 7.6.2

[35] R. Gonzalez and R. Woods.Digital Image Processing. Addison-Wesley, Reading, MA,
1993. 19.4.1, 19.4.1, 19.4.2

[36] H. Gray.Gray’s Anatomy. Merchant Book Company, sixteenth edition, 2003. 5.1.6

[37] S. Grossberg. Neural dynamics of brightness perception: Features, boundaries, diffusion,
and resonance.Perception and Psychophysics, 36(5):428–456, 1984. 7.6.2

[38] J. Hajnal, D. J. Hawkes, and D. Hill.Medical Image Registration. CRC Press, 2001.
8.7.6

[39] W. R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, 1969. 8.6.1,
8.6.11, 8.8

552 Bibliography

[40] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. S. Cox, and D. J.
Hawkes. Voxel similarity measures for 3d serial mr brain image registration. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editors,Information Processing in Medical Imaging
1999 (IPMI’99), pages 472–477. Springer, 1999. 8.7.3

[41] C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines,
2001. 17.3.1

[42] M. K. Hu. Visual Pattern Recognition by moment invariants. IEEE Transactions on
Information Theory, 8(2):179–187, 1962. 13.5.2

[43] J. Inglada. Similarity Measures for Multisensor Remote Sensing Images. InInternational
Geoscience and Remote Sensing Symposium, IGARSS 2002, CD-ROM, 2002. 9.1.2

[44] J. Inglada. Change detection on SAR images by using a parametric estimation of the
Kullback-Leibler divergence. InIEEE Int. Conf. Geosci. Remote Sensing, Toulouse,
France, July, 21-25 2003. 16.1.1, 16.4.1

[45] J. Inglada and A. Giros. On the possibility of automaticmulti-sensor image registration.
IEEE Trans. Geoscience and Remote Sensing, 42(10), Oct. 2004. 8.4

[46] J. Inglada and G. Mercier. A New Statistical SimilarityMeasure for Change Detection
in Multitemporal SAR Images and its Extension to MultiscaleChange Analysis.IEEE
Trans. Geosci. Remote Sensing, 45(5):1432–1446, May 2007. 16.1.1, 16.4.1

[47] J.Flusser and T. Suk. A moment based approach to registration of image with affine
geometric distortion.IEEE Transactions Geoscience Remote Sensing, 32(2):382–387,
1994. 13.5.2

[48] T. Joachims. Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. Technical report, Computer Science of The University of dortmund,
Nov. 1997. 17.3

[49] C. J. Joly.A Manual of Quaternions. MacMillan and Co. Limited, 1905. 8.6.11

[50] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. 17.1.1

[51] Y. J. Kaufman and D. Tanré. Atmospherically Resistant Vegetation Index (ARVI) for
EOS-MODIS. Transactions on Geoscience and Remote Sensing, 40(2):261–270, Mar.
1992. 11.1.3

[52] J. Köenderink and A. van Doorn. The Structure of Two-DimensionalScalar Fields with
Applications to Vision.Biol. Cybernetics, 33:151–158, 1979. 14.2.1

[53] J. Koenderink and A. van Doorn. Local features of smoothshapes: Ridges and courses.
SPIE Proc. Geometric Methods in Computer Vision II, 2031:2–13, 1993. 14.2.1

[54] C. Kuglin and D. Hines. The phase correlation image alignment method. InIEEE Con-
ference on Cybernetics and Society, pages 163–165, 1975. 9.1

Bibliography 553

[55] V. Lacroix and M. Acheroy. Feature extraction using theconstrained gradient.ISPRS
Journal of Photogrammetry & Remote Sensing, 53:85–94, 1998. 13.6.1, 13.6.2

[56] J. Lee. Digital image enhancement and noise filtering byuse of local statistics.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2:165–168, 1980. 7.6.3

[57] T. Lindeberg.Scale-Space Theory in Computer Science. Kluwer Academic Publishers,
1994. 7.6.1

[58] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell.Molecular
Cell Biology. W. H. Freeman and Company, 2000. 5.1.6, 8.6.1

[59] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004. 13.2.2

[60] D. Lu, P. Mausel, E. Brondizio, and E. Moran. Change detection techniques.Int. J. of
Remote Sensing, 25(12):2365–2407, 2004. 16.1.1

[61] F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. Suetens. Multi-modality image
registration by maximization of mutual information.IEEE Trans. on Med. Imaging,
16:187–198, 1997. 8.4

[62] D. Malacara. Color Vision and Colorimetry: Theory and Applications. SPIE PRESS,
2002. 5.1.6, 5.1.6

[63] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, andW. Eubank. Non-rigid multi-
modality image registration. InMedical Imaging 2001: Image Processing, pages 1609–
1620, 2001. 8.6.17, 8.7.4

[64] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, andW. Eubank. PET-CT image
registration in the chest using free-form deformations.IEEE Trans. on Medical Imaging,
22(1):120–128, Jan. 2003. 8.6.17

[65] D. Musser and A. Saini.STL Tutorial and Reference Guide. Professional Computing
Series. Addison-Wesley, 1996. 3.2.1

[66] V. Onana, E. Trouv́e, G. Mauris, J. Rudant, and P. Frison. Change detection in urban
context with multitemporal ERS-SAR images by using data fusion approach. InIEEE
Int. Conf. Geosci. Remote Sensing, Toulouse, France, July, 21-25 2003. 16.1.1

[67] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an application to
face detection, 1997. 17.3

[68] D. Pelleg and A. Moore. Accelerating exact k -means algorithms with geometric rea-
soning. InFifth ACM SIGKDD International Conference On Knowledge Discovery and
Data Mining, pages 277–281, 1999. 17.1.1

[69] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes. A
comparision of similarity measures for use in 2d-3d medicalimage registration.IEEE
Transactions on Medical Imaging, 17(4):586–595, August 1998. 8.7.3

554 Bibliography

[70] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.IEEE
Transactions on Pattern Analysis Machine Intelligence, 12:629–639, 1990. 7.6.2, 7.6.2,
7.6.2

[71] J. P. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information-Based Registration
of Medical Images: A Survey.IEEE Transactions on Medical Imaging, 22(8):986–1004,
Aug. 2003. 8.7.4

[72] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in
C. Cambridge University Press, second edition, 1992. 8.8

[73] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysman. Image change detection al-
gorithms: a systematic survey.IEEE Trans. Image Processing, 14(3):294–307, March
2005. 16.1.1

[74] J. A. Richards. Analysis of remotely sensed data: the formative decades and the fututre.
IEEE Trans. Geoscience and Remote Sensing, 43(3):422–432, 2005. 16.1.1

[75] K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elas-
tric registration: Integration of landmark errors and orientation attributes. In A. Kuba,
M. Samal, and A. Todd-Pkropek, editors,Information Processing in Medical Imaging
1999 (IPMI’99), pages 252–265. Springer, 1999. 8.6.18

[76] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese,and M. H. Kuhn. Landmark-
based elastic registration using approximating thin-plate splines.IEEE Transactions on
Medical Imaging, 20(6):526–534, June 1997. 8.6.18

[77] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Nonrigid registration using free-form deformations: Application to breast mr images.
IEEE Transaction on Medical Imaging, 18(8):712–721, 1999. 8.6.17

[78] G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images with applications
to color filtering. IEEE Trans. on Image Processing, 5:1582–1586, 1996. 7.6.2

[79] J. P. Serra.Image Analysis and Mathematical Morphology. Academic Press Inc., 1982.
7.5.3, 14.2.1

[80] J. Sethian.Level Set Methods and Fast Marching Methods. Cambridge University Press,
1996. 14.3

[81] J. C. Spall. An overview of the simultaneous perturbation method for efficient optimiza-
tion. Johns Hopkins APL Technical Digest, 19:482–492, 1998. 8.8

[82] E. Stabel and P. Fischer. Detection of structural changes in river dynamics by radar-based
earth observation methods. InProc. of the 1st Biennial Meeting of the Int. Environmental
Modelling and Software Society, volume 1, pages 352–358, Lugano, Switzerland, June
2002. 16.1.1

Bibliography 555

[83] M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Parametric estimate of intensity
homogeneities applied to MRI.IEEE Trans. Medical Imaging, 19(3):153–165, Mar.
2000. 8.8

[84] B. M. ter Haar Romeny, editor.Geometry-Driven Diffusion in Computer Vision. Kluwer
Academic Publishers, 1994. 7.6.2

[85] R. Touzi, A. Lopes, and P. Bousquet. A statistical and geometrical edge detector for SAR
images.IEEE Trans. Geoscience and Remote Sensing, 26(6):764–773, November 1988.
7.4.2

[86] J. Townshend, C. Justice, C. Gurney, and J. McManus. Theimpact of misregistration on
change detection.IEEE Transactions on Geoscience and Remote Sensing, 30(5):1054–
1060, sept 1992. 9.1.1

[87] F. Tupin, H. Mâıtre, J.-F. Mangin, J.-M. Nicolas, and E. Pechersky. Detection of linear
features in SAR images: application to road network extraction. IEEE Transactions on
Geoscience and Remote Sensing, 36(2):434–453, Mar. 1998. 13.4.1, 13.4.1

[88] V. Vapnik. Statistical learning theory. John Wiley and Sons, NewYork, 1998. 17.3

[89] P. Viola and W. M. Wells III. Alignment by maximization of mutual information.IJCV,
24(2):137–154, 1997. 8.4, 8.7.4

[90] J. Weickert, B. ter Haar Romeny, and M. Viergever. Conservative image transformations
with restoration and scale-space properties. InProc. 1996 IEEE International Conference
on Image Processing (ICIP-96, Lausanne, Sept. 16-19, 1996), pages 465–468, 1996.
7.6.2

[91] J. Weston and C. Watkins. Multi-class support vector machines, 1998. 17.3.1

[92] R. T. Whitaker. Characterizing first and second order patches using geometry-limited
diffusion. In Information Processing in Medical Imaging 1993 (IPMI’93), pages 149–
167, 1993. 7.6.2

[93] R. T. Whitaker.Geometry-Limited Diffusion. PhD thesis, The University of North Car-
olina, Chapel Hill, North Carolina 27599-3175, 1993. 7.6.2, 7.6.2

[94] R. T. Whitaker. Geometry-limited diffusion in the characterization of geometric patches
in images. Computer Vision, Graphics, and Image Processing: Image Understanding,
57(1):111–120, January 1993. 7.6.2

[95] R. T. Whitaker and G. Gerig.Vector-Valued Diffusion, pages 93–134. Kluwer Academic
Publishers, 1994. 7.6.2, 7.6.2

[96] R. T. Whitaker and S. M. Pizer. Geometry-based image segmentation using anisotropic
diffusion. In Y.-L. O, A. Toet, H. Heijmans, D. Foster, and P.Meer, editors,Shape in
Picture: The mathematical description of shape in greylevel images. Springer Verlag,
Heidelberg, 1993. 7.6.2

556 Bibliography

[97] R. T. Whitaker and S. M. Pizer. A multi-scale approach to nonuniform diffusion.Com-
puter Vision, Graphics, and Image Processing: Image Understanding, 57(1):99–110,
January 1993. 7.6.2

[98] R. T. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for Image Pro-
cessing. InInternational Conference on Image Processing, pages 142–145. IEEE, 2001.
7.6.2

[99] G. Wyszecki.Color Science: Concepts and Methods, Quantitative Data andFormulae.
Wiley-Interscience, 2000. 5.1.6, 5.1.6

[100] T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J. Rhoades, and R. Whitaker. Direct
visualization of volume data.IEEE Computer Graphics and Applications, 12(4):63–71,
1992. 14.2.1

[101] T. Yoo, S. Pizer, H. Fuchs, T. Cullip, J. Rhoades, and R.Whitaker. Achieving direct vol-
ume visualization with interactive semantic region selection. In Information Processing
in Medical Images. Springer Verlag, 1991. 14.2.1, 14.2.1

[102] T. S. Yoo and J. M. Coggins. Using statistical pattern recognition techniques to control
variable conductance diffusion. InInformation Processing in Medical Imaging 1993
(IPMI’93), pages 459–471, 1993. 7.6.2

INDEX

BufferedRegion, 518

CellAutoPointer, 88
TakeOwnership(), 89, 91

CellDataContainer
Begin(), 92
ConstIterator, 92
End(), 92
Iterator, 92

CellDataIterator
increment, 92
Value(), 92

CellIterator
increment, 90
Value(), 90

CellsContainer
Begin(), 90
End(), 90

CellType
creation, 89, 91
GetNumberOfPoints(), 90
Print(), 90

CMake, 12
downloading, 12

Command/Observer design pattern, 24
Complex images

Instantiation, 108
Reading, 108
Writing, 108

Configuration, 12
with VTK, 13

const-correctness, 84

ConstIterator, 84
convolution

kernels, 492
operators, 492

convolution filtering, 491
CreateStructuringElement()

itk::BinaryBallStructuringElement, 156,
159

data object, 27, 517
data processing pipeline, 28, 517
Digital elevation model, 123
Distance map, 170
down casting, 90
Downloading, 4

edge detection, 488
error handling, 24
event handling, 24
exceptions, 24

factory, 22
filter, 28, 517

overview of creation, 518
Filter, Pipeline, 37
forward iteration, 472

garbage collection, 23
Gaussian blurring, 495
Generic Programming, 471
generic programming, 21, 471

Hello World, 14, 33

558 Index

Image
Allocate(), 59
Header, 57
Index, 58
IndexType, 58
Instantiation, 57
itk::ImageRegion, 58
Multispectral, 108
New(), 57
Pointer, 57
RegionType, 58
RGB, 103
SetRegions(), 59
Size, 58
SizeType, 58

image region, 517
ImageAdaptor

RGB blue channel, 510
RGB green channel, 509
RGB red channel, 508

ImageAdaptors, 505
Installation, 11
InvokeEvent(), 24
it::GradientDifferenceImageToImageMetric,

231
iteration region, 472
Iterators

advantages of, 471
and bounds checking, 474
and image lines, 481
and image regions, 472, 475, 476, 478
const, 472
construction of, 472, 478
definition of, 471
Get(), 474
GetIndex(), 474
GoToBegin(), 472
GoToEnd(), 473
image, 471–503
image dimensionality, 478
IsAtBegin(), 474
IsAtEnd(), 474
neighborhood, 482–503
operator++(), 473

operator+=(), 473
operator–, 473
operator-=(), 473
programming interface, 472–476
Set(), 474
SetPosition(), 474
speed, 476, 478
Value(), 475

iterators
neighborhood

and convolution, 492
itk::AddImageFilter

Instantiation, 143
itk::AffineTransform, 198, 218

header, 198
Instantiation, 198
New(), 198
Pointer, 198

itk::AmoebaOptimizer, 233
itk::AutoPointer, 88

TakeOwnership(), 89, 91
itk::BinaryThresholdImageFilter

Header, 128
Instantiation, 128
SetInput(), 129
SetInsideValue(), 129
SetOutsideValue(), 129

itk::BinaryBallStructuringElement
CreateStructuringElement(), 156, 159
SetRadius(), 156, 159

itk::BinaryDilateImageFilter
header, 155
New(), 156
Pointer, 156
SetDilateValue(), 157
SetKernel(), 156
Update(), 157

itk::BinaryErodeImageFilter
header, 155
New(), 156
Pointer, 156
SetErodeValue(), 157
SetKernel(), 156
Update(), 157

Index 559

itk::BSplineDeformableTransform, 220
itk::CannyEdgeDetectionImageFilter,147

header, 147
itk::Cell

CellAutoPointer, 88
itk::CenteredRigid2DTransform, 211
itk::CenteredRigid2DTransform, 191

header, 191
Instantiation, 191
New(), 191
Pointer, 191

itk::Command, 24
itk::ConfidenceConnectedImageFilter, 333

header, 333
SetInitialNeighborhoodRadius(), 335
SetMultiplier(), 334
SetNumberOfIterations(), 335
SetReplaceValue(), 335
SetSeed(), 335

itk::ConjugateGradientOptimizer, 233
itk::ConnectedThresholdImageFilter, 322

header, 322
SetLower(), 323
SetReplaceValue(), 323
SetSeed(), 324
SetUpper(), 323

itk::CorrelationCoefficientHistogramImage-
ToImageMetric, 230

itk::CovariantVector
Concept, 203

itk::DanielssonDistanceMapImageFilter
GetOutput(), 171
GetVoronoiMap(), 171
Header, 170
Instantiation, 170
instantiation, 171
New(), 171
Pointer, 171
SetInput(), 171

itk::DanielssonDistanceMapImageFilter
InputIsBinaryOn(), 171

itk::DataObjectDecorator
Get(), 180
Use in Registration, 180

itk::DerivativeImageFilter, 140
GetOutput(), 140
header, 140
instantiation, 140
New(), 140
Pointer, 140
SetDirection(), 140
SetInput(), 140
SetOrder(), 140

itk::DiscreteGaussianImageFilter, 160
header, 160
instantiation, 161
New(), 161
Pointer, 161
SetMaximumKernelWidth(), 161
SetVariance(), 161
Update(), 161

itk::ElasticBodyReciprocalSplineKernel-
Transform, 221

itk::ElasticBodySplineKernelTransform, 221
itk::Euler2DTransform, 210
itk::Euler3DTransform, 216
itk::FastMarchingImageFilter

Multiple seeds, 348
NodeContainer, 348
Nodes, 348
NodeType, 348
Seed initialization, 349
SetStoppingValue(), 349
SetTrialPoints(), 349

itk::FileImageReader
GetOutput(), 132

itk::FloodFillIterator
In Region Growing, 322, 333

itk::GradientAnisotropicDiffusionImage-
Filter, 164

header, 164
instantiation, 164
New(), 164
Pointer, 164
SetConductanceParameter(), 165
SetNumberOfIterations(), 165
SetTimeStep(), 165
Update(), 165

560 Index

itk::GradientDescentOptimizer, 233
MaximizeOn(), 189

itk::GradientMagnitudeRecursiveGaussian-
ImageFilter, 138

header, 138
Instantiation, 138
New(), 138
Pointer, 138
SetSigma(), 139, 348
Update(), 139

itk::GradientMagnitudeImageFilter, 136
header, 136
instantiation, 136
New(), 136
Pointer, 136
Update(), 136

itk::GrayscaleDilateImageFilter
header, 157
New(), 158
Pointer, 158
SetKernel(), 159
Update(), 159

itk::GrayscaleErodeImageFilter
header, 157
New(), 158
Pointer, 158
SetKernel(), 159
Update(), 159

itk::IdentityTransform, 207
itk::ImageRegistrationMethod

Maximize vs Minimize, 189
Multi-Modality, 185

itk::ImageToImageMetric, 223
GetDerivatives(), 223
GetValue(), 223
GetValueAndDerivatives(), 223

itk::ImageAdaptor
Header, 506, 508, 510, 512
Instantiation, 506, 508, 510, 512
performing computation, 512
RGB blue channel, 510
RGB green channel, 509
RGB red channel, 508

itk::ImageFileReader

Instantiation, 110
itk::ImageFileWriter

Instantiation, 110
itk::ImageLinearIteratorWithIndex, 480–482

example of using, 481–482
GoToBeginOfLine(), 481
GoToReverseBeginOfLine(), 481
IsAtEndOfLine(), 481
IsAtReverseEndOfLine(), 481
NextLine(), 481
PreviousLine(), 481

itk::ImageRegionIterator, 476–478
example of using, 476–478

itk::ImageRegionIteratorWithIndex, 478–480
example of using, 479–480

itk::ImageRegistrationMethod
DataObjectDecorator, 180
GetOutput(), 180
Pipeline, 180
Resampling image, 180
SetFixedImageRegion(), 177

itk::KappaStatisticImageToImageMetric, 230
itk::KernelTransforms, 221
itk::LaplacianRecursiveGaussianImageFilter,

145
header, 145
New(), 146
Pointer, 146
SetSigma(), 146
Update(), 146

itk::LBFGSOptimizer, 233
itk::LBFGSBOptimizer, 233
itk::LevenbergMarquardtOptimizer, 233
itk::LineCell

Header, 87
Instantiation, 88, 91

itk::MapContainer
InsertElement(), 79, 81

itk::MatchCardinalityImageToImageMetric,
230

itk::MattesMutualInformationImageToImage-
Metric, 228

SetNumberOfHistogramBins(), 228
SetNumberOfSpatialSamples(), 228

Index 561

itk::MeanReciprocalSquareDifferenceImage-
ToImageMetric, 225

itk::MeanSquaresHistogramImageToImage-
Metric, 229

itk::MeanSquaresImageToImageMetric, 224
itk::MeanImageFilter, 151

GetOutput(), 152
header, 151
instantiation, 151
Neighborhood, 152
New(), 151
Pointer, 151
Radius, 152
SetInput(), 152

itk::MedianImageFilter, 153
GetOutput(), 154
header, 153
instantiation, 153
Neighborhood, 153
New(), 153
Pointer, 153
Radius, 153
SetInput(), 154

itk::Mesh, 27, 85
Cell data, 90
CellAutoPointer, 88
CellType, 87
CellType casting, 90
Dynamic, 85
GetCellData(), 92
GetCells(), 90
GetNumberOfCells(), 90
GetNumberOfPoints(), 86
GetPoints(), 87
Header file, 85
Inserting cells, 89
Instantiation, 86, 91
Iterating cell data, 92
Iterating cells, 90
New(), 86, 88, 91
PixelType, 91
Pointer, 91
Pointer(), 86
PointType, 86, 88, 91

SetCell(), 89, 91
SetPoint(), 86, 88, 91
Static, 85
traits, 87

itk::MutualInformationImageToImageMetric,
227

SetFixedImageStandardDeviation(), 187,
228

SetMovingImageStandardDeviation(),
187, 228

SetNumberOfSpatialSamples(), 189, 228
Trade-offs, 189

itk::NeighborhoodConnectedImageFilter
SetLower(), 331
SetReplaceValue(), 331
SetSeed(), 331
SetUppder(), 331

itk::NormalizedCorrelationImageToImage-
Metric, 225

itk::OnePlusOneEvolutionaryOptimizer, 233
itk::Optimizer, 231

GetCurrentPosition(), 231
SetInitialPosition(), 231
SetScales(), 231
StartOptimization(), 231

itk::OtsuThresholdImageFilter
SetInput(), 326
SetInsideValue(), 326
SetOutsideValue(), 326

itk::OtsuMultipleThresholdsCalculator
GetOutput(), 328

itk::PixelAccessor
performing computation, 512
with parameters, 510, 512

itk::Point
Concept, 203

itk::PointSet, 76
Dynamic, 76
GetNumberOfPoints(), 77, 80
GetPoint(), 78
GetPointData(), 81, 82, 84
GetPoints(), 79, 80, 84
Instantiation, 76
New(), 77

562 Index

PixelType, 80
PointDataContainer, 81
Pointer, 77
PointIterator, 84
PointsContainer, 78
PointType, 77
SetPoint(), 77, 83
SetPointData(), 81–83
SetPoints(), 79
Static, 76
Vector pixels, 83

itk::PowellOptimizer, 233
itk::QuaternionRigidTransform, 213
itk::QuaternionRigidTransformGradient-

DescentOptimizer, 233
itk::RecursiveGaussianImageFilter, 141

header, 141
Instantiation, 141, 145
New(), 142
Pointer, 142
SetSigma(), 143

itk::RegistrationMethod
GetCurrentIteration(), 201
GetLastTransformParameters(), 178, 201
GetValue(), 201
SetFixedImage(), 176
SetInitialTransformParameters(), 177
SetInterpolator(), 176
SetMetric(), 176
SetMovingImage(), 176
SetOptimizer(), 176
SetTransform(), 176, 191, 198

itk::RegularSetpGradientDescentOptimizer
GetCurrentIteration(), 178
SetMaximumStepLength(), 177
SetNumberOfIterations(), 178

itk::RegularStepGradientDescentOptimizer,
233

MinimizeOn(), 200
SetMinimumStepLength(), 177

itk::RescaleIntensityImageFilter
header, 105
SetOutputMaximum(), 105
SetOutputMinimum(), 105

itk::RGBPixel, 69
GetBlue(), 69
GetGreen(), 69
GetRed(), 69
header, 69
Image, 69, 103
Instantiation, 69, 104

itk::Rigid3DPerspectiveTransform, 217
itk::ScaleLogarithmicTransform, 210
itk::ScaleTransform, 208
itk::Similarity2DTransform, 212
itk::Similarity3DTransform, 217
itk::SingleValuedNonLinearOptimizer, 231
itk::SPSAOptimizer, 233
itk::Statistics::ExpectationMaximization-

MixtureModelEstimator, 408
itk::Statistics::GaussianMixtureModel-

Component, 408
itk::Statistics::GaussianDensityFunction, 402
itk::Statistics::KdTreeBasedKmeans-

Estimator, 390
itk::Statistics::NormalVariateGenerator, 402
itk::Statistics::SampleClassifier, 402
itk::ThinPlateR2LogRSplineKernel-

Transform, 221
itk::ThinPlateSplineKernelTransform, 221
itk::ThresholdImageFilter

Header, 132
Instantiation, 132
SetInput(), 132
SetOutsideValue(), 132
ThresholdAbove(), 132
ThresholdBelow(), 132, 133
ThresholdOutside(), 132

itk::Transform, 203
GetJacobian(), 206
SetParameters(), 206
TransformCovariantVector(), 203
TransformPoint(), 203
TransformVector(), 203

itk::TranslationTransform, 207
GetNumberOfParameters(), 177

itk::Vector, 70
Concept, 203

Index 563

header, 70
itk::PointSet, 83

itk::VectorContainer
InsertElement(), 79, 81

itk::Versor
Definition, 214

itk::VersorRigid3DTransformOptimizer, 233
itk::VersorTransformOptimizer, 233
itk::VersorRigid3DTransform, 215
itk::VersorTransform, 214
itk::VersorTransformOptimizer, 214
itk::VolumeSplineKernelTransform, 221

LaplacianRecursiveGaussianImageFilter
SetNormalizeAcrossScale(), 146

LargestPossibleRegion, 518
LineCell

GetNumberOfPoints(), 90
Print(), 90

mailing list, 5
mapper, 28, 517
Markov, 417

Classification, 417, 421
Filtering, 167
Regularization, 422
Restauration, 167

mesh region, 518
modified time, 518

Neighborhood iterators
active neighbors, 498
as stencils, 498
boundary conditions, 487
bounds checking, 487
construction of, 483
examples, 488
inactive neighbors, 498
radius of, 483
shaped, 498

NeighborhoodIterator
examples, 488
GetCenterPixel(), 485
GetImagePointer(), 485
GetIndex(), 486

GetNeighborhood(), 486
GetNeighborhoodIndex(), 487
GetNext(), 485
GetOffset(), 487
GetPixel(), 485
GetPrevious(), 486
GetRadius(), 484
GetSlice(), 487
NeedToUseBoundaryConditionOff(),

487
NeedToUseBoundaryConditionOn(),

487
OverrideBoundaryCondition(), 487
ResetBoundaryCondition(), 488
SetCenterPixel(), 485
SetNeighborhood(), 486
SetNext(), 486
SetPixel(), 485, 488
SetPrevious(), 486
Size(), 485

NeighborhoodIterators, 485, 486
numerics, 25

object factory, 22
OTB

history, 8
mailing list, 5

otb::AssymetricFusionOfDetector
SetLengthLine(), 300
SetWidthLine(), 300

otb::AssymetricFusionOfDetectorImageFilter
SetInput(), 300

otb::BayesianFusionFilter, 282
header, 282

otb::DEMHandler, 123
otb::DEMToImageGenerator, 123
otb::ExtractROI

header, 106, 111
otb::ExtractSegmentsImageFilter

SetInput(), 302
otb::FileImageReader

GetOutput(), 129, 166, 326
otb::Image, 27

GetBufferedRegion(), 177

564 Index

GetPixel(), 61, 69
Header, 174
Instantiation, 174
origin, 63
read, 59
SetOrigin(), 63
SetPixel(), 61
SetSpacing(), 63
Spacing, 62
TransformPhysicalPointToIndex(), 64

otb::ImageFileRead
Complex images, 108

otb::ImageFileReader,95, 100, 110
GetOutput(), 60
header, 95, 100, 105, 110
Instantiation, 59, 96, 105
New(), 60, 96, 101, 105, 107, 110
Pointer, 60
RGB Image, 69, 104
SetFileName(), 60, 96, 101, 106, 107,

110
SmartPointer, 96, 105, 107, 110
Update(), 60

otb::ImageFileWrite
Complex images, 108

otb::ImageFileWriter,95, 110
header, 95, 105, 110
Instantiation, 96, 105
New(), 96, 101, 105, 107, 110
RGB Image, 104
SetFileName(), 96, 106, 107, 110
SmartPointer, 96, 101, 105, 107, 110

otb::ImportImageFilter
Header, 72
Instantiation, 72
New(), 72
Pointer, 72
SetRegion(), 72

otb::LeeImageFilter
NbLooks(), 150, 166
SetInput(), 166
SetRadius(), 150, 166

otb::LineCorrelationDetector
SetLengthLine(), 298

SetWidthLine(), 298
otb::LineCorrelationDetectorImageFilter

SetInput(), 298
otb::LineRatioDetector

SetLengthLine(), 295
SetWidthLine(), 295

otb::LineRatioDetectorImageFilter
SetInput(), 295

otb::MultiChannelRAndBAndNIRVegetationIndexImageFilter,
268, 270

header, 268, 270
otb::RAndNIRVegetationIndexImageFilter,

266
otb::StreamingImageFileReader

SmartPointer, 101
otb::StreamingImageFileWriter,100

header, 100
Instantiation, 100
SetFileName(), 101

otb::SVMPointSetModelEstimator, 431
otb::TouziEdgeDetectorImageFilter

SetInput(), 149
otb::VectorImage

Instantiation, 70
otb::VegetationIndex, 266, 268, 270

header, 266, 268, 270

pipeline
downstream, 518
execution details, 522
information, 518
modified time, 518
overview of execution, 520
PropagateRequestedRegion, 523
streaming large data, 519
ThreadedFilterExecution, 524
UpdateOutputData, 524
UpdateOutputInformation, 522
upstream, 518

PixelAccessor
RGB blue channel, 510
RGB green channel, 509
RGB red channel, 508

PointDataContainer

Index 565

Begin(), 82
End(), 82
increment ++, 82
InsertElement(), 81
Iterator, 82
New(), 81
Pointer, 81

PointsContainer
Begin(), 79, 87
End(), 80, 87
InsertElement(), 79
Iterator, 79, 80, 87
New(), 78
Pointer, 78, 79
Size(), 80

Print(), 90
process object, 28, 517
ProgressEvent(), 24

reader, 28
Reader, Writer, Pipeline, 35
RecursiveGaussianImageFilter

SetDirection(), 142
SetNormalizeAcrossScale(), 143
SetOrder(), 142

region, 517
RegularStepGradientDescentOptimizer

SetMaximumStepLength(), 194
SetMinimumStepLength(), 194
SetNumberOfIterations(), 194
SetRelaxationFactor(), 194

RequestedRegion, 518
reverse iteration, 472, 475
RGB

reading Image, 103
writing Image, 103

scene graph, 29
SetCell()

itk::Mesh, 89
SetDilateValue()

itk::BinaryDilateImageFilter, 157
SetErodeValue()

itk::BinaryErodeImageFilter, 157
SetFileName()

otb::ImageFileReader, 96, 101, 106, 107,
110

otb::ImageFileWriter, 96, 106, 107, 110
otb::StreamingImageFileWriter, 101

SetInsideValue()
itk::BinaryThresholdImageFilter, 129
itk::OtsuThresholdImageFilter, 326

SetKernel()
itk::BinaryDilateImageFilter, 156
itk::BinaryErodeImageFilter, 156
itk::GrayscaleDilateImageFilter, 159
itk::GrayscaleErodeImageFilter, 159

SetNbLooks()
otb::LeeImageFilter, 150, 166

SetNumberOfIterations()
itk::GradientAnisotropicDiffusion-

ImageFilter, 165
SetOutsideValue()

itk::BinaryThresholdImageFilter, 129
itk::OtsuThresholdImageFilter, 326
itk::ThresholdImageFilter, 132

SetRadius()
itk::BinaryBallStructuringElement, 156,

159
SetSigma()

itk::GradientMagnitudeRecursive-
GaussianImageFilter, 139

itk::LaplacianRecursiveGaussianImageFilter,
146

itk::RecursiveGaussianImageFilter, 143
SetTimeStep()

itk::GradientAnisotropicDiffusion-
ImageFilter, 165

ShapedNeighborhoodIterator, 498
ActivateOffset(), 498
ClearActiveList(), 499
DeactivateOffset(), 499
examples of, 499
GetActiveIndexListSize(), 499
Iterator::Begin(), 499
Iterator::End(), 499

smart pointer, 22
Sobel operator, 488, 491
source, 28, 517

566 Index

spatial object, 29
Statistics

Bayesian plugin classifier, 402
Expectation maximization, 408
k-means clustering (using k-d tree), 390
Mixture model estimation, 408

Streaming, 100, 515
streaming, 28

template, 21
Threading, 515

Vector
Geometrical Concept, 203

vector data, 117
dxf, 117
shapefile, 119

VNL, 25
Voronoi partitions, 171

itk::DanielssonDistanceMapImageFilter,
171

Watersheds, 336
ImageFilter, 339
Overview, 336

	I Introduction
	Welcome
	Organization
	How to Learn OTB
	Software Organization
	Obtaining the Software

	Downloading OTB
	Join the Mailing List
	Directory Structure
	Documentation
	Data

	The OTB Community and Support
	A Brief History of OTB
	ITK's history

	Installation
	External Libraries
	Configuring OTB
	Preparing CMake
	Configuring OTB
	Building ITK

	Getting Started With OTB
	Hello World !

	System Overview
	System Organization
	Essential System Concepts
	Generic Programming
	Include Files and Class Definitions
	Object Factories
	Smart Pointers and Memory Management
	Error Handling and Exceptions
	Event Handling
	Multi-Threading

	Numerics
	Data Representation
	Data Processing Pipeline
	Spatial Objects

	II Tutorials
	Building Simple Applications with OTB
	Hello world
	Pipeline basics: read and write
	Filtering pipeline
	Handling types: scaling output
	Working with multispectral or color images
	Parsing command line arguments
	Viewer
	Going from raw satellite images to useful products

	III User's guide
	Data Representation
	Image
	Creating an Image
	Reading an Image from a File
	Accessing Pixel Data
	Defining Origin and Spacing
	Accessing Image Metadata
	RGB Images
	Vector Images
	Importing Image Data from a Buffer
	Image Lists

	PointSet
	Creating a PointSet
	Getting Access to Points
	Getting Access to Data in Points
	Vectors as Pixel Type

	Mesh
	Creating a Mesh
	Inserting Cells
	Managing Data in Cells

	Path
	Creating a PolyLineParametricPath

	Reading and Writing Images
	Basic Example
	Pluggable Factories
	IO Streaming
	Implicit Streaming
	Explicit Streaming

	Reading and Writing RGB Images
	Reading, Casting and Writing Images
	Extracting Regions
	Reading and Writing Vector Images
	Reading and Writing Complex Images

	Reading and Writing Multiband Images
	Extracting ROIs

	Reading Image Series
	Reading and Writing Vector Data
	Reading DXF Files
	Reading and Writing Vector Data Files

	Reading DEM Files

	Basic Filtering
	Thresholding
	Binary Thresholding
	General Thresholding
	Threshold to Point Set

	Gradients
	Gradient Magnitude
	Gradient Magnitude With Smoothing
	Derivative Without Smoothing

	Second Order Derivatives
	Laplacian Filters
	Laplacian Filter Recursive Gaussian

	Edge Detection
	Canny Edge Detection
	Ratio of Means Detector

	Neighborhood Filters
	Mean Filter
	Median Filter
	Mathematical Morphology
	Binary Filters
	Grayscale Filters

	Smoothing Filters
	Blurring
	Discrete Gaussian

	Edge Preserving Smoothing
	Introduction to Anisotropic Diffusion
	Gradient Anisotropic Diffusion

	Edge Preserving Speckle Reduction Filters
	Edge preserving Markov Random Field

	Distance Map

	Image Registration
	Registration Framework
	"Hello World" Registration
	Features of the Registration Framework
	Direction of the Transform Mapping
	Registration is done in physical space

	Multi-Modality Registration
	Viola-Wells Mutual Information

	 Centered Transforms
	Rigid Registration in 2D
	Centered Affine Transform

	Transforms
	Geometrical Representation
	Transform General Properties
	Identity Transform
	Translation Transform
	Scale Transform
	Scale Logarithmic Transform
	Euler2DTransform
	CenteredRigid2DTransform
	Similarity2DTransform
	QuaternionRigidTransform
	VersorTransform
	VersorRigid3DTransform
	Euler3DTransform
	Similarity3DTransform
	Rigid3DPerspectiveTransform
	AffineTransform
	BSplineDeformableTransform
	KernelTransforms

	Metrics
	Mean Squares Metric
	Exploring a Metric

	Normalized Correlation Metric
	Mean Reciprocal Square Differences
	Mutual Information Metric
	Parzen Windowing
	Viola and Wells Implementation
	Mattes et al. Implementation

	Kullback-Leibler distance metric
	Normalized Mutual Information Metric
	Mean Squares Histogram
	Correlation Coefficient Histogram
	Cardinality Match Metric
	Kappa Statistics Metric
	Gradient Difference Metric

	Optimizers

	Disparity Map Estimation
	Disparity Maps
	Geometric deformation modeling
	Similarity measures
	The correlation coefficient

	Disparity Map Estimation Framework
	Simple Disparity Map Estimation

	Ortho-registration
	Sensor Models
	Types of Sensor Models
	Using Sensor Models
	Limits of the Approach

	Map Projections
	Ortho-rectification with OTB

	 Radiometry
	Vegetation Index
	Introduction
	NDVI
	ARVI

	Atmospheric Corrections

	Image Fusion
	Simple Pan Sharpening
	Bayesian Data Fusion

	Feature Extraction
	Introduction
	Interest Points
	Harris detector
	SIFT detector

	Alignments
	Lines
	Line Detection
	Segment Extraction

	Geometric Moments
	Complex Moments
	Complex Moments for Images
	Complex Moments for Paths

	Hu Moments
	Hu Moments for Images

	Flusser Moments
	Flusser Moments for Images

	Road extraction
	Road extraction filter
	Step by step road extraction

	Image Segmentation
	Region Growing
	Connected Threshold
	Otsu Segmentation
	Neighborhood Connected
	Confidence Connected

	Segmentation Based on Watersheds
	Overview
	Using the ITK Watershed Filter

	Level Set Segmentation
	Fast Marching Segmentation

	Multi-scale Analysis
	Introduction
	Morphological Pyramid
	Morphological Pyramid Exploitation

	Change Detection
	Introduction
	Surface-based approaches

	Change Detection Framework
	Simple Detectors
	Mean Difference
	Ratio Of Means

	Statistical Detectors
	Distance between local distributions
	Local Correlation

	Multi-Scale Detectors
	Kullback-Leibler Distance between distributions

	Classification
	Introduction
	k-d Tree Based k-Means Clustering
	K-Means Classification
	Simple version
	General approach

	Bayesian Plug-In Classifier
	Expectation Maximization Mixture Model Estimation
	Classification using Markov Random Fields
	ITK framework
	OTB framework

	Statistical Segmentations
	Stochastic Expectation Maximization

	Support Vector Machines
	Mathematical formulation
	Learning With PointSets
	PointSet Classification
	Learning With Images
	Image Classification
	Generic Kernel SVM
	Learning with User Defined Kernels
	Classification with user defined kernel

	Multi-band, streamed classification

	Kohonen's Self Organizing Map
	The algorithm
	Learning

	Building a color table
	SOM Classification
	Multi-band, streamed classification

	Image Visualization

	IV Developper's guide
	Iterators
	Introduction
	Programming Interface
	Creating Iterators
	Moving Iterators
	Accessing Data
	Iteration Loops

	Image Iterators
	ImageRegionIterator
	ImageRegionIteratorWithIndex
	ImageLinearIteratorWithIndex

	Neighborhood Iterators
	NeighborhoodIterator
	Basic neighborhood techniques: edge detection
	Convolution filtering: Sobel operator
	Optimizing iteration speed
	Separable convolution: Gaussian filtering
	Random access iteration

	ShapedNeighborhoodIterator
	Shaped neighborhoods: morphological operations

	Image Adaptors
	Image Casting
	Adapting RGB Images
	Adapting Vector Images
	Adaptors for Simple Computation
	Adaptors and Writers

	Streaming and Threading
	Introduction
	Streaming and threading in OTB
	Division strategies

	How To Write A Filter
	Terminology
	Overview of Filter Creation
	Streaming Large Data
	Overview of Pipeline Execution
	Details of Pipeline Execution
	UpdateOutputInformation()
	PropagateRequestedRegion()
	UpdateOutputData()

	Threaded Filter Execution
	Filter Conventions
	Optional
	Useful Macros

	How To Write A Composite Filter
	Implementing a Composite Filter
	A Simple Example

	V Appendix
	Frequently Asked Questions
	Introduction
	What is OTB?
	What is ORFEO?
	Where can I get more information about ORFEO?

	What is the ORFEO Accompaniment Program?
	Where can I get more information about the ORFEO Accompaniment Program?

	Who is responsible for the OTB development?

	Licence
	Which is the OTB licence?
	If I write an application using OTB am I forced to distribute that application?
	If I wanted to distribute an application using OTB what license would I need to use?
	I am a commercial user. Is there any restriction on the use of OTB?

	Getting OTB
	Who can download the OTB?
	Where can I download the OTB?

	Installing OTB
	Which platforms are supported
	Which libraries/packages are needed before installing OTB?
	Main steps
	Unix/Linux Platforms
	Microsoft Visual Studio C++ 7.1
	Microsoft Visual Studio C++ 8.0
	MinGW on Windows platform
	Cygwin

	Specific platform issues
	SunOS/HP UX
	Linux Debian/Ubuntu
	Cygwin
	MSVC++ 8.0

	Using OTB
	Where to start ?
	What is the image size limitation of OTB ?

	Getting help
	Is there any mailing list?
	Which is the main source of documentation?

	Contributing to OTB
	I want to contribute to OTB, where to begin?
	What are the benefits of contributing to OTB?
	What functionality can I contribute?

	OTB's Roadmap
	Which will be the next version of OTB?
	What is a major version?
	What is a minor version?
	What is a bugfix version?

	When will the next version of OTB be available?
	What features will the OTB include and when?

	Index

